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Most problems in frequentist statistics involve optimization of
a function such as a likelihood or a sum of squares. EM algo-
rithms are among the most effective algorithms for maximum
likelihood estimation because they consistently drive the likeli-
hood uphill by maximizing a simple surrogate function for the
log-likelihood. Iterative optimization of a surrogate function as
exempli� ed by an EM algorithm does not necessarily require
missing data. Indeed, every EM algorithm is a special case of
the more general class of MM optimization algorithms, which
typically exploit convexity rather than missing data in majoriz-
ing or minorizing an objective function. In our opinion, MM
algorithms deserve to be part of the standard toolkit of profes-
sional statisticians. This article explains the principle behind
MM algorithms, suggests some methods for constructing them,
and discusses some of their attractive features. We include nu-
merous examples throughout the article to illustrate the concepts
described. In addition to surveying previous work on MM algo-
rithms, this article introduces some new material on constrained
optimization and standard error estimation.

KEY WORDS: Constrained optimization; EM algorithm;
Majorization; Minorization; Newton–Raphson.

1. INTRODUCTION

Maximumlikelihoodand least squaresare thedominantforms
of estimationin frequentist statistics.Toy optimizationproblems
designed for classroom presentation can be solved analytically,
but most practical maximum likelihood and least squares esti-
mation problems must be solved numerically. This article dis-
cusses an optimizationmethod that typically relies on convexity
arguments and is a generalization of the well-known EM algo-
rithm method (Dempster, Laird, and Rubin 1977; McLachlan
and Krishnan 1997). We call any algorithm based on this itera-
tive method an MM algorithm.

To our knowledge, the general principle behind MM algo-
rithms was � rst enunciated by the numerical analysts Ortega
and Rheinboldt (1970) in the context of line search methods.
De Leeuw and Heiser (1977) presented an MM algorithm for
multidimensional scaling contemporary with the classic Demp-
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ster et al. (1977) article on EM algorithms. Although the work
of de Leeuw and Heiser did not spark the same explosion of
interest from the statistical community set off by the Dempster
et al. (1977) article, steady development of MM algorithms has
continued. The MM principle reappears, among other places,
in robust regression (Huber 1981), in correspondence analy-
sis (Heiser 1987), in the quadratic lower bound principle of
B �ohning and Lindsay (1988), in the psychometrics literature
on least squares (Bijleveld and de Leeuw 1991; Kiers and Ten
Berge1992),and inmedical imaging(De Pierro 1995;Langeand
Fessler 1995). The recent survey articles of de Leeuw (1994),
Heiser (1995), Becker, Yang, and Lange (1997), and Lange,
Hunter, and Yang (2000) deal with the general principle, but it
is not until the rejoinder of Hunter and Lange (2000a) that the
acronym MM � rst appears. This acronym pays homage to the
earlier names “majorization” and “iterative majorization”of the
MM principle, emphasizes its crucial link to the better-known
EM principle, and diminishes the possibility of confusion with
the distinct subject in mathematics known as majorization(Mar-
shall and Olkin 1979). Recent work has demonstrated the utility
of MM algorithms in a broad range of statistical contexts, in-
cluding quantile regression (Hunter and Lange 2000b), survival
analysis (Hunter and Lange 2002), paired and multiple compar-
isons (Hunter 2004), variable selection (Hunter and Li 2002),
and DNA sequence analysis (Sabatti and Lange 2002).

One of the virtues of the MM acronym is that it does dou-
ble duty. In minimization problems, the � rst M of MM stands
for majorize and the second M for minimize. In maximization
problems, the � rst M stands for minorize and the second M
for maximize. (We de� ne the terms “majorize” and “minorize”
in Section 2.) A successful MM algorithm substitutes a simple
optimization problem for a dif� cult optimization problem. Sim-
plicity can be attained by (a) avoiding large matrix inversions,
(b) linearizing an optimization problem, (c) separating the pa-
rameters of an optimization problem, (d) dealing with equality
and inequality constraints gracefully, or (e) turning a nondiffer-
entiable problem into a smooth problem. Iteration is the price
we pay for simplifying the original problem.

In our view, MM algorithms are easier to understand and
sometimes easier to apply than EM algorithms. Although we
have no intentionof detracting from EM algorithms, their domi-
nance over MM algorithms is a historical accident.An EM algo-
rithm operates by identifying a theoretical complete data space.
In the E-step of the algorithm, the conditionalexpectationof the
complete data log-likelihood is calculated with respect to the
observed data. The surrogate function created by the E-step is,
up to a constant, a minorizing function. In the M-step, this mi-
norizing function is maximized with respect to the parameters of
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Figure 1. For q = 0.8, (a) depicts the “vee” function » q ( ³ ) and its quadratic majorizing function for ³ ( m) = ¡0.75; (b) shows the objective function
f ( ³ ) that is minimized by the 0.8 quantile of the sample 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, along with its quadratic majorizer, for ³ ( m) = 2.5.

the underlying model; thus, every EM algorithm is an example
of an MM algorithm. Construction of an EM algorithm some-
times demands creativity in identifying the complete data and
technical skill in calculating an often complicated conditional
expectation and then maximizing it analytically.

