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ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM' 

BY C. F. JEFF WU 

University of Wisconsin, Madison 
Two convergence aspects of the EM algorithm are studied: (i) does the 

EM algorithm find a local maximum or a stationary value of the (incomplete- 
data) likelihood function? (ii) does the sequence of parameter estimates 
generated by EM converge? Several convergence results are obtained under 
conditions that are applicable to many practical situations. Two useful special 
cases are: (a) if the unobserved complete-data specification can be described 
by a curved exponential family with compact parameter space, all the limit 
points of any EM sequence are stationary points of the likelihood function; 
(b) if the likelihood function is unimodal and a certain differentiability 
condition is satisfied, then any EM sequence converges to the unique maxi- 
mum likelihood estimate. A list of key properties of the algorithm is included. 

1. Introduction. Dempster, Laird and Rubin (1977) (henceforth abbreviated DLR) 
introduced the EM algorithm for computing maximum likelihood estimates from incom- 
plete data. The essential ideas underlying the EM algorithm have been presented in special 
cases by many authors; see DLR for a detailed account. Among them we mention Baum 
et al. (1970), Hartley and Hocking (1971), Orchard and Woodbury (1972), Sundberg (1974). 
The DLR paper has made three significant contributions: (i) it recognizes the expectation 
step (E-step) and the maximization step (M-step) in their general forms, (ii) it gives some 
theoretical properties of the algorithm, and (iii) it recognizes and gives a wide range of 
applications in statistics. 

However, the proof of convergence of EM sequences in DLR contains an error. The 
implication from (3.13) to (3.14) in their Theorem 2 fails due to an incorrect use of the 
triangle inequality. Additional comments on this proof are given in Section 2.2. Therefore 
the convergence of EM sequence as proved in their Theorems 2 and 3 is cast in doubt. 
Other results on the monotonicity of likelihood sequence and the convergence rate of EM 
sequence (Theorems 1 and 4 of DLR) remain valid. 

Despite its slow numerical convergence, the EM algorithm has become a very popular 
computational method in statistics. Contrary to the general experience in numerical 
optimization, the implementation of the E-step and M-step is easy for many statistical 
problems, thanks to the nice form of the complete-data likelihood function. Solutions of 
the M-step often exist in closed form. In many cases the M-step can be performed with a 
standard statistical package, thus saving programming time. Another reason for statisti- 
cians to prefer EM is that it does not require large storage space. These two features are 
especially attractive to those with free access to small computers. 

In this paper, instead of patching up the original proof of DLR, we study more broadly 
two convergence aspects of the EM algorithm. Our approach is to view EM as a special 
optimization algorithm and to utilize existing results in the optimization literature. 

Formally we have two sample spaces . and cN and a many-to-one mapping from . to 
OY. Instead of observing the "complete data" x in ?, we observe the "incomplete data" y 
- y(x) in ON. Let the density function of x be f (x I 4) with parameters 4 E f2 and let the 
density function of y be given by 
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g(yI4)) f(x Io) dx, 

where X(y) = {x: y(x) = y). The parameters 4 are to be estimated by the method of 
maximum likelihood, i.e., by maximizing g(y I 4) over 4 E 2. In many statistical problems, 
maximization of the complete-data specification f(x 1I ) is simpler than that of the incom- 
plete-data specification g(y 1I ). A main feature of the EM algorithm is maximization of 
f(x 14)) over 4 E 2 (M-step). Since x is unobservable, we replace logf(x 14)) by its 
conditional expectation given y and the current fit 4p)(E-step). To this end, let k (x I y, 4) 

f (x I 4)/g(y 1 4) be the conditional density of x given y and 4. Then the log-likelihood 

(1) L(4') = log g(y I o') = Q(O'I4)) -H(O'I 4), 
where Q (O'I 4)) = E {log f (x I o') I y, )) and H(O'l 4) = E {log k (x I y, 4') y, )) are assumed 
to exist for all pairs (4', 4). We now define the EM iteration 4p ), - 4p,i E M(qp) as follows: 

E-STEP. Determine Q (4 I 4p). 
M-STEP. Choose op?1 to be any value*,of E) E 2 which maximizes Q (4 I 4p). 

