
Optimization

August 29, 2022

Optimization problem — 1/33 —

• An optimization problem is the problem of finding the best solution for an
objective function.

• Optimization method plays an important role in statistics, for example, to find
maximum likelihood estimate (MLE).

• Unconstrained vs. constrained optimization problem: whether there is constraint
in the solution space.

• Most algorithms are based on iterative procedures.

• We’ll spend next few lectures on several optimization methods, under the
context of statistics:

– New-Raphson, Fisher scoring, etc.

– EM and MM.

– Hidden Markov models.

– Linear and quadratic programming.

Review: Newton-Raphson (NR) method — 2/33 —

Goal: Find the root for equation f (θ) = 0.

Approach:

1. Choose an initial value θ(0) as the starting point.

2. By Taylor expansion at θ(0), we have f̃ (θ) = f (θ(0)) + f ′(θ(0))(θ − θ(0)).

3. Setting f̃ (θ) = 0 gives an update of the parameter: θ(1) = θ(0) − f (θ(0))/ f ′(θ(0)).

4. Repeated update until convergence: θ(k+1) = θ(k) − f (θ(k))/ f ′(θ(k)).

NR method convergence rate — 3/33 —

Quadratic convergence: θ∗ is the solution.

lim
k→∞

|θ(k+1) − θ∗|

|θ(k) − θ∗|2
= c (rate = c > 0, order = 2)

The # of significant digits nearly doubles at each step (in the neighborhood of θ∗).

Proof: By Taylor expansion (to the second order) at θ(k),

0 = f (θ∗) = f (θ(k)) + f ′(θ(k))(θ∗ − θ(k)) +
1
2

f ′′(ξ(k))(θ∗ − θ(k))2, ξ(k) ∈ [θ∗, θ(k)]

Dividing the equation by f ′(θ(k)) gives

− f (θ(k))/ f ′(θ(k)) − (θ∗ − θ(k)) =
f ′′(ξ(k))

2 f ′(θ(k))
(θ∗ − θ(k))2.

The definition of θ(k+1) = θ(k) − f (θ(k))/ f ′(θ(k)) gives

θ(k+1) − θ∗ =
f ′′(ξ(k))

2 f ′(θ(k))
(θ∗ − θ(k))2.

What conditions are needed?

• f ′(θ(k)) , 0 in the neighborhood of θ∗.

• f ′′(ξ(k)) is bounded.

• Starting point is sufficiently close to the root θ∗ (in order for the Taylor expansion to work).

Review: maximum likelihood — 4/33 —

Here is a list of some definitions related to maximum likelihood estimate:

Parameter θ, a p-vector

Data X
Log likelihood l(θ) = log Pr(X|θ)

Score function (p-vector) l̇(θ) = (∂l/∂θ1, . . . , ∂l/∂θp)′

Hessian matrix (p × p) l̈(θ) = {∂2l/∂θi∂θ j}i, j=1,...,p

Fisher information I(θ) = −El̈(θ) = El̇(θ){l̇(θ)}′

Observed information − l̈(θ̂)

When θ∗ is a local maximum of l, l̇(θ∗) = 0 , and l̈(θ∗) is negative definite.

Application of NR method in MLE:
when θ is a scalar — 5/33 —

Maximum Likelihood Estimation (MLE): θ̂ = arg maxθ l(θ).

Approach Find θ̂ such that l̇(θ̂) = 0.

If the closed form solution for l̇(θ̂) = 0 is difficult to obtain, one can use NR method
(replace f by l̇). The the NR update for solving MLE is:

θ(k+1) = θ(k) − l̇(θ(k))/l̈(θ(k)).