In contrast, typical applications of MM revolve around care-
ful inspection of a log-likelihood or other objective function to
be optimized, with particular attention paid to convexity and in-
equalities. Thus, success with MM algorithms and success with
EM algorithms hinge on somewhat different mathematical ma-
neuvers. However, the skills required by most MM algorithms
are no harder to master than the skills required by most EM algo-
rithms. The purpose of this article is to present some strategies
for constructingMM algorithmsand to illustrate various aspects
of these algorithms through the study of speci� c examples.

We conclude this section with a note on nomenclature. Just
as EM is more a prescription for creating algorithms than an
actual algorithm, MM refers not to a single algorithm but to a
class of algorithms. Thus, this article refers to speci� c EM and
MM algorithms but never to “the MM algorithm” or “the EM
algorithm.”

2. THE MM PHILOSOPHY

Let ³ (m) represent a � xed value of the parameter ³ , and let
g( ³ j ³ (m)) denote a real-valued function of ³ whose form de-
pends on ³ (m). The function g( ³ j ³ (m)) is said to majorize a
real-valued function f ( ³ ) at the point ³ (m) provided

g
¡
³ j ³ (m)

¢
¶ f ( ³ ) for all ³ ,

g
¡
³ (m) j ³ (m)

¢
= f ( ³ (m)):

(1)

In other words, the surface ³ 7! g
¡
³ j ³ (m)

¢
lies above the

surface f ( ³ ) and is tangent to it at the point ³ = ³ (m). The
function g( ³ j ³ (m)) is said to minorize f ( ³ ) at ³ (m) if ¡ g( ³ j
³ (m)) majorizes ¡ f( ³ ) at ³ (m).

Ordinarily, ³ (m) represents the current iterate in a search of
the surface f ( ³ ). In a majorize-minimize MM algorithm, we
minimize the majorizing function g( ³ j ³ (m)) rather than the
actual function f ( ³ ). If ³ (m + 1) denotes the minimizer of g( ³ j
³ (m)), then we can show that the MM procedure forces f ( ³ )

downhill. Indeed, the inequality

f
³

³ (m+ 1)
´

= g
³

³ (m+ 1) j ³ (m)
´

+f
³

³ (m+ 1)
´

¡ g
³

³ (m+ 1) j ³ (m)
´

µ g
³

³ (m) j ³ (m)
´

+f
³

³ (m)
´

¡ g
³

³ (m) j ³ (m)
´

= f
³

³ (m)
´

(2)

follows directly from the fact g( ³ (m + 1) j ³ (m)) µ g( ³ (m) j
³ (m)) and de� nition (1). The descent property (2) lends an MM
algorithm remarkable numerical stability. With straightforward
changes, the MM recipe also applies to maximizationrather than
minimization: To maximize a function f ( ³ ), we minorize it by
a surrogate function g( ³ j ³ (m)) and maximize g( ³ j ³ (m)) to
produce the next iterate ³ (m + 1).

2.1 Calculation of Sample Quantiles

As a one-dimensionalexample, consider the problem of com-
puting a sample quantile from a sample x1; : : : ; xn of n real
numbers. One can readily prove (Hunter and Lange 2000b) that
for q 2 (0; 1), a qth sample quantile of x1; : : : ; xn minimizes
the function

f ( ³ ) =

nX

i = 1

» q(xi ¡ ³ ); (3)

where » q( ³ ) is the “vee” function

» q( ³ ) =

½
q³ ³ ¶ 0
¡ (1 ¡ q) ³ ³ < 0.

When q = 1=2, this function is proportional to the absolute
value function; for q 6= 1=2, the “vee” is tilted to one side or the
other. As seen in Figure 1(a), it is possible to majorize the “vee”
function at any nonzero point by a simple quadratic function.
Speci� cally, for a given ³ (m) 6= 0, » q( ³ ) is majorized at § ³ (m)
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by

± q( ³ j ³ (m)) =
1

4

½
³ 2

j ³ (m)j + (4q ¡ 2)³ + j ³ (m)j
¾

:

Fortunately, the majorization relation between functions is
closed under the formation of sums, nonnegativeproducts, lim-
its, and composition with an increasing function. These rules
permit us to work piecemeal in simplifying complicated objec-
tive functions. Thus, the function f( ³ ) of Equation (3) is ma-
jorized at the point ³ (m) by

g
³

³ j ³ (m)
´

=

nX

i = 1

± q

³
xi ¡ ³ j xi ¡ ³ (m)

´
: (4)

The function f( ³ ) and its majorizer g( ³ j ³ (m)) are shown in
Figure 1(b) for a particular sample of size n = 12.

Setting the � rst derivative of g( ³ j ³ (m)) equal to zero gives
the minimum point

³ (m+ 1) =
n(2q ¡ 1) +

Pn
i = 1 w

(m)
i xi

Pn
i = 1 w

(m)
i

; (5)

where the weight w
(m)
i = jxi ¡ ³ (m)j¡1 depends on ³ (m). A

� aw of algorithm(5) is that the weight w
(m)
i is unde� ned when-

ever ³ (m) = xi. In mending this � aw, Hunter and Lange (2000b)
also discussed the broader technique of quantile regression in-
troduced by Koenker and Bassett (1978). From a computational
perspective, themost fascinatingthingaboutthe quantile-� nding
algorithmis that it avoids sortingand relies entirelyon arithmetic
and iteration. For the case of the sample median (q = 1=2), al-
gorithm (5) is found in Schlossmacher (1973) and is shown to be
an MM algorithm by Lange and Sinsheimer (1993) and Heiser
(1995).