Note that M is a point-to-set map, i.e., M(4p) is the set of 4 values which maximizes 
Q ( I 4p) over 4 E S. Many applications of EM are for the curved exponential family, for 
which the E-step and M-step take special forms. 

Sometimes it may not be numerically feasible to perform the M-step. DLR defined a 
generalized EM algorithm (a GEM algorithm) to be an iterative scheme 4)p -* 4)?p+i E 

M(4p), where 4 -* M(4)) is a point-to-set map, such that 

(2) Q(4' I) ' Q(4)I4)) for all ' E M(+). 

EM is a special case of GEM. For any instance {fp) of a GEM algorithm, 

(3) L(Op+1) 2 L(Op) 

follows from the definition of GEM and the inequality 

(4) H (. I (t) >- H (.' I (t) for any O' (= S2. 

For proofs of (3) and (4), see Lemma 1 and Theorem 1 of DLR. 
In Sections 2.1 and 2.2 we inspect two convergence aspects of the EM and GEM 

algorithms and discuss the relationship of our results to previous ones in the literature. In 
Section 3 we summarize the key properties of EM. Potential EM users that are not patient 
with mathematical details may read the summary before consulting the results in Section 
2. 

2. Does EM do the job? The original purpose of the EM algorithm was to provide 
iterative computation of the maximum-likelihood estimates. For a bounded sequence 
L (4p), (3) implies that L (4p) converges monotonically to some L *. We want to know 
whether L * is the global maximum of L (4) over 2. If not, is it a local maximum or a 
stationary value? This problem is studied in Section 2.1. A related problem of the 
convergence of an EM or GEM sequence {fp) is studied in Section 2.2. We make the 
following assumptions for the rest of the paper: 

(5) 2 is a subset in the r-dimensional Euclidean space R, 

(6) 2'> = {4) E 2: L(4)) 2 L(4)o)) is compact for any L(4o) > -oo 

(7) L is continuous in 2 and differentiable in the interior of 2. 

As a consequence of (5), (6), (7), we have 

(8) {L(4p))p:),,0 is bounded above for any 4o E- 2. 
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The compactness assumption in (6) can be restrictive when no realistic compactification 
of the original parameter space is available. Such may happen in, say, variance components 
models and factor analysis. To avoid trivialities, we assume that the starting point 4o of an 
EM or GEM algorithm satisfies L (0o) > -oo. When we compute the derivatives of L, Q, H 
at 4)p, we assume that 4p is in the interior of S2. Such an assumption is implied, for example, 
by 

(9) S2< is in the interior of 2 for q)o E 2. 

2.1 Convergence to global maximum, local maximum or stationary value? From (3) 
and (8), L (4p) converges monotonically to some L *. There is no guarantee that L * is the 
global maximum of L (4) over 2 for the EM algorithm. Although a global maximization of 
Q is involved in the M-step, the other term H in L = Q-H may not cooperate. Even the 
question of convergence to a local maximum cannot be satisfactorily answered. For 
simplicity we assume that q)p converges to some 4* in the interior of 2, that the Hessian 
matrices D20 Q(O* I 0* ) and D2OH(O* I 0*) with respect to the first 4* variable exist, and 
that D20Q (4)' 1 ) is continuous in (4', 4). Then -D20Q (4* I 0*) is non-negative definite 
(n.n.d.) according to the definition of the M-step, and -D2OH(O* I 0*) is n.n.d. according to 
Lemma 2 of DLR. Since D2L(O*) = D20Q(4)* I )* - D2OH(O* I 0*), * may not be a local 
maximum. 

