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Abstract

Motivation: Single-cell RNA sequencing (scRNA-seq) has revolutionized biological research by enabling the meas-
urement of transcriptomic profiles at the single-cell level. With the increasing application of scRNA-seq in larger-scale
studies, the problem of appropriately clustering cells emerges when the scRNA-seq data are from multiple subjects.
One challenge is the subject-specific variation; systematic heterogeneity from multiple subjects may have a signifi-
cant impact on clustering accuracy. Existing methods seeking to address such effects suffer from several limitations.

Results: We develop a novel statistical method, EDClust, for multi-subject scRNA-seq cell clustering. EDClust models
the sequence read counts by a mixture of Dirichlet-multinomial distributions and explicitly accounts for cell-type het-
erogeneity, subject heterogeneity and clustering uncertainty. An EM-MM hybrid algorithm is derived for maximizing
the data likelihood and clustering the cells. We perform a series of simulation studies to evaluate the proposed
method and demonstrate the outstanding performance of EDClust. Comprehensive benchmarking on four real
scRNA-seq datasets with various tissue types and species demonstrates the substantial accuracy improvement of
EDClust compared to existing methods.

Availability and implementation: The R package is freely available at https://github.com/weix21/EDClust.

Contact: hao.wu@emory.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell RNA sequencing (scRNA-seq) is a powerful technology for
measuring gene expression at the single-cell level. It offers unprecedent-
ed opportunities to answer questions related to cell-specific changes in
transcriptome, such as identification of rare cell types (Jindal et al.,
2018) and heterogeneity of cell responses (Buettner et al., 2015).
Several experimental protocols of scRNA-seq have been developed in
the past few years, including SMART-seq2 (Picelli et al., 2013), CEL-
seq2 (Hashimshony et al., 2016) and Drop-seq (Macosko et al., 2015),
providing additional choices to meet diverse research needs. Among
all, droplet-based technologies encapsulate each individual cell in a
nanoliter droplet together with a bead, substantially reducing the ex-
perimental cost (Macosko et al., 2015). Moreover, droplet-based meth-
ods use unique molecular identifiers (UMIs) to eliminate the effects of
PCR amplification bias (Kivioja et al., 2011). The good scalability,
high efficiency and low cost make droplet-based methods the top
choice for scRNA-seq experiments in population-scale studies (Mazutis
et al., 2013). However, UMI data from droplet-based technology are

generally harder to analyze due to their low signal-to-noise (Kiselev
et al., 2019).

The first step of scRNA-seq data analysis is usually cell cluster-
ing. The main purpose of clustering is to group cells by their tran-
scriptomic similarity, and then annotate the groups by cell types
based on existing biological knowledge. This is a fundamental step
in scRNA-seq analysis, since many downstream analyses, including
cellular composition estimation, cell type-specific differential ex-
pression and rare cell type discovery, are carried out based on the
clustering results (Chen et al., 2019). Though classic unsupervised
clustering methods, such as K-means and hierarchical clustering can
be applied, in view of the sparse, noisy and large-dimensional char-
acteristics of scRNA-seq data (Qi et al., 2020), many unsupervised
methods customized for scRNA-seq data have been developed and
widely used. For example, SC3 combines feature selection and di-
mension reduction in a consensus clustering framework, and it has
been proven a highly robust clustering method (Kiselev et al., 2017).
Seurat is another popular method that adopts community detection
to identify similar cells, and it shows good scalability for large
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datasets (Satija et al., 2015). TSCAN fits a mixture of multivariate
normal distributions and uses hierarchical clustering to identify cell
clusters (Ji and Ji, 2016). Lastly, observing the needs for clustering
large-scale study with thousands to millions of cells, SHARP is
developed for ultra-fast clustering through a divide-and-conquer
strategy (Wan et al., 2020).

All the aforementioned clustering methods have been developed
without consideration of systematic biases in the data. They assume
that the expressions of a gene from all cells in the same cell type are
identically distributed. However, similar to many other high-
throughput technologies, scRNA-seq data also suffer from a number
of technical biases. One such bias in the population-level study is the
subject-specific effect: there could be a systematic, subject-specific
shift in the gene expression. Thus, the distributions of the gene ex-
pression can be different between subjects even within the same cell
type. That shift can be induced by different characteristics of the
subjects, such as demographics or clinical conditions. It can also be
caused by the batch effect. The batch effect occurs when cells are
cultured, captured and sequenced in different conditions (Hicks
et al., 2018), which could lead to inevitable technical variability
(Tung et al., 2017). It is worth mentioning that the batch effect can
be severe in scRNA-seq, since it is exacerbated by the fact that most
scRNA-seq protocols require fresh tissue for experiments
(Wohnhaas et al., 2019), making a standard balanced experimental
design for removing batch effect impossible in many cases.
Nevertheless, most existing clustering methods do not explicitly ad-
dress the heterogeneity among multiple subjects. Rather than pro-
viding useful biological similarities that one may expect, direct
application of those methods on data from population studies could
lead to inaccurate clustering results due to correlated measurement
errors (Tang, 2015).