Because g( ³ j ³ (m)) in Equation (4) is a quadratic function
of ³ , expression (5) coincides with the more general Newton–
Raphson update

³ (m+ 1) = ³ (m) ¡
h
r2g( ³ (m) j ³ (m))

i¡1
rg

³
³ (m) j ³ (m)

´
;

(6)

where rg( ³ (m) j ³ (m)) and r2g( ³ (m) j ³ (m)) denote the gra-
dient vector and the Hessian matrix of g( ³ j ³ (m)) evaluated
at ³ (m). Because the descent property (2) depends only on de-
creasing g( ³ j ³ (m)) and not on minimizing it, the update (6) can
serve in cases where g( ³ j ³ (m)) lacks a closed form minimizer,
provided this update decreases the value of g( ³ j ³ (m)). In the
context of EM algorithms, Dempster et al. (1977) called an al-
gorithm that reduces g( ³ j ³ (m)) without actually minimizing it
a generalized EM (GEM) algorithm. The speci� c case of Equa-
tion (6), which we call a gradient MM algorithm, was studied in
the EM context by Lange (1995a), who pointed out that update
(6) saves us from performing iterationswithin iterations and yet
still displays the same local rate of convergence as a full MM
algorithm that minimizes g( ³ j ³ (m)) at each iteration.

3. TRICKS OF THE TRADE

In the quantileexample of Section 2.1, the convex“vee” func-
tion admits a quadratic majorizer as depicted in Figure 1(a). In
general, many majorizing or minorizing relationships may be

derived from various inequalities stemming from convexity or
concavity.This section outlines some common inequalitiesused
to construct majorizingor minorizingfunctionsfor various types
of objective functions.

3.1 Jensen’s Inequality

Jensen’s inequality states for a convex function µ(x) and any
random variable X that µ[E (X)] µ E [µ(X)]. Since ¡ ln(x) is
a convex function, we conclude for probability densities a(x)
and b(x) that

¡ ln

½
E

·
a(X)

b(X)

¸¾
µ ¡ E

·
ln

a(X)

b(X)

¸
:

If X has the density b(x), then E [a(X)=b(X)] = 1, so the
left-hand side above vanishes and we obtain

E [lna(X)] µ E [ln b(X)] ;

which is sometimes known as the information inequality. It is
this inequality that guarantees that a minorizing function is con-
structed in the E-step of any EM algorithm (de Leeuw 1994;
Heiser 1995), making every EM algorithm an MM algorithm.

3.2 Minorization via Supporting Hyperplanes

Jensen’s inequality is easily derived from the supporting hy-
perplane property of a convex function: Any linear function tan-
gent to the graph of a convex function is a minorizer at the point
of tangency. Thus, if µ( ³ ) is convex and differentiable, then

µ( ³ ) ¶ µ
³

³ (m)
´

+ rµ
³

³ (m)
´t ³

³ ¡ ³ (m)
´

; (7)

with equality when ³ = ³ (m). This inequality is illustrated by
the example of Section 7 involving constrained optimization.

3.3 Majorization via the De� nition of Convexity

If we wish to majorize a convexfunctioninsteadof minorizing
it, then we can use the standard de� nition of convexity; namely,
µ(t) is convex if and only if

µ

Ã
X

i

¬ iti

!
µ

X

i

¬ iµ(ti) (8)

for any � nite collection of points ti and corresponding multipli-
ers ¬ i with ¬ i ¶ 0 and

P
i ¬ i = 1. Application of de� nition

(8) is particularly effective when µ(t) is composed with a linear
function xt ³ . For instance, suppose for vectors x, ³ , and ³ (m)

that we make the substitution ti = xi( ³ i ¡ ³
(m)
i )=¬ i + xt ³ (m).

Inequality (8) then becomes

µ(xt ³ ) µ
X

i

¬ iµ

·
xi

¬ i
( ³ i ¡ ³

(m)
i ) + xt ³ (m)

¸
: (9)

Alternatively, if all components of x, ³ , and ³ (m) are pos-
itive, then we may take ti = xt ³ (m) ³ i=³

(m)
i and ¬ i =

xi ³
(m)
i =xt ³ (m). Now inequality (8) becomes

µ(xt ³ ) µ
X

i

xi ³
(m)
i

xt ³ (m)
µ

"
xt ³ (m) ³ i

³
(m)
i

#
: (10)
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Inequalities (9) and (10) have been used to construct MM al-
gorithms in the contexts of medical imaging (De Pierro 1995;
Lange and Fessler 1995) and least-squares estimation without
matrix inversion (Becker et al. 1997).