What can go wrong? — 6/33 —

• Bad starting point

• May not converge to the global maximum

• Saddle point: l̇(θ̂) = 0, but l̈(θ̂) is neither negative definite nor positive definite
(stationary point but not a local extremum; can be used to check the likelihood)

starting point & local extremum saddle point saddle point
l(θ) = θ3 l(θ1, θ2) = θ2

1 − θ
2
2

Generalization to higher dimensions:
when θ is a p-vector — 7/33 —

General Algorithm

1. (Starting point) Pick a starting point θ(0) and let k = 0

2. (Iteration) Determine the direction d(k) (a p-vector) and the step size α(k) (a
scalar) and calculate

θ(k+1) = θ(k) + α(k)d(k),

such that the likelihood will increase, i.e.:

l(θ(k+1)) > l(θ(k))

3. (Stop criteria) Stop iteration if

|l(θ(k+1)) − l(θ(k))|/(|l(θ(k))| + ε1) < ε2

or
|θk+1, j − θk, j|/(|θk, j| + ε1) < ε2, j = 1, . . . , p

for precisions such as ε1 = 10−4 and ε2 = 10−6. Otherwise go to 2.

Key: Determine the direction and the step size

Generalization to higher dimensions (continued) — 8/33 —

Determining the direction (general framework, details later)

We generally pick d(k) = R−1l̇(θ(k)), where R is a positive definite matrix.

Choosing a step size (given the direction). The goal is to find α(k) so that
l(θ(k+1)) > l(θ(k))

• Step halving

– Start at a large value of α(k). Halve α(k) until l(θ(k+1)) > l(θ(k))

– Simple, robust, but relatively slow

• Linear search

– To find α(k) = arg maxα l(θ(k) + αd(k))

– Approximate l(θ(k) + αd(k)) by doing a polynomial interpolation and find α(k)

maximizing the polynomial

– Fast

Polynomial interpolation — 9/33 —

Given a set of p + 1 data points from the function f (α) ≡ l(θ(k) + αd(k)), we can find a
unique polynomial with degree p that goes through the p + 1 data points. (For a
quadratic approximation, we only need 3 data points.)

Survey of basic methods — 10/33 —

1. Steepest ascent: R = I = identity matrix

d(k) = l̇(θ(k))
α(k) = arg max

α
l(θ(k) + αl̇(θ(k))) or a small fixed number

θ(k+1) = θ(k) + α(k)l̇(θ(k))

l̇(θ(k)) is the steepest ascent direction
Proof: By Taylor expansion at θ(k),

l(θ(k) + ∆) − l(θ(k)) = ∆T l̇(θ(k)) + o(||∆||)

By Cauchy-Schwarz inequality,

∆T l̇(θ(k)) ≤ ||∆|| · ||l̇(θ(k))||

The equality holds at ∆ = αl̇(θ(k)). So when ∆ = αl̇(θ(k)), l(θ(k) + ∆) increases the most. �

• Easy to implement; only require the first derivative/gradient/score

• Guarantee an increase at each step no matter where you start

• Converge slowly. The directions of two consecutive steps are orthogonal, so the
algorithm “zigzags” to the maxima.

Steepest ascent (continued) — 11/33 —

When α(k) is chosen as arg maxα l(θ(k) + α l̇(θ(k))), the directions of two
consecutive steps are orthogonal, i.e.,

[l̇(θ(k))]T l̇(θ(k+1)) = 0.

Proof: By the definition of α(k) and θ(k+1)

0 =
∂l(θ(k) + αl̇(θ(k)))

∂α

∣∣∣∣
α=α(k)

= l̇(θ(k) + α(k)l̇(θ(k)))T l̇(θ(k)) = l̇(θ(k+1))T l̇(θ(k)).

Example: Steepest Ascent — 12/33 —

Find the maximum of the function f (x) = 6x − x3.