One possible remedy for the problem is to consider the subject-
specific effect as a batch effect, correcting for that before cell cluster-
ing. Several computational methods have been developed for batch
effect correction that can be applied before clustering. For example,
ComBat and ComBat-seq (Zhang et al., 2020) were developed ori-
ginally for bulk sequencing data, and they use linear models to re-
move batch effects. Mutual-nearest-neighbor (MNN) corrects batch
effects by constructing a shared space between datasets (Haghverdi
et al., 2018). Harmony is another popular batch correction method
that uses an iterative approach to eliminate batch effects for cells
calculated in PCA space (Korsunsky et al., 2019).

Though it is possible to cluster the cells after removing the
subject-specific effects, this two-step approach has some drawbacks.
First, the batch effect correction procedure often produces negative
values for gene expressions, which will generate errors in many cell
clustering tools. Second, such an approach is generally not efficient
due to the transformation of data and alteration of data structure.
For example, several clustering methods adopt distributional
assumptions based on count data, while the transformed data after
batch effect correction are not counts anymore. Such a discrepancy
will lead to undesirable clustering performance.

In comparison, a more rigorous and potentially better approach
is to design a clustering method that takes subject-specific effects
into consideration. Both BAMM-SC (Sun et al., 2019) and BUSseq
(Song et al., 2020) are tailored methods for addressing subject-
specific effect during clustering. BAMM-SC implements a Bayesian
mixture model, which uses information across genes and individuals
to account for heterogeneity. BUSseq adopts a more complicated
hierarchical model that strictly follows the data generation process
of scRNA-seq experiments to correct batch effects and cluster cells.
Both methods use Markov chain Monte Carlo (MCMC) to solve the
model, which does not scale well for large datasets. In a comprehen-
sive benchmarking study (Tran et al., 2020), LIGER (Welch et al.,
2019) and Seurat v3 (Stuart et al., 2019) show outstanding perform-
ance on addressing the problem of removing batch effects. LIGER
takes multiple single-cell datasets as input, uses integrative non-
negative matrix factorization to obtain a low-dimensional represen-
tation of the input data, and performs joint clustering based on it.
The latest version of Seurat v4 (Hao et al., 2021), inherited from
Seurat v3, uses the strategy of combing MNN and canonical

correlation analysis (Butler et al., 2018) to address the batch effect.
Some other methods based on deep-learning techniques have also
been developed. DESC (Li et al., 2020) iteratively optimizes a clus-

tering objective function in an autoencoder to remove the batch ef-
fect and provide cluster assignments. CarDEC (Lakkis et al., 2021)

implicitly makes batch effects correction by jointly optimizing re-
construction loss and clustering loss through transfer learning.

To provide a complementary approach to address the cell clus-
tering problem in population-scale scRNA-seq data, we designed
EDClust, which is an Expectation–Maximization (EM) (Dempster

et al., 1977) and Minorization–Maximization (MM) (Hunter and
Lange, 2004) hybrid method based on a Dirichlet-multinomial mix-

ture model, for clustering. EDClust takes the raw count data from
multiple subjects without transformation, avoiding the possible de-
struction of data structure and loss of information. This modeling

strategy is especially suitable for analyzing sparse UMI data from
droplet-based technology. Meanwhile, EDClust explicitly quantifies
the effects of heterogeneity from different sources and provides pos-

terior probabilities for cells being in each cluster. Through extensive
simulation studies and four real datasets analyses, we show EDClust

has better clustering accuracy compared with existing methods.
In the following sections, we first introduce the data model and

derivation of the EM–MM method. The simulation design and
results are presented in Section 3. Lastly, we showcase the perform-
ance and utility of EDClust using four real scRNA-seq datasets in

Section 4.