3.4 Majorization via a Quadratic Upper Bound

If a convex function µ( ³ ) is twice differentiable and has
bounded curvature, then we can majorize µ( ³ ) by a quadratic
function with suf� ciently high curvature and tangent to µ( ³ )
at ³ (m) (B �ohning and Lindsay 1988). In algebraic terms, if we
can � nd a positive de� nite matrix M such that M ¡ r2µ( ³ ) is
nonnegative de� nite for all ³ , then

µ( ³ ) µ µ
³

³ (m)
´

+ rµ
³

³ (m)
´t ³

³ ¡ ³ (m)
´

+
1

2

³
³ ¡ ³ (m)

´t

M
³

³ ¡ ³ (m)
´

provides a quadratic upper bound. For example, Heiser (1995)
noted in the unidimensional case that

1

³
µ 1

³ (m)
¡ ³ ¡ ³ (m)

( ³ (m))2
+

( ³ ¡ ³ (m))2

c3

for 0 < c µ minf ³ ; ³ (m)g. The corresponding quadratic lower
bound principle for minorization is the basis for the logistic
regression example of Section 6.

3.5 The Arithmetic-Geometric Mean Inequality

The arithmetic-geometricmean inequality is a special case of
inequality (8). Taking µ(t) = et and ¬ i = 1=m yields

exp

Ã
1

m

mX

i = 1

ti

!
µ 1

m

mX

i = 1

eti :

If we let xi = eti , then we obtain the standard form

m

vuut
mY

i = 1

xi µ 1

m

mX

i = 1

xi (11)

of the arithmetic-geometric mean inequality. Because the expo-
nential function is strictly convex, equality holds if and only if
all of the xi are equal. Inequality (11) is helpful in constructing
the majorizer

x1x2 µ x2
1

x
(m)
2

2x
(m)
1

+ x2
2

x
(m)
1

2x
(m)
2

(12)

of the product of two positive numbers. This inequality is used
in the sports contest model of Section 4.

3.6 The Cauchy–Schwartz Inequality

The Cauchy–Schwartz inequality for the Euclidean norm is a
special case of inequality(7). The functionµ( ³ ) = k ³ k is convex
because it satis� es the triangle inequality and the homogeneity
condition k ¬ ³ k = j ¬ j ¢ k³ k. Since µ( ³ ) =

pP
i ³ 2

i , we see that
rµ( ³ ) = ³ =k ³ k, and therefore inequality (7) gives

k ³ k ¶ k ³ (m)k +

¡
³ ¡ ³ (m)

¢t
³ (m)

k ³ (m)k =
³ t ³ (m)

k ³ (m)k ; (13)

which is the Cauchy–Schwartz inequality.De Leeuw and Heiser
(1977) and Groenen (1993) used inequality (13) to derive MM
algorithms for multidimensional scaling.

4. SEPARATION OF PARAMETERS
AND CYCLIC MM

One of the key criteria in judging minorizing or majorizing
functions is their ease of optimization. Successful MM algo-
rithms in high-dimensional parameter spaces often rely on sur-
rogate functions in which the individual parameter components
are separated. In other words, the surrogate function mapping
³ 2 U » Rd ! R reduces to the sum of d real-valued functions
taking the real-valued arguments ³ 1 through ³ d. Because the d
univariate functions may be optimized one by one, this makes
the surrogate function easier to optimize at each iteration.

4.1 Poisson Sports Model

Consider a simpli� ed version of a model proposed by Maher
(1982) for a sports contest between two individuals or teams
in which the number of points scored by team i against team j
follows a Poisson process with intensity eoi¡dj , where oi is an
“offensive strength” parameter for team i and dj is a “defensive
strength” parameter for team j . If tij is the length of time that
i plays j and pij is the number of points that i scores against j ,
then the corresponding Poisson log-likelihood function is

`ij( ³ ) = pij(oi ¡ dj) ¡ tijeoi¡dj + pij ln tij ¡ ln pij !;

(14)

where ³ = (o; d) is the parameter vector. Note that the parame-
ters should satisfy a linear constraint, such as

P
i oi +

P
j dj =

0, in order for the model be identi� able; otherwise, it is clearly
possible to add the same constant to each oi and dj without
altering the likelihood. We make two simplifying assumptions.
First, different games are independent of each other. Second,
each team’s point total within a single game is independent of
its opponent’s point total. The second assumption is more sus-
pect than the � rst because it implies that a team’s offensive and
defensive performances are somehow unrelated to one another;
nonetheless the model gives an interesting � rst approximation
to reality. Under these assumptions, the full data log-likelihood
is obtained by summing `ij( ³ ) over all pairs (i; j). Setting the
partial derivativesof the log-likelihoodequal to zero leads to the
equations

e¡d̂j =

P
i pijP

i tijeôi
and eôi =

P
j pij

P
j tije¡d̂j

satis� ed by the maximumlikelihoodestimate (ô; d̂). These equa-
tions do not admit a closed form solution, so we turn to an MM
algorithm.

Because the task is to maximize the log-likelihood (14), we
need a minorizing function. Focusing on the ¡ tijeoi¡dj term,
we may use inequality (12) to show that

¡ tijeoi¡dj ¶ ¡ tij

2

e2oi

eo
(m)

i + d
(m)

j

¡ tij

2
e¡2dj eo

(m)
i + d

(m)
j :

(15)
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Table 1. Ranking of all 29 NBA Teams on the Basis of the 2002–2003
Regular Season According to Their Estimated Offensive Strength Plus

Defensive Strength. Each team played 82 games.