We give an example (Murray, 1977) to illustrate the possibility of converging to a 
stationary value but not to a local maximum. The twelve observations in the display below 
come from a bivariate normal distribution with zero means, correlation coefficient p and 

2 aseik 
variances ui, U2, where asterisks represent missing values. For these data the likelihood 
has two 

Variable 1: 1 1 -1 -1 2 2 -2 -2 * * * * 

Variable2: 1 -1 1 -1 * * * * 2 2 -2 -2 

global maxima at p = + 1/2, l = (= 8/3 and a saddle point at p = 0, u2 - (2 - 5/2 If the 
starting point of an EM sequence has p = 0, then p = 0 remains true for all the subsequent 
iterations and the sequence converges to the saddle point. If p is bounded away from zero 
in the EM iterations, then the sequence converges to either maximum. We will come back 
to this example after Corollary 1. 

In general, if the log-likelihood L has several (local or global) maxima and stationary 
points, convergence of the EM sequence to either type of point depends on the choice of 
starting point. This phenomenon has also been reported in Hasselblad (1969), Wolfe (1970), 
Haberman (1974), Laird (1978), Rubin and Thayer (1982). 

The above discussion on the convergence to local or global maximum may seem 
redundant, since it is known that no general optimization algorithms are guaranteed to 
converge to local maxima. Over the last few years some misconception of the power of EM 
has developed, partly because of the global maximization nature of its M-step. We hope 
that our discussion will help to remove the misconception. 

We now consider the issue of convergence to stationary values. The main theorems of 
this section rely on the following result. A map A from points of X to subsets of X is called 
a point-to-set map on X. It is said to be closed at x if Xk -> X, Xk E X and Yk -> Y, Yk E A (Xk), 

imply y E A (x). For point-to-point map, continuity implies closedness. 

GLOBAL CONVERGENCE THEOREM. Let the sequence {Xk} k=o be generated by Xk?l E 
M(xk), where M is a point-to-set map on X. Let a solution set F C X be given, and suppose 
that: (i) all points Xk are contained in a compact set S C X; (ii) M is closed over the 
complement of F; (iii) there is a continuous function a on X such that (a) if x C F, a (y) 
> a (x) for all y E M(x), and (b) if x E F, a(y) a-(x) for all y E M(x). 

Then all the limit points of {xk} are in the solution set F and a(Xk) converges 
monotonically to a (x) for some x E r. 
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PROOF. See Zangwill (1969, page 91). 

Let M be the point-to-set map in a GEM iteration and let a(x) be the log-likelihood 
function L. Take the solution set F to be 

X1 = set of local maxima in the interior of S2, 

or 

M= set of stationary points in the interior of U. 

Condition (iii)(b) follows from (3) and condition (i) follows from (3), (8). Then Theorem 1 
follows as a special case of the above theorem. 

THEOREM 1. Let {4)p) be a GEM sequence generated by q)p+l E M(op), and suppose 
that (i) M is a closed point-to-set map over the complement of Y (resp. #), (ii) L (Op?i) > 
L(4p) for all 4p C Y' (resp. #). 

Then all the limit points of {fop} are stationary points (local maxima) of L, and L (4p) 
converges monotonically to L * = L(0*) for some 0* E Y (resp. #). 

For the EM algorithm, it is easy to show that a simple sufficient condition for the 
closedness of M is that 

(10) Q(4 I )) is continuous in both 4 and 4. 

This condition is very weak and should be satisfied in most practical situations. For 
convergence to stationary values it turns out to be the only required regularity condition 
(in addition to those given before). The following theorem is most useful in that it covers 
a broad range of statistical applications. 

THEOREM 2. Suppose Q satisfies the continuity condition (10). Then all the limit 
points of any instance {fp} of an EM algorithm are stationary points of L and L (0p) 
converges monotonically to L * = L (0*) for some stationary point 4)*. 