2 Materials and methods

To cluster population-scale scRNA-seq data, we propose a

Dirichlet-multinomial mixture model to capture the cell type-
specific and subject-specific effects on gene expression. Dirichlet-
multinomial is a commonly used model for counts data, and it has

been applied to several sequencing data, such as ChIP-seq (Wu and
Ji, 2014) and microbiome (Wadsworth et al., 2017). Our data model

has a similar structure to BAMM-SC; however, our estimation pro-
cedures are completely different. Aiming to cluster all the cells from
multiple subjects simultaneously, we utilize several tools for select-

ing features, determining the baseline and initializing parameters,
providing an EM and MM hybrid framework for parameter estima-
tions. Overall, the complete EDClust algorithm is summarized in

Fig. 1.

2.1 Data model
Let ylji represent the sequence counts for gene j in cell i from subject
l (1 � i � Il; 1 � j � J; 1 � l � L), where Il, J and L indicate

the total number of cells (in subject l), genes and subjects, respective-
ly. We assume all subjects in the data share the same cell types, the
number of which is K. Note that K can be specified by investigators

based on biological knowledge, or it can be determined by a number
of software tools. Throughout this work, we assume K is known.

Based on the assumption that Y li ¼ ðYl1i;Yl2i; . . . ;YlJiÞ follows a
Dirichlet-multinomial mixture distribution, Y li can be viewed as
generated in two steps. First, a cell type label Wli 2 f1,2,. . .,Kg is

assigned to cell i in subject l with probability PrðWli ¼ kÞ ¼ plk.
Second, given the cell label (i.e. Wli ¼ k), Y li will be generated from

a Multinomial distribution by Y li �MultinomialðTli; pliÞ. Here,
Tli ¼

PJ
j Ylji indicates total read counts, and the proportion pli

represents the relative gene expressions. We further assume that pli

follows a cell type-specific prior distribution DirichletðalkÞ ¼
Dirichletðalk1; alk2; . . . ; alkJÞ. To simultaneously account for cell

type-specific and subject-specific effects, we assume the overall
effect alk can be expressed as the sum of cell type-specific effect a0kj

and subject-specific effect dlkj: alkj ¼ a0kj þ dlkj > 0. Finally, we

assume that all cells in all L subjects are independent and treat cell
type label Wli ¼ k as the missing data. Then, the observed and
complete data log-likelihood can be written as:

Multiple-subject scRNA-seq cell clustering 2693
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lðT;H; YÞ ¼
XL

l¼1

XIl

i¼1

log
XK

k¼1

plkPlik

2
4

3
5; (1)

lcðT;H; Y ;WÞ ¼
XL

l¼1

XIl

i¼1

XK

k¼1

IðWli ¼ kÞ½log plk þ log Plik�: (2)

Here, W ¼ fWli : i ¼ 1; . . . ; Il; l ¼ 1; . . . ;Lg includes the indicator
of cell type labels, and H ¼ fplk; a0k; dlk : k ¼ 1; . . . ;K; l ¼ 1; . . . ;Lg
contains all the model parameters. Plik ¼ PðYlijTli; a0k þ dlkÞ repre-
sents the Dirichlet-multinomial probability density, which is provided
in Supplementary Materials.

2.2 The EM–MM hybrid algorithm for maximum

likelihood
The introduction of the latent variable W facilitates the use of the
EM algorithm to maximize the observed data likelihood and obtain
posterior probabilities for cell type assignment (Wli). An EM algo-
rithm iterates between two steps: an expectation step (E-step) and a
maximization step (M-step) (Dempster et al., 1977). Let HðtÞ be the
parameter estimate in iteration t. In the E-step, we compute the con-
ditional expectation of Wli:

lðtÞlik ¼ E½IðWli ¼ kÞjY ;HðtÞ�

¼ PðWli ¼ kjY ;HðtÞÞ

¼
pðtÞlk PðYlijTli; a

ðtÞ
0k þ dðtÞlk ÞXK

k0¼1

pðtÞlk0PðYlijTli; a
ðtÞ
0k0 þ dðtÞlk0 Þ

:

(3)

In the M-step, we maximize the ‘Q function’ (the expected com-
plete data log-likelihood with respect to H) to obtain Hðtþ1Þ. Then,
plk can be updated by solving @Q=@plk ¼ 0.