Team ôi + d̂i Wins Team ôi + d̂i Wins

Cleveland ¡0.0994 17 Phoenix 0.0166 44
Denver ¡0.0845 17 New Orleans 0.0169 47
Toronto ¡0.0647 24 Philadelphia 0.0187 48
Miami ¡0.0581 25 Houston 0.0205 43
Chicago ¡0.0544 30 Minnesota 0.0259 51
Atlanta ¡0.0402 35 LA Lakers 0.0277 50
LA Clippers ¡0.0355 27 Indiana 0.0296 48
Memphis ¡0.0255 28 Utah 0.0299 47
New York ¡0.0164 37 Portland 0.0320 50
Washington ¡0.0153 37 Detroit 0.0336 50
Boston ¡0.0077 44 New Jersey 0.0481 49
Golden State ¡0.0051 38 San Antonio 0.0611 60
Orlando ¡0.0039 42 Sacramento 0.0686 59
Milwaukee ¡0.0027 42 Dallas 0.0804 60
Seattle 0.0039 40

Although the right side of the above inequalitymay appear more
complicated than the left side, it is actually simpler in one impor-
tant respect—the parameter componentsoi and dj are separated
on the right side but not on the left. Summing the log-likelihood
(14) over all pairs (i; j) and invoking inequality (15) yields the
function

g( ³ j ³ (m)) =
X

i

X

j

"

pij(oi ¡ dj) ¡ tij

2

e2oi

eo
(m)
i + d

(m)
j

¡ tij

2
e¡2dj eo

(m)

i + d
(m)

j

#

minorizing the full log-likelihood up to an additive constant in-
dependent of ³ . The fact that the components of ³ are separated
by g( ³ j ³ (m)) permits us to update parameters one by one
and substantially reduces computational costs. Setting the par-
tial derivatives of g( ³ j ³ (m)) equal to zero yields the updates

o
(m + 1)
i =

1

2
ln

8
<

:

P
j pij

P
j tije¡o

(m)
i ¡d

(m)
j

9
=

; ;

d
(m + 1)
j = ¡ 1

2
ln

( P
i pij

P
i tijeo

(m)

i + d
(m)

j

)

: (16)

The question now arises as to whether one should modify
algorithm(16) so that updated subsets of the parameters are used
as soon as they become available. For instance, if we update the
o vector before the d vector in each iteration of algorithm (16),
we could replace the formula for d

(m+ 1)
j above by

d
(m+ 1)
j = ¡ 1

2
ln

( P
i pij

P
i tijeo

(m+1)

i + d
(m)

j

)

: (17)

In practice, an MM algorithm often takes fewer iterations when
we cycle through the parameters updating one at a time than
when we update the whole vector at once as in algorithm (16).
We call such versions of MM algorithmscyclic MM algorithms;
they generalize the ECM algorithmsof Meng and Rubin (1993).
A cyclic MM algorithm always drives the objective function

in the right direction; indeed, every iteration of a cyclic MM
algorithm is simply an MM iteration on a reduced parameter
set.

4.2 Application to National Basketball Association
Results

Table 1 summarizes our application of the Poisson sports
model to the results of the 2002–2003 regular season of the
National Basketball Association. In these data, tij is measured
in minutes. A regular game lasts 48 minutes, and each overtime
period, if necessary, adds � ve minutes. Thus, team i is expected
to score 48eôi¡d̂j points against team j when the two teams
meet and do not tie. Team i is ranked higher than team j if
ôi ¡ d̂j > ôj ¡ d̂i, which is equivalent to ôi + d̂i > ôj + d̂j .

It is worth emphasizingsome of the virtuesof the model.First,
the ranking of the 29 NBA teams on the basis of the estimated
sums ôi + d̂i for the 2002–2003 regular season is not perfectly
consistent with their cumulative wins; strength of schedule and
margins of victory are re� ected in the model. Second, the model
gives thepoint-spreadfunctionfor a particulargameas thediffer-
ence of two independent Poisson random variables. Third, one
can easily amend the model to rank individual players rather
than teams by assigning to each player an offensive and de-
fensive intensity parameter. If each game is divided into time
segments punctuated by substitutions, then the MM algorithm
can be adapted to estimate the assigned player intensities. This
might provide a rational basis for salary negotiations that takes
into account subtle differences between players not re� ected in
traditional sports statistics.

Finally, the NBA dataset sheds light on the comparative
speeds of the original MM algorithm (16) and its cyclic modi-
� cation (17). The cyclic MM algorithm converged in fewer it-
erations (25 instead of 28). However, because of the additional
work required to recompute the denominators in Equation (17),
the cyclic version required slightly more � oating-point opera-
tions as counted by MATLAB (301,157 instead of 289,998).

