
BIOS 731: Advanced Statistical Computing

Fall 2022 Homework 3

Due 10/9/2022 Sunday at 11:59pm

Instruction:

• Please submit both write-ups and programs in two separate files.

• All submissions need to be in electronic format.

• The write-up is preferred be in pdf format (written in Word or LATEX, or scanned hand-

written document). You can take a picture of hand-written document and submit JPG

if you don’t have a scanner, but make sure the picture is clear and readable. Name the file

BIOS731 NAME hw3.EXT. Replace NAME by your name, and EXT by proper extension

name (pdf or jpg).

• The programs need to be written in a high-level language (no compilation required), and

R is highly recommended. The codes for all problems need to be saved in a single file

named BIOS731 NAME hw3.EXT. Replace NAME by your name, and EXT by proper

extension name, e.g., R, sas, m, py, etc. Provide adequate comments in the codes to clearly

mark the section for different questions. The codes should generate all results and figures

in the homework. Please make sure the codes are “self-contained”, e.g., does not depend on

platform, can be run at any other machine in any subdirectory, and does not require user

input.

Problem 1: Hidden Markov model (60 points)

Hidden Markov model (HMM) is useful for modeling financial time series data such as the stock

prices. In this homework we will practice using HMM to model the daily price of a hypothetic

stock.

Define the closing price for the stock at day t is xt, t = 0, . . . , T , and the “log returns” as

rt = log(xt/xt−1), t = 1, . . . , T . We can assume the market for day t belongs to one of the 3

states: “bullish”, “bearish” and “flat” , which means that the prices are going up, going down or

fluctuating. Denote the state of day t by Zt, the daily log return can be modeled by following

3-state HMM with Normal emission probability:

Pr(Z1 = k) = πk

Pr(Zt+1 = l|Zt = k) = Pkl

rt|Zt = k ∼ N(µk, σ
2
k), k = 1, 2, 3

Obtain the simulated price data from the class website, then answer following questions:

1. Why is it important to use log returns instead of the daily price in the HMM? Can we

formulate a HMM using the prices? Hint: check whether the data satisfy the HMM model

assumptions. (10 points)

1



2. The parameters for a 3-state HMM are (πk, Pkl, µk, σk). Forward-backward algorithm with

EM can be applied to estimate these parameters iteratively. At iteration i,

(a) Given current values of the parameters, write down the expressions of forward and

backward probabilities. (10 points)

(b) Give the forward and backward probabilities, write down the procedures for estimating

model parameters. (10 points)

3. Implement the forward and backward algorithm with EM in a programming language of your

choice, and report the estimates of model parameters. (20 points)

4. Assume we want to predict tomorrow’s stock price based on our HMM results. What’s the

marginal distribution of xT+1 given x1, . . . , xT ? What are its mean and variance? Hint:

if you cannot derive the closed form solution, use a simulation to obtain these values. (10

points)

Disclaimer: the stock price is simulated and this homework is for training purpose

only. Please do NOT attempt to apply this to real world trading. The modeling of

actual financial data is far more complicated.

Problem 2: Quantile Regression (20 points)

Use linear programming to estimate the coefficients for a quantile regression. You need to write a

function named “myrq”, which takes a response vector y, a covariate matrix X and quantile τ , and

returns the estimated coefficients. Existing linear programming functions can be used directly to

solve the LP problem (for example, simplex function in boot package, or lp function in lpSolve

package). Following codes provide test data results to verify your own function.

library(quantreg)

data(stackloss)

rq(stack.loss ~ stack.x, tau=0.5) ## median regression

rq(stack.loss ~ stack.x, tau=0.1) ## regression on 10th quantile
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Problem 3: Implementation of LASSO (20 points)

As illustrated in class, a LASSO problem can be rewritten as a quadratic programming problem:

max −
n∑

i=1

(yi −
∑
j

b+j xj +
∑
j

b−j xj)
2

s.t.
∑
j

(b+j + b−j ) ≤ t,

b+j , b
−
j ≥ 0

This is a standard quadratic programming (QP) problem.

1. Many widely used QP solvers require that the matrix in the quadratic function for the second

order term to be positive definite (such as solve.QP in quadprog package). Rewrite the

quadratic programming problem for LASSO in matrix form and show that the matrix is not

positive definite, thus QP solvers like solve.QP cannot be used. (10 points)

2. LowRankQP function in LowRankQP package can handle non positive definite situation. Use the

matrix format you derived above and LowRankQP to write your own function “myLasso” to

estimate the coefficients for a LASSO problem. Your function needs to take three parameters:

Y (response), X (predictor), and t (tuning parameter), and return the estimated coefficients.

(10 points)

Following codes can be used to verify your own function. Note that the results are not

exactly the same, because the objective functions are constructed differently. Actually, even

“glmnet” and “lars” provide different point estimates. However the trend (variables got

selected/deselected) will be similar.
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### Obtain diabetes data

library(lars)

data(diabetes)

### Lasso results from R package "glmnet"

library(glmnet)

res = glmnet(diabetes$x,diabetes$y)

plot(res, "lambda")

cv = cv.glmnet(diabetes$x,diabetes$y)

plot(cv)

coef(res, s=5)

### Lasso results from R package "lars"

object <- lars(diabetes$x,diabetes$y)

plot(object)

object$lambda

object$beta

object$beta[6,] ## this one has similar results as glmnet with s=5
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