QðHjHðtÞÞ ¼ E½lðHÞjY ;HðtÞ�

¼
XL

l¼1

XIl

i¼1

XK

k¼1

lðtÞlik½log plk þ log Plik�
(4)

pðtþ1Þ
lk ¼

PIl

i¼1 lðtÞlik

Il
: (5)

The M-step derivation for a0k and dlk is much more difficult,
and there is not a closed form solution. For that, we design the fol-
lowing MM algorithm (Hunter and Lange, 2004) for updating a0k

and dlk.
Extending the work by Zhou and Lange (2010), we rewrite the

log-likelihood function in Equation (2) as the following:

lðHÞ ¼
XL

l¼1

XK

k¼1

"XIl

i¼1

IðWli ¼ kÞ log plk

�
P

c1l
rlkc logðka0k þ dlkk1 þ c1lÞ

þ
XJ

j¼1

X
c2lj

slkjc logða0kj þ dlkj þ c2ljÞ
#
þ const;

(6)

where

rlkc ¼
XIl

i¼1

IðWli ¼ kÞIðTli � c1l þ 1Þ; (7)

slkjc ¼
XIl

i¼1

IðWli ¼ kÞIðYlji � c2lj þ 1Þ; (8)

and ka0k þ dlkk1 ¼
PJ

j¼1 ja0kj þ dlkjj ¼
PJ

j¼1ða0kj þ dlkjÞ. The index
c1l ranges from 0 to maxiðTliÞ � 1, and the index c2lj runs from 0 to

maxiðYlijÞ � 1. In the MM algorithm, we design a surrogate function
that minorizes the log-likelihood function. Assuming that a0kj > 0
and dlkj � 0, we can use the following inequalities:

�log cþ kalkk1

� �
� � 1

kaðnÞ0k þ dðnÞlk k1 þ c
ka0k þ dlkk1

� �
þconst;

(9)

logða0kj þ dlkj þ cÞ �
aðnÞ0kj

aðnÞ0kj þ dðnÞlkj þ c
logða0kjÞ

þ
dðnÞlkj

aðnÞ0kj þ dðnÞlkj þ c
logðdlkjÞ þ const:

(10)

For these inequalities, the equality holds when a0kj ¼ aðnÞ0kj and
dlkj ¼ dðnÞlkj . We construct the following surrogate function gðHjHðt;nÞÞ
as:

gðHjHðt;nÞÞ ¼
XL

l¼1

XK

k¼1

(XIl

i¼1

lðtÞlik log plk

�
P

c1l
r
ðtÞ
lkc

ka0k þ dlkk1

kaðt;nÞ0k þ dðt;nÞlk k1 þ c1l

þ
XJ

j¼1

X
c2lj

s
ðtÞ
lkjc

"
aðt;nÞ0kj logða0kjÞ

aðt;nÞ0kj þ dðt;nÞlkj þ c2lj

þ
dðt;nÞlkj logðdlkjÞ

aðt;nÞ0kj þ dðt;nÞlkj þ c2lj

#)
þ const;

(11)

where

r
ðtÞ
lkc ¼

XIl

i¼1

lðtÞlikIðTli � c1l þ 1Þ; (12)

s
ðtÞ
lkjc ¼

XIl

i¼1

lðtÞlikIðYlji � c2lj þ 1Þ: (13)

By solving @gðHjHðt;nÞÞ=@dlkj ¼ 0 and @gðHjHðt;nÞÞ=@a0kj ¼ 0, we
obtain the MM updates for dlkj and a0kj as:

dðt;nþ1Þ
lkj ¼

P
c2lj

s
ðtÞ
lkjc

dðt;nÞ
lkj

aðt;nÞ
0kj
þdðt;nÞ

lkj
þc2ljP

c1l

r
ðtÞ
lkc

kaðt;nÞ
0k
þdðt;nÞ

lk
k1þc1l

; (14)

aðt;nþ1Þ
0kj ¼

PL
l¼1

P
c2lj

s
ðtÞ
lkjc

aðt;nÞ
0kj

aðt;nÞ
0kj
þdðt;nÞ

lkj
þc2ljPL

l¼1

P
c1l

r
ðtÞ
lkc

kaðt;nÞ
0k
þdðt;nÞ

lk
k1þc1l

: (15)

Within the M-step in each EM iteration, EDClust runs multiple
MM iterations to update a0 and d. To reduce the computational bur-
den, we only run three MM iterations in each M-step. Real data
analyses show that such a procedure provides comparable perform-
ance as running more (such as 20) iterations.

2.3 Feature selection
Feature selection is one of the key steps before clustering. We aim to
select a subset of informative genes that can capture the data struc-
ture and thereby improve clustering performance. A recently devel-
oped feature selection tool tailored to scRNA-seq, FEAture
SelecTion (FEAST) (Su et al., 2021), shows great potential for
improving clustering accuracy. FEAST computes the F-statistics for
each feature based on embedded consensus clustering results and
provides a ranked feature list by significance. By default, EDClust
applies FEAST to obtain the top 500 features for clustering. In the
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software implementation, users have the option to specify the gene
features.