5. SPEED OF CONVERGENCE

MM algorithms and Newton–Raphson algorithms have com-
plementary strengths. On one hand, Newton–Raphson algo-
rithms boast a quadratic rate of convergence as they near a local
optimum point ³ ¤ . In other words, under certain general condi-
tions,

lim
m! 1

k ³ (m+ 1) ¡ ³ ¤ k
k ³ (m) ¡ ³ ¤ k2

= c

for some constant c. This quadratic rate of convergence is much
faster than the linear rate of convergence

lim
m! 1

k³ (m+ 1) ¡ ³ ¤ k
k³ (m) ¡ ³ ¤ k = c < 1 (18)

displayed by typical MM algorithms. Hence, Newton–Raphson
algorithms tend to require fewer iterations than MM algorithms.
On the other hand, an iteration of a Newton–Raphson algorithm
can be far more computationally onerous than an iteration of an
MM algorithm. Examination of the form

³ (m + 1) = ³ (m) ¡ r2f
³

³ (m)
´¡1

rf
³

³ (m)
´
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of a Newton–Raphson iteration reveals that it requires evalua-
tion and inversion of the Hessian matrix r2f ( ³ (m)). If ³ has p
components, then the number of calculations needed to invert
the p £ p matrix r2f( ³ ) is roughly proportional to p3. By con-
trast, an MM algorithm that separates parameters usually takes
on the order of p or p2 arithmetic operations per iteration. Thus,
well-designed MM algorithms tend to require more iterations
but simpler iterations than Newton–Raphson. For this reason
MM algorithmssometimes enjoy an advantagein computational
speed.

For example, the Poisson process scoring model for the NBA
dataset of Section 4 has 57 parameters (two for each of 29 teams
minus one for the linear constraint). A single matrix inversion
of a 57 £ 57 matrix requires roughly 387,000 � oating point op-
erations according to MATLAB. Thus, even a single Newton–
Raphson iteration requires more computation in this example
than the 300,000 � oating point operations required for the MM
algorithm to converge completely in 28 iterations. Numerical
stability also enters the balance sheet. A Newton–Raphson al-
gorithm can behave poorly if started too far from an optimum
point. By contrast, MM algorithms are guaranteed to appropri-
ately increase or decrease the value of the objective function at
every iteration.

Other types of deterministic optimization algorithms, such as
Fisher scoring,quasi-Newtonmethods,or gradient-freemethods
like Nelder–Mead, occupy a kind of middle ground. Although
none of them can match Newton–Raphson in required iterations
until convergence, each has its own merits. The expected infor-
mation matrix used in Fisher scoring is sometimes easier to eval-
uate than the observed information matrix of Newton–Raphson.
Scoring does not automatically lead to an increase in the log-
likelihood, but at least (unlike Newton–Raphson) it can always
be made to do so if some form of backtracking is incorporated.
Quasi-Newton methods mitigate or even eliminate the need for
matrix inversion. The Nelder–Mead approach is applicable in
situations where the objective function is nondifferentiable.Be-
cause of the complexities of practical problems, it is impossible
to declare any optimization algorithm best overall. In our ex-
perience, however, MM algorithms are often dif� cult to beat in
terms of stability and computational simplicity.

6. STANDARD ERROR ESTIMATES

In most cases, a maximum likelihood estimator has asymp-
totic covariance matrix equal to the inverse of the expected in-
formation matrix. In practice, the expected information matrix
is often well-approximated by the observed information matrix
¡ r2`( ³ ) computed by differentiating the log-likelihood `( ³ )

twice. Thus, after the MLE ^³ has been found, a standard error of
^³ can be obtained by taking square roots of the diagonal entries
of the inverse of ¡ r2`(^³ ). In some problems, however, direct
calculation of r2`(^³ ) is dif� cult. Here we propose two numeri-
cal approximations to this matrix that exploit quantities readily
obtained by running an MM algorithm. Let g( ³ j ³ (m)) denote a
minorizing function of the log-likelihood`( ³ ) at the point ³ (m),
and de� ne

M (#) = arg max
³

g( ³ j #)

to be the MM algorithm map taking ³ (m) to ³ (m+ 1).

6.1 Numerical Differentiation via MM

The two numerical approximations to ¡ r2`(^³ ) are based on
the formulas

r2`(^³ ) = r2g(^³ j ^³ )
h
I ¡ rM (^³ )

i
(19)

= r2g(^³ j ^³ ) +

·
@

@#
rg(^³ j #)

¸

# = ^³

; (20)

where I denotes the identity matrix. These formulas were de-
rived by Lange (1999) using two simple facts: First, the tan-
gency of `( ³ ) and its minorizer imply that their gradient vectors
are equal at the point of minorization; and second, the gradient
of g( ³ j ³ (m)) at its maximizer M ( ³ (m)) is zero. Alternative
derivations of formulas (19) and (20) were given by Meng and
Rubin (1991) and Oakes (1999), respectively. Although these
formulas have been applied to standard error estimation in the
EM algorithm literature—Meng and Rubin (1991) base their
SEM idea on formula (19)—to our knowledge, neither has been
applied in the broader context of MM algorithms.