−2 −1 0 1 2

−
6

−
4

−
2

0
2

4
6

X

Y

●

●

Example: Steepest Ascent (cont.) — 13/33 —

fun0 <- function(x) return(- xˆ3 + 6*x) # target function

grd0 <- function(x) return(- 3*xˆ2 + 6) # gradient

Steepest Ascent Algorithm

Steepest_Ascent <- function(x, fun=fun0, grd=grd0, step=0.01, kmax=1000, tol1=1e-6, tol2=1e-4)

{

diff <- 2*x # use a large value to get into the following "while" loop

k <- 0 # count iteration

while (all(abs(diff) > tol1*(abs(x)+tol2)) & k <= kmax) # stop criteria

{

g_x <- grd(x) # calculate gradient using x

diff <- step * g_x # calculate the update

x <- x + diff # update x

k <- k + 1 # update iteration

}

f_x = fun(x)

return(list(iteration=k, x=x, f_x=f_x, g_x=g_x))

}

Example: Steepest Ascent (cont.) — 14/33 —

> Steepest_Ascent(x=2, step=0.01)

$iteration

[1] 117

$x

[1] 1.414228

$f_x

[1] 5.656854

$g_x

[1] -0.0001380379

In large dataset — 15/33 —

The data log-likelihood is usually summed over n observations: l(θ) =
∑n

i=1 l(xi; θ).
When n is large, this poses heavy computational burden.

One can implement a “stochastic” version of the algorithm: stochastic gradient
descent (SGD). Note: Gradient descent is just steepest descent.

Simple SGD algorithm: replace the gradient l̇(θ) by the gradient computed from a
single sample l̇(xi; θ), where xi is randomly sampled.

“Mini-batch” SGD algorithm: compute the gradient based on a small number of
observations.

• Advantage of SGD:

– Evaluate gradient at one (or a few) observations, requires less memory.

– Has better property to escape from local minimum (gradient is noisy).

• Disdvantage of SGD: even slower convergence.

Survey of basic methods (continued) — 16/33 —

2. Newton-Raphson: R = −l̈(θ(k)) = observed information

d(k) = [−l̈(θ(k))]−1l̇(θ(k))
θ(k+1) = θ(k) + [−l̈(θ(k))]−1l̇(θ(k))
α(k) = 1 for all k

• Fast, quadratic convergence

• Need very good starting points

Theorem: If R is positive definite, the equation set Rd(k) = l̇(θ(k)) has a unique solution for
the direction d(k), and the direction ensures ascent of l(θ).

Proof: When R is positive definite, it is invertible. So we have a unique solution
d(k) = R−1l̇(θ(k)).

Let θ(k+1) = θ(k) + αd(k) = θ(k) + αR−1l̇(θ(k)). By Taylor expansion,

l(θ(k+1)) ≈ l(θ(k)) + αl̇(θ(k))T R−1l̇(θ(k)).

The positive definite matrix R ensures that l(θ(k+1)) > l(θ(k)) for positive α. �

Newton-Raphson vs. steepest ascent — 17/33 —

• Newton-Raphson converges much faster than steepest ascent (gradient
descent).

• NR requires the computation of second derivative, which can be difficult and
computationally expensive. In contrast, gradient descent requires only the first
derivative, which is easy to compute.

• For poorly behaved objective function (non-convex), gradient-based methods
are often more stable.

• Gradient-based method (especially SGD) is widely used in modern machine
learning.

Example: Newton Raphson — 18/33 —

fun0 <- function(x) return(- xˆ3 + 6*x) # target function

grd0 <- function(x) return(- 3*xˆ2 + 6) # gradient

hes0 <- function(x) return(- 6*x) # Hessian

Newton-Raphson Algorithm

Newton_Raphson <- function(x, fun=fun0, grd=grd0, hes=hes0, kmax=1000, tol1=1e-6, tol2=1e-4)

{

diff <- 2*x

k <- 0

while (all(abs(diff) > tol1*(abs(x)+tol2)) & k <= kmax)

{

g_x <- grd(x)

h_x <- hes(x) # calculate the second derivative (Hessian)

diff <- -g_x/h_x # calculate the update

x <- x + diff

k <- k + 1

}

f_x = fun(x)

return(list(iteration=k, x=x, f_x=f_x, g_x=g_x, h_x=h_x))