2.4 Obtaining initial values
It is known that the EM algorithm often suffers from locally op-
timal solutions. Our method, due to the high dimensionality and
complex nature of the data, is particularly prone to such chal-
lenges. Thus, it is crucial to provide good initial values for the
parameter estimations, especially a0 and d. We design the fol-
lowing algorithm to obtain the initial values. We first choose a
subject as the ‘baseline’, which is assumed to have no subject-
specific effect (d¼0). We then run unsupervised clustering on
the cells for the baseline subject using SHARP (Wan et al.,
2020). Based on the clusters in the baseline subject, we obtain
naive estimates for â0 according to the relative gene expression
in the clusters and take them as the initial values. We set the
selected baseline subject with a subject-specific effect of zero,
and set initial values for the rest of d’s to be small positive num-
bers (10�5 by default).

In real data analyses, we notice that the choice of baseline subject
occasionally would lead to bad results in some datasets
(Supplementary Fig. S1). Careful investigation indicates that the bad
results are caused by bad initial values. When the selected baseline
subject has low signal-to-noise, SHAPR would provide bad cluster-
ing results, which subsequently leads to bad initial values and then
EDClust is more likely to be stuck at local optimal solutions. To

address this problem, we use the following algorithm to select the
best possible subject as the baseline. We perform SHARP clustering
on each subject. With the cell cluster assignment, we compute the F-
test statistics for all genes and then compute their mean. The mean
F-scores can roughly quantify how well the data are clustered. We
then take the subject with the highest mean F-scores as the baseline
subject and obtain initial value based on it.

3 Simulation studies

We design a series of simulation studies to comprehensively evaluate
the performance of EDClust and compare it to a number of compet-
ing methods. We evaluate the methods when data have different lev-
els of subject-specific effects (low and high), as well as for different
sample size selections (5, 10, 15). Specifically, for gene j, cell i and
subject l, we generate observed single-cell RNA-seq counts from a
Dirichlet-multinomial distribution by Y li � multinomialðTli; pliÞ,
where pli � DirichletðalkÞ. The total read counts Tli are randomly
selected from the observed total counts of the real data. We generate
the prior parameter alk by combining two parts alk ¼ a0k þ dlk � s.
The cell type-specific effects a0k are drawn from
a0k � Lognormalðla; r

2
aÞ þ A0, and the subject-specific effects dlk

are obtained from dlk � Lognormalðld; r
2
dÞ þD0. The hyper-

parameters la; r
2
a ; ld and r2

d are chosen so that the data demonstrate
similar summary statistics as the real scRNA-seq data from the
human skin study in Section 4.2. The A0 and D0 are parameters gen-
erated from Lognormal distributions so that the cell type-specific
and subject-specific effects have some correlation among cell types
as what we observed in real data. We vary the parameter s in our
simulation settings to control the magnitude of cross-subject hetero-
geneity. Larger heterogeneity indicates stronger subject-specific
effects, and thus it is more difficult to cluster.

We compare EDClust with the other eight clustering methods
(SC3, Seurat, SHARP, TSCAN, CarDEC, DESC, LIGER and Seurat
v4). The batch correction method Harmony is applied to the raw
data to remove the batch effect before clustering. We use the adjusted
Rand index (ARI) (Rand, 1971) and NMI (Vinh et al., 2010) as the
evaluation criterion to benchmark the predicted cell type labels. We
summarize the simulation results of over 100 Monte Carlo datasets.

As shown in Figure 2, across almost all scenarios with different
levels of cross-subject heterogeneity, EDClust constantly achieves

Fig. 1. A schematic plot to summarize the EDClust algorithm

Fig. 2. Barplots of average ARIs for nine clustering methods across 100 simulations,

where ‘H þ’ indicates that the simulation data are processed by Harmony to remove

the subject-specific effects. Each subplot presents the performance on simulation

data with different subject-specific effects and subject numbers
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the highest average ARI. The performance of EDclust remains sta-
ble, even as the subject-specific effects vary from low level to high
level. And when the number of subjects increases, the level of hetero-
geneity also increases. EDClust still consistently outperforms most
methods in terms of ARI. We also present the simulation results
measured by NMI, which has similar performance (Supplementary
Fig. S2). The simulation studies showcase outstanding performance
of EDClust in clustering population-scale scRNA-seq data while
accounting for subject-specific effects.