Approximation of r2`(^³ ) using Equation (19) requires a nu-
merical approximation of the Jacobian matrix rM( ³ ), whose
i; j entry equals

@

@³ j
Mi( ³ ) = lim

¯ ! 0

Mi( ³ + ¯ ej) ¡ Mi( ³ )

¯
; (21)

where the vector ej is the jth standard basis vector having a one
in its jth component and zeros elsewhere. Because M (^³ ) = ^³ ,
the jth column of rM (^³ ) may be approximatedusing only out-
put from the corresponding MM algorithm by (a) iterating until
^³ is found, (b) altering the jth componentof ^³ by a small amount
¯ j , (c) applying the MM algorithm to this altered ³ , (d) subtract-
ing ^³ from the result, and (e) dividing by ¯ j . Approximation of
r2`(^³ ) using Equation (20) is analogous except it involves nu-
merically approximating the Jacobian of h(#) = rg(^³ j #). In
this case one may exploit the fact that h(^³ ) is zero.

6.2 An MM Algorithm for Logistic Regression

To illustrate these ideas and facilitate comparison of the var-
ious numerical methods, we consider an example in which the
Hessian of the log-likelihood is easy to compute. B �ohning and
Lindsay (1988) apply the quadratic bound principle of Section
3.4 to the case of logistic regression, in which we have an n £ 1
vector Y of binary responses and an n £ p matrix X of predic-
tors. The model stipulates that the probability º i( ³ ) that Yi = 1
equals expf ³ txig= (1 + expf ³ txig). Straightforward differen-
tiation of the resulting log-likelihood function shows that

r2`( ³ ) = ¡
nX

i= 1

º i( ³ )[1 ¡ º i( ³ )]xix
t
i:

Since º i( ³ )[1 ¡ º i( ³ )] is bounded above by 1=4, we may de� ne
the negative de� nite matrix B = ¡ 1

4 XtX and conclude that
r2`( ³ ) ¡ B is nonnegative de� nite as desired. Therefore, the
quadratic function

g
³

³ j ³ (m)
´

= `
³

³ (m)
´

+ r`
³

³ (m)
´t ³

³ ¡ ³ (m)
´

+
1

2

³
³ ¡ ³ (m)

´t

B
³

³ ¡ ³ (m)
´
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Table 2. Estimated Coef�cients and Standard Errors for the
Low Birth Weight Logistic Regression Example

Standard errors based on:

Variable ˆ³ Exact r2 (̀ ˆ³ ) Equation (19) Equation (20)

Constant 0.48062 1.1969 1.1984 1.1984
AGE ¡0.029549 0.037031 0.037081 0.037081
LWT ¡0.015424 0.0069194 0.0069336 0.0069336
RACE2 1.2723 0.52736 0.52753 0.52753
RACE3 0.8805 0.44079 0.44076 0.44076
SMOKE 0.93885 0.40215 0.40219 0.40219
PTL 0.54334 0.34541 0.34545 0.34545
HT 1.8633 0.69754 0.69811 0.69811
UI 0.76765 0.45932 0.45933 0.45933
FTV 0.065302 0.17240 0.17251 0.17251

minorizes `( ³ ) at ³ (m). The MM algorithm proceeds by maxi-
mizing this quadratic, giving

³ (m + 1) = ³ (m) ¡ B¡1r`
³

³ (m)
´

= ³ (m) ¡ 4(XtX)¡1X t
h
Y ¡ º

³
³ (m)

´i
: (22)

Since the MM algorithm of Equation (22) needs to invert X tX
only once, it enjoys an increasing computational advantage
over Newton–Raphson as the number of predictors p increases
(B �ohning and Lindsay 1988).

6.3 Application to Low Birth Weight Data

We nowtest the standarderror approximationsbasedon Equa-
tions (19) and (20) on the low birth weight dataset of Hosmer
and Lemeshow (1989). This dataset involves 189 observations
and eight maternal predictors. The response is 0 or 1 accord-
ing to whether an infant is born underweight, de� ned as less
than 2.5 kilograms. The predictors include mother’s age in years
(AGE), weight at lastmenstrualperiod (LWT), race (RACE2 and
RACE3), smoking status during pregnancy (SMOKE), number
of previous premature labors (PTL), presence of hypertension
history (HT), presence of uterine irritability (UI), and number of
physician visits during the � rst trimester (FTV). Each of these
predictors is quantitative except for race, which is a three-level
factor with level 1 for whites, level 2 for blacks, and level 3 for
other races. Table 2 shows the maximum likelihood estimates
and asymptotic standard errors for the 10 parameters. The dif-
ferentiation increment ¯ j was ^³ j=1000 for each parameter ³ j .
The standard error approximationsin the two rightmostcolumns
turn out to be the same in this example, but in other models they
will differ. The close agreement of the approximations with the
“gold standard” based on the exact value r2`(^³ ) is clearly good
enough for practical purposes.

7. HANDLING CONSTRAINTS

Many optimization problems impose constraints on param-
eters. For example, parameters are often required to be non-
negative. Here we discuss a majorization technique that in a
sense eliminates inequalityconstraints. For this adaptive barrier
method(Censor andZenios1992;Lange1994) to work, an initial
point ³ (0) must be selected with all inequalityconstraints strictly
satis� ed. The barrier method con� nes subsequent iterates to the

interior of the parameter space but allows strict inequalities to
become equalities in the limit.

