
BIOS 731 Advanced Statistical Computing
Fall 2022

Homework 2

Due 9/18/2022 Sunday at 11:59pm

Instruction:

• Please submit both write-ups and programs in two separate files.

• All submissions need to be in electronic format.

• The write-up is preferred be in pdf format (written in Word or LATEX, or scanned hand-

written document). You can take a picture of hand-written document and submit JPG

if you don’t have a scanner, but make sure the picture is clear and readable. Name the

file BIOS731 NAME hw2.EXT. Replace NAME by your name, and EXT by proper

extension name (pdf or jpg).

• The programs need to be written in a high-level language (no compilation required),

and R is highly recommended. The codes for all problems need to be saved in a single

file named BIOS731 NAME hw2.EXT. Replace NAME by your name, and EXT by

proper extension name, e.g., R, sas, m, py, etc. Provide adequate comments in the codes

to clearly mark the section for different questions. The codes should generate all results

and figures in the homework. Please make sure the codes are “self-contained”, e.g., does

not depend on platform, can be run at any other machine in any subdirectory, and does

not require user input.

• Total is 100 points. Partial credit will be given.

Problem 1: EM algorithm in two-component mixture model (20 pts)

Use EM algorithm to fit a two-component Poisson mixture model. You need to provide

derivations of the E- and M-steps. Then mimic the two-component Normal mixture model

example in the EM class to write a function to fit a two-component Poisson mixture model.

You should name your function twoPois. It takes a vector y and reports the estimated mixing

proportion and two Poisson rates. You can use the following codes to simulate data:

Y = c(rpois(30, lambda=5), rpois(70, lambda=15))
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Problem 2: EM algorithm in censored data (30 pts)

The standard linear regression model can be written as

Yi = XT
i β + εi,

where εi ∼ N(0, σ2). Suppose that Xi is observed, but that rather than observing Yi, we

observe Y ∗i = min{Yi, c}, where the censoring value c is known and is constant for all i. The

EM algorithm offers a vehicle for estimating the parameters (β, σ2) in the presence of censoring.

Suppose we reorder the data so that the first m subjects have observed Yi (Y ∗i = Yi) and the

rest n−m subjects have censored Yi (Y ∗i = c).

1. Write out the complete-data log likelihood. Identify the conditional expectations to be

evaluated in the E step.

2. Show that

E(Yi|Y ∗i = c, β(k), σ(k)) =XT
i β

(k) + σ(k)ψ

(
c−XT

i β
(k)

σ(k)

)
E[(Yi −XT

i β
(k))2|Y ∗i = c, β(k), σ(k)] =σ2(k)

{
1 +

c−XT
i β

(k)

σ(k)
ψ

(
c−XT

i β
(k)

σ(k)

)}
,

where ψ(z) = φ(z)/(1 − Φ(z)), and φ(z) and Φ(z) are corresponding pdf and cdf of a

standard normal random variable.

Hint:

∫ ∞
u

zφ(z)dz = (2π)−1/2
∫ ∞
u

exp

(
−z

2

2

)
d
z2

2
= (2π)−1/2 exp(−u

2

2
) = φ(u);∫ ∞

u

z2φ(z)dz = −(2π)−1/2
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zd exp

(
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2

)
= (2π)−1/2u exp

(
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2

2

)
+ (2π)−1/2
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exp

(
−z

2

2

)
dz

= uφ(u) + 1− Φ(u)

3. Write out the formulas for updating parameters in the M step.
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Problem 3: MM algorithm in logistic regression (30 pts)

In the logistic regression model of Example 5 (lecture “MM Algorithm”), it is possible to

separate parameters and avoid matrix inversion altogether.

1. In constructing a minorizing function, first prove the inequality

− log
{

1 + exp(XT
i θ)
}
≥ − log

{
1 + exp(XT

i θ
(k))
}
− exp(XT

i θ)− exp(XT
i θ

(k))

1 + exp(XT
i θ

(k))
,

with equality when θ = θ(k). This eliminates the log terms.

2. Now apply the arithmetic-geometric mean inequality to the exponential function exp(XT
i θ)

to separate parameters. Assuming that θ has p components and that there are n obser-

vations, show that these maneuvers lead to the minorizing function

g(θ|θ(k)) = −1

p

n∑
i=1

exp(XT
i θ

(k))

1 + exp(XT
i θ

(k))

p∑
j=1

exp{pXij(θj − θ(k)j )}+
n∑

i=1

YiX
T
i θ

up to a constant that does not depend on θ.

3. Finally, prove that maximizing g(θ|θ(k)) consists in solving the equation

−
n∑

i=1

exp(XT
i θ

(k))Xij exp(−pXijθ
(k)
j )

1 + exp(XT
i θ

(k))
exp(pXijθj) +

n∑
i=1

YiXij = 0

for each j. This can be accomplished numerically and you do not need to show that.
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Problem 4: Compare different algorithms for logistic regression (20 pts)

For the logistic regression model example, (Example 5 in lecture “MM Algorithm”):

1. Outline the (standard) Newton-Raphson algorithm and the Fisher Scoring algorithm.

Show the relation between Newton-Raphson and Fisher Scoring.

2. Implement the Newton-Raphson algorithm in R.

3. Implement the MM algorithm of Example 5 in R.

4. Conduct a simulation study. For 1,000 individuals, generate the binary response from

Pr(Yi = 1) =
exp(Xiθ)

1 + exp(Xiθ)
,

where θ = 0.3 and Xi ∼ N(0, 1). Apply your NR and MM algorithms to this data set;

select your own starting value and stopping criterion, but make sure they are the same

for the two algorithms. For each algorithm,

(a) report MLE θ̂ and number of iteration,

(b) make a table similar to that on Page 17 of the lecture notes “EM Algorithm I”. If

the table is too long, you can just show the first and last few rows.

(c) compare the two algorithms in terms of convergence rate.
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