4 Real data analyses

We benchmark EDClust and other methods on four sets of real
scRNA-seq with multiple subjects. Greater description of the data-
sets and data processing procedures is provided in each of the sub-
sections below. In Table 1, we present the overall results for all four
datasets, including the mean and standard deviation of ARIs from
50 runs in each dataset. In addition to the eight clustering methods
compared in the simulation study, we also compare EDClust with
BUSseq, DIMM-SC and BAMM-SC, where DIMM-SC and BAMM-
SC have similar model assumptions. Since both TSCAN and Seurat
are deterministic clustering methods, they do not have standard de-
viation in the results. The bar plots of average ARIs are also dis-
played in Supplementary Figure S3. These results show that for two
out of the four datasets, EDClust has the best performance, and the
performance improvement can be significant. For example, in the
Mouse Retina data, EDClust has mean ARI 0.82, while the second
best performer (HarmonyþSC3) only has ARI 0.70. In the Baron
Pancreas data, EDClust performs slightly worse than CarDEC and
BUSseq, but there is no distinct difference. Additionally, we also
compute NMI, AMI (Vinh et al., 2010) and homogeneity
(Rosenberg and Hirschberg, 2007) (Supplementary Fig. S3) and pre-
sent the t-SNE plots with subject ID (Supplementary Fig. S4).

4.1 Mouse Retina dataset
We first evaluate the clustering performance of EDClust in mouse
tissues through a Mouse Retina dataset, which is collected from 14-
day-old mice in seven batches (Macosko et al., 2015). Cells are first
pooled together to filter out low-expression genes based on the
dropout rate. We apply FEAST to generate a ranking list of features
and select the top 500 genes based on this list. Five major cell types
are retained, and the number of cells is 43 603.

As shown in Table 1 and Supplementary Figure S3, most of the
methods struggle on this dataset with an exceedingly low average
ARI. Though the performances of HarmonyþSC3 and
HarmonyþSHARP are slightly better than any other methods except
EDClust, their average ARIs are still below 0.70. EDClust achieves
the highest ARI (0.8219), showing the superior performance of

EDClust. To visualize the clustering results, we generate some t-SNE
plots as shown in Figure 3a. The t-SNE plot generated based on the
clustering result of EDClust is highly similar to the t-SNE plot with

the true labels. We also show the t-SNE plot based on the clustering
results from BAMM-SC and HarmonyþSC3, where the circled

regions highlight the incorrectly clustered cells. These plots provide
clear visualization demonstrating the superior performance of
EDClust over the other methods.

4.2 Human Skin dataset
To evaluate the performance of EDClust in human tissue, we evalu-

ate the clustering performance of EDClust on a Human Skin dataset
that includes skin samples collected from three healthy donors in a
systemic sclerosis study (Sun et al., 2019). Their study identified

eight major types of cells. We use their results as the ground truth,
but remove cells with an uncertain cell type. After quality control

and feature selection, 3067 cells with 500 selected genes are used in
the clustering analysis.

From Table 1 and Supplementary Figure S3, we can find that
EDClust has the most outstanding performance (average
ARI¼0.9497) of all the methods, while the average ARIs for most

methods are close to 0.80. EDClust is more accurate in the cluster-
ing of several cell types. As shown in Figure 3b, compared with

BAMM-SC and HarmonyþSC3, basal keratinocytes, fibroblasts and
macrophages/DC can all be classified well by EDClust, and each is
assigned a specific cell type label, exhibiting the superior perform-

ance of EDClust on the Human Skin dataset.

4.3 Baron Pancreas dataset
We further evaluate the clustering performance of EDClust on an-
other human tissue type, a set of human pancreas data (named the
‘Baron Pancreas’ dataset). The original data include over 12 000

pancreatic cells from four human donors and two mouse strains
(Baron et al., 2016). We extract cells from the human donors and fil-

ter out the lowly expressed genes. The processed data contain 500
genes and a total of 8506 cells. Some extremely rare cell types with
only a few cells (such as T cells) are removed, and 10 major cell

types are kept for further analysis.
Both Table 1 and Supplementary Figure S3 show that the aver-

age ARI of EDClust is up to 0.8259, which could be ranked as top
3. And most methods fail to achieve the average ARI of 0.70.
Figure 3c elucidates that HarmonyþSC3 mixed massive cells.

Compared to BAMM-SC, EDClust correctly identifies beta cells.
Based on EDClust, for most of the cells, we are able to assign labels

that are close to the approximated truth. These results showcase the
outstanding performance of EDClust on the Baron Pancreas dataset.