Consider the problem of minimizing f ( ³ ) subject to the con-
straints vj( ³ ) ¶ 0 for 1 µ j µ q, where each vj( ³ ) is a concave,
differentiable function. Since ¡ vj( ³ ) is convex, we know from
inequality (7) that

vj

³
³ (m)

´
¡ vj( ³ ) ¶ rvj

³
³ (m)

´t

( ³ (m) ¡ ³ ):

Application of the similar inequality ln s ¡ ln t ¶ s¡1(t ¡ s)
implies that

vj( ³ (m))
h
¡ ln vj( ³ ) + ln vj( ³ (m))

i
¶ vj( ³ (m)) ¡ vj( ³ ):

Adding the last two inequalities, we see that

vj( ³ (m))
h
¡ ln vj( ³ ) + ln vj( ³ (m))

i

+rvj( ³ (m))t( ³ ¡ ³ (m)) ¶ 0;

with equality when ³ = ³ (m). Summing over j and multiplying
by a positive tuning parameter !, we construct the function

g
³

³ j ³ (m)
´

= f ( ³ ) + !

qX

j = 1

"

vj

³
³ (m)

´
ln

vj

¡
³ (m)

¢

vj( ³ )

+
³

³ ¡ ³ (m)
´t

rvj

³
³ (m)

´¸
(23)

majorizing f ( ³ ) at ³ (m). The presence of the term ln vj( ³ ) in
Equation (23) prevents vj( ³ (m+ 1)) µ 0 from occurring. The
multiplier vj( ³ (m)) of ln vj( ³ ) gradually adapts and allows
vj( ³ (m + 1)) to tend to 0 if it is inclined to do so. When there
are equality constraints A³ = b in addition to the inequality
constraints vj( ³ ) ¶ 0, these should be enforced during the min-
imization of g( ³ j ³ (m)).

7.1 Multinomial Sampling

To gain a feel for how these ideas work in practice, consider
the problem of maximum likelihood estimation given a random
sample of size n from a multinomial distribution. If there are q
categories and ni observations fall in category i, then the log-
likelihood reduces to

P
i ni ln ³ i plus a constant. The compo-

nents of the parameter vector ³ satisfy ³ i ¶ 0 and
P

i ³ i = 1.
Although it is well known that the maximum likelihood esti-
mates are given by ^³ i = ni=n, this example is instructive be-
cause it is explicitly solvable and demonstrates the linear rate of
convergence of the proposed MM algorithm.

To minimize thenegativelog-likelihoodf ( ³ ) = ¡
P

i ni ln ³ i

subject to the q inequality constraints vi( ³ ) = ³ i ¶ 0 and the
equalityconstraint

P
i ³ i = 1, we construct the majorizingfunc-

tion

g
³

³ j ³ (m)
´

= f ( ³ ) ¡ !

qX

i = 1

³
(m)
i ln ³ i + !

qX

i = 1

³ i

suggested in Equation (23), omitting irrelevant constants. We
minimize g( ³ j ³ (m)) while enforcing

P
i ³ i = 1 by introducing

a Lagrange multiplier and looking for a stationary point of the
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Lagrangian

h( ³ ) = g( ³ j ³ (m)) + ¶

Ã
X

i

³ ¡ 1

!

:

Setting @h( ³ )=@³ i equal to zero and multiplying by ³ i gives

¡ ni ¡ !³
(m)
i + !³ i + ¶ ³ i = 0:

Summing on i reveals that ¶ = n and yields the update

³
(m + 1)
i =

ni + !³
(m)
i

n + !
:

Hence, all iterates have positive components if they start with
positive components. The � nal rearrangement

³
(m + 1)
i ¡ ni

n
=

!

n + !

³
³

(m)
i ¡ ni

n

´
:

demonstrates that ³ (m) approaches the estimate ^³ at the linear
rate !=(n + !), regardless of whether ^³ occurs on the boundary
of the parameter space where one or more of its components ^³ i

equal zero.

8. DISCUSSION

This article is meant to whet readers’ appetites, not satiate
them. We have omitted much. For instance, there is a great deal
known about the convergence properties of MM algorithms that
is too mathematically demanding to present here. Fortunately,
almost all results from the EM algorithm literature (Wu 1983;
Lange1995a;McLachlanand Krishnan1997;Lange1999)carry
over without change to MM algorithms. Furthermore, there are
several methods for accelerating EM algorithms that are also
applicable to accelerating MM algorithms (Heiser 1995; Lange
1995b; Jamshidian and Jennrich 1997; Lange et al. 2000).

Although this survey article necessarily reports much that is
already known, there are some new results here. Our MM treat-
ment of constrained optimization in Section 7 is more general
thanpreviousversions in the literature (Censor and Zenios 1992;
Lange 1994). The applicationof Equation (20) to the estimation
of standard errors in MM algorithms is new, as is the extension
of the SEM idea of Meng and Rubin (1991) to the MM case.

There are so many examples of MM algorithms in the liter-
ature that we are unable to cite them all. Readers should be on
the lookout for these and for known EM algorithms that can be
explained more simply as MM algorithms. Even more impor-
tantly,we hope this article will stimulate readers to discovernew
MM algorithms.

[Received June 2003. Revised September 2003.]
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