PROOF. Since (10) is sufficient for (i) of Theorem 1, it remains to prove (ii) of Theorem 
1 for all 4p C Y. Consider a 4p, which is in the interior of S by (9). Since 4p maximizes 
H(4 I 4p) over 4 E S2 according to (4), D10H( +p I 4p) = 0. Therefore DL (0p) = D10Q( (+p I Op) 
# 0 for any 4p C Y from the definition of Y, implying that 4p is not a local maximum of 
Q (4 I 4p) over 4 E 2. From the definition of the M-step, Q (0p+j I 4p ) > Q (4p I 4p ). Together 
with (4), this proves L (Op+i) > L (4p ) for all 4p C Y. The desired result follows. O 

The same argument does not apply when 9 is replaced by M. This is easily demonstrated 
by considering a 4p in 9 but not in M. Here DL (4p ) = D 10Q (4p I 4p ) = 0 and 4p may indeed 
maximize Q (4 I 4p) over 4 E (2. The EM iteration terminates at 4)p, a stationary point but 
not a local maximum, and L (4p+i) > L (4p) does not hold for such op. Thus to guarantee 
convergence to a local maximum, we need a further condition such as (11) below. Since 
(11) holds for any 4 C Y, (4) and (11) imply (ii) of Theorem 1 for all Op C . The following 
theorem is a special case of Theorem 1. 

THEOREM 3. Suppose Q satisfies the continuity condition (10) and 

(11) supf 'EQ()' I 4) > Q(4 I I) for any E- e\ X(. 

Then all the limit points of any instance {(p) of an EM algorithm are local maxima of 
L and L (op) converges monotonically to L * = L (4*) for some local maximum 4 *. 

Since (11) is typically hard to verify, the utility of Theorem 3 is somewhat limited. An 
important class of densities that satisfy (10) is the curved exponential family 
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(12) f(x 14)) = b(x)exp{fTt(x)}/a(0), 

where the parameters 4 lie in a compact submanifold So of the r-dimensional convex 
region 2 = {(: a(+) = f.b(x)exp[OTt(x)] dx < 00). Here Q(0'10) = - loga(o') + 
E{logb(x)ly, 4) + 0'TE{t(x)Iy, 4). From the compactness of 2o and properties of 
exponential family, one can easily verify condition (10). We emphasize that the continuity 
of Q also hold true for many densities outside the exponential family. 

Theorem 1 is the most general result for EM and GEM algorithms. The result in 
Theorem 2 was obtained by Baum et al. (1970) and Haberman (1977) for two special 
models. Boyles (1980) obtained a similar result for general models but under stronger 
regularity conditions. One key condition in Baum et al. (1970) and Boyles (1980) is that M 
is a continuous point-to-point map over 2, which is stronger than a closed point-to-set 
map over 2\ 99 (assumed in Theorem 1). Boyles showed that his Lemma 4.2 covers the 
regular exponential family, a case not frequently encountered in practice, while our 
Theorem 2 covers a much broader class of applications. 

Murray's example illustrates Theorems 2 and 3 well. Convergence of any EM sequence 
to a stationary value follows from Theorem 2 or Corollary 1. But why does an EM sequence 
converge to a saddle point in this example? From the assumptions of Theorem 3, it 
becomes clear that condition (11) is being violated at the saddle point p = 0, l = 2= 5/2. 

In fact the saddle point maximizes the likelihood over all the parametric specifications 
with p = 0. On the other hand, if a particular EM sequence is not attracted toward the 
hyperplane p = 0, then violation of (11) is avoided and convergence of this EM sequence 
to local maxima is guaranteed. 

2.2 Convergence of an EM or GEM sequence {fp}. The convergence of L (4p) to L * 
studied in Section 2.1 does not automatically imply the convergence of 4p to a point 4*. 
(The implication in the reverse direction is true if D 10H(4' 4 )) is continuous.) Convergence 
of EM in the latter sense usually requires more stringent regularity conditions and will be 
addressed in this subsection. 