Table 1. The ARI of 50 times clustering analyses for each method on four real datasets

Method Mouse Retina Human Skin Baron Pancreas Mouse Lung

Mean SD Mean SD Mean SD Mean SD

HarmonyþSC3 0.6972 0.0687 0.8260 0.0249 0.5590 0.1035 0.7652 0.0026

HarmonyþSeurat 0.1024 — 0.6520 — 0.5137 — 0.5307 —

HarmonyþSHARP 0.6572 0.0095 0.8369 0.0533 0.3115 0.0236 0.7029 0.0271

HarmonyþTSCAN 0.2905 — 0.6486 — 0.6392 — 0.6354 —

BAMM-SC 0.4273 0.0058 0.7732 0.0688 0.6411 0.0686 0.7354 0.0323

DIMM-SC 0.4221 0.0065 0.7975 0.0839 0.6968 0.0692 0.7003 0.0643

BUSseq 0.6499 0.2112 0.7560 0.1169 0.8372 0.0602 0.6775 0.0948

CarDEC 0.4462 0.0406 0.9281 0.0206 0.8876 0.0238 0.6169 0.1153

DESC 0.2512 0.0331 0.4078 0.0320 0.4909 0.0201 0.5008 0.0292

LIGER 0.4446 0.0036 0.6664 0.0518 0.6352 0.0704 0.6927 0.0742

Seurat_v4 0.2108 — 0.4859 — 0.5369 — 0.6156 —

EDClust 0.8219 0.0700 0.9497 0.0370 0.8259 0.0393 0.7445 0.0476

Note: The largest ARI in each dataset is highlighted in bold.
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4.4 Mouse Lung dataset
Finally, we evaluate the performance of EDClust in a real dataset
with fewer cells. We mainly analyze a Mouse Lung dataset, which is
obtained by collecting lung mononuclear cells from four mouse sam-
ples in the Streptococcus pneumonia infected group and control
group (Sun et al., 2019). After the data processing step, we obtain
500 top features provided by FEAST and a total of 1756 cells. Each
cell is assigned a cell type label according to the previous study by
Sun et al. (2019), and the expected number of clusters is set as six.

All methods have similar performances on the Mouse Lung data-
set (results shown in Table 1 and Supplementary Fig. S3). The per-
formance of EDClust (average ARI¼0.7445) is slightly worse than
HarmonyþSC3. Figure 3d presents a consistent pattern. In general,
despite some mixed cell types, EDClust successfully characterizes
endothelial cells and neutrophils with notable accuracy.

4.5 Computational performance
The EM algorithm usually converges slowly and has a heavy compu-
tational burden. Our proposed method embeds a few MM iterations
within each EM iteration, bringing a higher computational cost.
However, we implement the software in Julia and develop an R
package with an interface to Julia based on JuliaCall (Li, 2019),
achieving reasonable computational performance. We benchmark
the computational performances of all the methods in a comparison
shown in Supplementary Table S1. For our biggest dataset (the

Mouse Retina dataset with seven batches and 43 603 cells), EDClust
takes about 37 min on a normal computer with a single node. This is
four times faster than BAMM-SC and BUSseq (�180 min), which
serve a similar purpose but are based on MCMC. Other methods ei-
ther ignore the subject-specific effect or perform a two-step ap-
proach (i.e. batch effect removal and then cell clustering), making
them not comparable in our setting. To further benchmark the com-
putational performances in larger dataset, we apply EDClust,
BAMM-SC and BUSseq on a brain dataset for autism study
(Velmeshev et al., 2019), which contains over 100 000 brain cells
from 41 tissue samples from two brain regions of 15 patients with
ASD and 16 control subjects. For this dataset, EDClust, BAMM-SC
and BUSseq take 542, 389 and 477 min, respectively. Overall, the
three methods (EDClust, BAMM-SC and BUSseq) have comparable
computational performances. We acknowledge that EDClust is not
very computationally efficient, especially in large dataset. Our plan
in the near future is to implement parallel computing to improve
EDClust’s computational performance.