Theorem 2 of DLR incorrectly claimed that, under their conditions (1) and (2), a GEM 
sequence {fp} converges to a point 4* in the closure of 2. A GEM (but not EM) sequence 
was given in Boyles (1983) as a counterexample. The DLR argument would be valid only 
if condition (2) of their theorem could be replaced by the following: 

(13) Q (OP+l lfp)-Q (OPl p ) > A 1 p+l-op lI for some A >O and all p. 

However, if p --*, then (13) implies fl DlOQ(4* 1)* ) 11 = 11 DL (4* ) l -\ > O, and 4* can 
not be a stationary point. There appears to be no simple way to fix their proof. From the 
numerical viewpoint, the convergence of 4p is not as important as the convergence of L (4p) 
to stationary values or local maxima. Since the original DLR claim was made in terms of 
the convergence of {fp } and since subsequent EM users often quoted this result, a rigorous 
study of this problem is worthwhile. 

Define 99(a) = {4 E YM L(+) a) and M (a) = {4 E M: L(+) = a). Under the 
assumptions of Theorem 1, L (4p) L* and all the limit points of {fp) are in 9(L *) (resp. 
,&(L*)). If 99(L*)(resp. Jl(L*)) consists of a single point 4)*, i.e., there can not be two 
different stationary points (resp. local maxima) with the same L *, then p -+*. 

THEOREM 4. Let {f), be an instance of a GEM algorithm satisfying conditions i) 
and ii) of Theorem 1. If 9(L *)(resp. J/(L*)) = {4*}, where L * is the limit of L (4p) in 
Theorem 1, then 4p -*. 

The above assumption 99(L * ) = {)* } can be greatly relaxed if we assume | |p+i - 4),p | 
0 as p -> oo, a condition necessary for the desired result 4p -*. 

THEOREM 5. Let {fp) be an instance of a GEM algorithm satisfying conditions i) 
and ii) of Theorem 1. If 11 4p+i-i-p 11 O--- 0 asp -0oo, then all the limit points of {fp) are in 
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a connected and compact subset of S?(L *) (respectively X1 (L *)), where L * is the limit of 
L(4p) in Theorem 1. In particular, if 9'(L*)(resp. dk(L*)) is discrete, i.e. its only 
connected components are singletons, then 4p converges to some 4* in 9(L*)(resp. 
,&(L *)). 

PROOF. From assumption (6), {op) is a bounded sequence. According to Theorem 28.1 
of Ostrowski (1966), the set of limit points of a bounded sequence {top} with 11 Op+i - 4p 11 
-O 0 as p -*oo is connected and compact. From Theorem 1, all the limit points of {dip} are 
already in 9(L * ) (resp. X& (L * )). The desired result now follows. 0 

Note that condition (ii) of Theorem 1 for 4,p C 9'is automatically satisfied for any EM 
sequence as demonstrated in the proof of Theorem 2. Theorem 5 was proved in Boyles 
(1980, 1982, 1983), under different regularity conditions. Theorem 4 was obtained by 
Hartley and Hocking (1971) for a special model. 

9onvergence of 4pp to a stationary point can be proved without recourse to Theorem 1. 
Let Y(L) = {4)E l:L(4)) =L}. 

THEOREM 6. Let {4p) be an instance of a GEM algorithm with the additional 
property D10Q (p+i+i I 4p) = 0. Suppose D 10Q ()' 14)) is continuous in 4)' and 4. Then pp 
converges to a stationary point 4)* with L (4*) = L *, the limit of L (4p), if either (a) S(L *) 
- {)* }, or (b) 1II p++ - p 11 O-> 0 asp oo and f(L* ) is discrete. 