5 Discussion

In this work, we develop a novel statistical method for cell clustering
in multi-subject scRNA-seq data. We model the read counts by a
Dirichlet-multinomial mixture distribution, where the Dirichlet
parameters contain subject-specific and cell type-specific effects. We

Fig. 3. Comparison of the predicted results with the ground truth. Each plot is colored by the ground truth, labels inferred by EDClust, BAMM-SC and HarmonyþSC3

(HþSC3), respectively. The circled regions highlight the incorrectly clustered cells from BAMM-SC and HþSC3. (a) The t-SNE plots of cells in the Mouse Retina dataset. (b)

The t-SNE plots of cells in the Human Skin dataset. (c) The t-SNE plots of cells in the Baron Pancreas dataset. (d) The t-SNE plots of cells in the Mouse Lung dataset
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develop an EM–MM hybrid algorithm for fitting the mixture model
and performing model-based clustering. Compared to existing clus-
tering methods that ignore the subject-specific effects, EDClust has
the following advantages: (i) it provides a tool to describe data het-
erogeneity among multiple subjects and more effectively identify
subject-specific cell types; (ii) it utilizes the shared information
among subjects, clustering all subject’s cells at the same time, which
improves the accuracy of cell clustering; (iii) it offers a one-step ser-
vice that can be directly applied on raw count data, compared to
other clustering methods that first require several preprocessing
approaches (e.g. normalization and batch effect removal); and (iv) it
quantifies cluster uncertainty with the probability that each cell
belongs to a given cluster, contributing to further statistical infer-
ence and biological interpretation. Through a series of simulation
experiments and real-world data applications, EDClust demon-
strates considerable improvement in clustering accuracy over exist-
ing methods serving similar purposes.

EDClust is especially suitable for modeling droplet-based
scRNA-seq data, such as that from Drop-seq or inDrop workflows
(Klein and Macosko, 2017). Due to the differences in data charac-
teristics, Dirichlet-multinomial distribution may not fit data from
other platforms well. However, as the main focus of EDClust is on
large-scale studies with more than one subject, droplet-based tech-
nology is usually chosen for such studies for high efficiency and low
expense. Thus, our data assumption can be easily met in real
practice.

EDClust uses 500 genes for clustering by default. We investigate
the impact of gene number and find that the performance is similar
as long as the selected gene number is reasonable (Supplementary
Fig. S5). Nevertheless, users have the options to use different genes
for analysis in our software. In addition, EDClust implicitly assumes
that all subjects in the data have the same cell types. We investigate
the case when there are missing cell types in the baseline subject,
and find that the impact on the results is minimal when the missing
cell type has a low abundance (Supplementary Fig. S6). When major
cell types are missing, the performance drop can be significant.
However, since the possibility of one subject missing a major cell
type is very low (if not impossible), EDClust should work fine in the
real data.

Additionally, since the initial values of the cell type-specific
effects are set as the naive estimates based on the clustering results
given by SHARP, we recommend running EDClust multiple times,
each time using a different random seed, and selecting the one with
the highest likelihood as the final result. Estimation of

PJ
j¼1

a0kj pro-
vided by Ronning (1989) or moment estimates proposed by Weir
and Hill (2002) can also be appropriate choices for obtaining initial
values. Moreover, the determination of the number of clusters is a
crucial step. We suggest predefining it based on prior biological
knowledge or model selection criteria, such as AIC (Akaike, 1974)
and BIC (Schwarz et al., 1978). Some other existing software, such
as SC3 and Seurat, could also serve as tools for determining the
number of clusters.

There are several limitations of EDClust. First, the main purpose
of EDClust is cell clustering. Therefore, it may not be used to obtain
batch-corrected profiles of the data, which is a limitation shared by
most one-step clustering methods, such as BUSeq and BAMM-SC.
Second, similar to many other unsupervised clustering methods,
EDClust may not be scalable enough for analyzing very large data-
sets, e.g. millions of cells.

We anticipate a few natural extensions of EDClust. First, the
Dirichlet-multinomial distribution can be replaced by other distribu-
tions to adjust for subject-specific effects in different experimental
settings. For example, the negative binomial distribution is usually
adopted for SMART-seq2 and CEL-seq2 platforms. Second, statis-
tical testing and inference procedures can be developed to examine
how the changes of sample phenotypes (e.g. their disease status) im-
pact the estimated subject-specific effects and cell type-specific
effects. Third, with the fast accumulation of single-cell data, we will
further improve the computational performance of EDClust by
implementing parallel computing.

Data availability

The study used various publicly available scRNA-seq datasets. The
Mouse Retina dataset was downloaded from the Gene Expression
Omnibus (GEO, accession number: GSE63473). Both the Human Skin
dataset and the Mouse Lung dataset were obtained from GEO (acces-
sion number: GSE128066). The Baron Pancreas dataset was also
downloaded from GEO (accession number: GSE84133). Published cell
labels were obtained for each study and used as true cell type labels.
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