PROOF. As in the proofs of Theorems 4 and 5, we can show 4p -* for some 4* E 
S(L *). DL (4) *) = DOQ (4)* 1 4)*) = 0 follows from (4), D 10Q (4p+l 1 4p)) = 0 and the continuity 
of D 10Q (4)' I j) in 4)' and 4). 

Note that EM satisfies D 0Q(4,p+i 14 )p) = 0. Since X (L) and YS(L) are subsets of YI(L), 
conditions (a) and (b) in Theorem 6 are stronger than the corresponding ones in Theorems 
4 and 5 respectively. The advantage of Theorem 6 is that it does not require conditions (i) 
and (ii) of Theorem 1. An important special case is the following. 

COROLLARY 1. Suppose that L (4)) is unimodal in S2 with 4* being the only stationary 
point and that D10Q(O' 14 ) is continuous in 4) and 4'. Then for any EM sequence {fp}, 
4p converges to the unique maximizer 4* of L (4). 

From the viewpoint of the user, Theorem 2 and Corollary 1 are the most useful results 
since they require conditions that are very easy to verify. Their applications to specific 
statistical problems are numerous, e.g., Haberman (1977), Redner and Walker (1982), 
Turnbull (1976), Turnbull and Mitchell (1981), Vardi (1982). 

There are two key assumptions (in addition to those discussed in Section 2.1) in 
Theorem 5 for the convergence of (4pp): discreteness of Y5(L *) and 11 pp+i- p 11 4)O- 0 as p 
-> oo. The latter condition may be hard to verify in practice. For the special cases stated 
below, the condition holds true. 

Sufficient conditions for 11 pp+i - 4p I 0 as p -* oo: 

CONDITION 1. There exists a forcing function a such that 

(14) Q(4P+1I14p) -Q(4p) p),-,g(114)p+i-p)lj) forallp. 

(A mapping a: [0, oo) -> [0, oo) is said to be a forcing function if, for any sequence {tk) in 
[0, 00), limk ,-U(tk) = 0 implies limk-,,,tk = 0.) From (4), 

(15) L (4p+,) -L (4pp) ': Q(4p+i 14)p) - Q(4),p I )p). 
Since L(,) > L * and a is a forcing function, (14) and (15) imply II ,0p+1 - 4p, j --* 0. By 
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taking ((t) = Xt2, X > 0, (14) becomes 

(16) Q (P+i I 4p) -)Q (p 1p) >-AX 11 p+i _ 4p 112 for all p. 

Except for the regular exponential family, it is difficult to verify (16). 

We single out a subclass of GEM algorithms for which (14) is satisfied. Let B (0p) be a 
positive definite r x r matrix continuous in op. Then a sufficient condition is obtained by 
letting the GEM iteration op ---- op+, be defined by (17) and (18) 

(17) op+, o p + (pB (op ) D '0Q (op I opl )11 D'0Q (op I op) 11 s 

where s < 1 and 0 < sp c 1 is chosen such that op+, is in the interior of 2, 

(18) Q(4W+i IIop) - Q(oap I Iop) - aD1OQ(op I op)T(op+i _ op), 

where 0 < a < 1 is independent of p. For example, for steepest ascent, we would take B (Op ) 
= L The Armijo line search method (Polak, 1971, page 36;'Ortega and Rheinboldt, 1970, 
page 491) is a finite-terminating algorithm designed for finding the steplength (p specified 
in (17) and (18). Such a 4p always exists because op is in the interior by assumption, 
Q (4)I:op) is locally increasing in the direction B (op) D 10Q (op Iop), and 0 < a < 1. By the 
nature of the GEM iteration (17) and (18), the algorithm terminates at a ,p with 
D 10Q (op I op) = 0. It is based solely on the directional derivatives of Q and line searches 
along the directions. We now proceed to prove that the GEM iteration (17) and (18) 
satisfies (14) with ((t) = ct(2-s)/(l-s) Let 

A* = sup,.g.0 {max eigenvalue of B ()). 

From (17) and (18), 

Q(OP+l l Ip) - Q(OP I IP) > aGi(op+i - 0p))TB-1(p) )(op+ - op) I D10Q(op I op) Is 
>' A*-X 11 0P+i p 11 2((p-lX*-l 11 p+l _ opII)(s)/(1-S) 

- a(X* )r(1-s)I- II 4p+l _ o)p (2-s)/(1-s) 

Note that X* < oo since S20, is compact. For other iteration schemes, sufficient conditions 
for 11 op+, - op, 0 can be found in Ortega and Rheinboldt (1970, Chapter 14). 

We conclude this subsection with a discussion of the discreteness assumption on f(L *), 
which was not mentioned in DLR. If L (4)) has a ridge of stationary points in which L (4) 
= L *, i.e. f(L *) is not discrete, does an EM sequence with 11 op+, -op 11 -O 0 converge to 
a 4)* in 99(L *)? Or may it sometimes move indefinitely on the ridge? DLR (1977, page 10) 
made an unwarranted claim that the former must be true. Although (16), an assumption 
made in DLR, implies Ep=o II 1 _p+ op 112 < oo and 11 op+,-op 11 O-- 0, it is still possible to have 
E I || 4p+, - op 11 = ??. A sequence with this property may move indefinitely on a ridge. 
Although we do' not have a counter-example to this claim by DLR, our general impression 
is that, if f((L*) is not discrete, convergence of {fp) can only be guaranteed under 
conditions stronger than those assumed in their paper. This belief is further supported by 
the GEM counterexample of Boyles (1983). 

3. Summary of properties of EM algorithm. 

(i) Any EM sequence {fp) increases the likelihood and L (op), if bounded above, 
converges to some L *. 

(ii) If Q ('PI )) is continuous in both 4 and 4, L * is a stationary value of L. The 
continuity of Q holds for the important case of a curved exponential family. If 
4p converges to some point 4*, 4* is a stationary point under the continuity 
condition of D10Q (4' 1 4) in 4' and 4. 
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(iii) If, in addition to (ii), Q is not trapped at any point po that is a stationary point but 
not a local maximum of L, i.e. supoE=aQ(4 I Po) > Q(4o I Go), then L* is also a local 
maximum of L. But this condition may be difficult to verify. Since the convergence 
to stationary value or local maximum or global maximum depends on the choice 
of starting points, we recommend that several EM iterations be tried with 
different starting points that are representative of the parameter space. 

(iv) If, in addition to (ii) or (iii), 11 Op+j- p 11 0 as p -> oo and the set of stationary 
points (local maxima) with a given L value is discrete, then 4p converges to a 
stationary point (local maximum). 

(v) If, in addition to (ii) or (iii), there cannot exist two different stationary points 
(local maxima) with the same L value, then 4p converges to a stationary point 
(local maximum). 

(vi) A sufficient condition for 11 Op,j - Ip 0 is condition (14), which is satisfied by 
a class of optimization algorithms (17) and (18), whose iteration scheme is based 
on the local directional derivatives of Q and Armijo line searches along the chosen 
direction. For a regular exponential family, a special case (16) of (14) is satisfied 
by the EM algorithm. 

(vii) If L (f) is unimodal in S2 and has only stationary point and D 10Q (?') is 
continuous in 0 and p', then op converges to the unique maximizer p* of L (p). 

(viii) If the set of stationary points (local maxima) with a given L value, denoted f(L) 
(respectively ./ (L)), is not discrete, and 11 -p+1- p 11 0, then 4p converges to a 
compact, connected component of f(L) (resp. M (L)) but not necessarily to a 
point. The original claim by DLR that 4p converges to a point does not seem to 
hold under the conditions they stated. But we emphasize that the convergence of 
the EM sequence 4S is not as important as the convergence of L (0p) to desired 
locations on the log-likelihood surface, an issue largely resolved in the present 
article. 
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