}

Example: Newton Raphson — 19/33 —

> Newton_Raphson(x=2)

$iteration

[1] 5

$x

[1] 1.414214

$f_x

[1] 5.656854

$g_x

[1] -1.353229e-11

$h_x

[1] -8.485281

Survey of basic methods (continued) — 20/33 —

3. Modification of Newton-Raphson

• Fisher scoring: replace −l̈(θ) with −El̈(θ)

– −El̈(θ) = El̇(θ)l̇(θ)′ is always positive and stabilize the algorithm

– −El̈(θ) can have a simpler form than −l̈(θ)

– Newton-Raphson and Fisher scoring are equivalent for parameter estimation
in GLM with canonical link.

• Quasi-Newton: aka “variable metric methods” or “secant methods”.
Approximate l̈(θ) in a way that

– avoids calculating Hessian and its inverse

– has convergence properties similar to Newton

Fisher Scoring example: Poisson regression — 21/33 —

In the Poisson regression model of n subjects,

• The responses Yi ∼ Poisson(λi) = (Yi!)−1λ
Yi
i e−λi . We know that λi = E(Yi|Xi).

• We relate the mean of Yi to Xi by g(λi) = Xiβ. Taking derivative on both sides,

g′(λi)
∂λi

∂β
= Xi ⇒

∂λi

∂β
=

Xi

g′(λi)

• Log likelihood: l(β) =
∑n

i=1(Yi log λi − λi), where λi’s satisfy g(λi) = Xiβ.

• Maximum likelihood estimation: β̂ = arg maxβ l(β)

Newton-Raphson needs

l̇(β) =
∑

i

(
Yi

λi
− 1

)
∂λi

∂β
=

∑
i

(
Yi

λi
− 1

)
1

g′(λi)
Xi

l̈(β) = −
∑

i

Yi

λ2
i

∂λi

∂β

1
g′(λi)

Xi −
∑

i

(
Yi

λi
− 1

)
g′′(λi)
g′(λi)2

∂λi

∂β
Xi

= −
∑

i

1
λi

1
g′(λi)2 X2

i −
∑

i

(
Yi

λi
− 1

)
1
λi

1
g′(λi)2 X2

i −
∑

i

(
Yi

λi
− 1

)
g′′(λi)
g′(λi)3 X2

i

Fisher Scoring example: Poisson regression (continued) — 22/33 —

Fisher scoring needs l̇(β) and

E
[
l̈(β)

]
= −

∑
i

1
λi

1
g′(λi)2 X2

i

which is l̈(β) without the extra terms involving Y.

With the canonical link for Poisson regression:

g(λi) = log λi,

we have
g′(λi) = λ−1

i and g′′(λi) = −λ−2
i .

So that the extra terms equal to zero (check this!) and we conclude that
Newton-Raphson and Fisher scoring are equivalent.

Nonlinear Regression Models — 23/33 —

Data: (xi, yi) for i = 1, . . . , n

Notation and assumptions

• Model: yi = h(xi, β) + εi, where εi
i.i.d
∼ N(0, σ2) and h(.) is known and non-linear

• Residual: ei(β) = yi − h(xi, β)

• Jacobian: {J(β)}i j =
∂h(xi,β)
∂β j

= −
∂ei(β)
∂β j

, a n × p matrix

Goal: to obtain MLE β̂ = arg minβ S (β), where S (β) =
∑

i {yi − h(xi, β)}2 = [e(β)]T e(β)
is the residual sum of squares.

We could use Newton-Raphson algorithm.

• Gradient: g j(β) =
∂S (β)
∂β j

= 2
∑

i ei(β)∂ei(β)
∂β j

, i.e., g(β) = −2J(β)T e(β)

• Hessian: H jr(β) =
∂2S (β)
∂β j∂βr

= 2
∑

i{ei(β)∂
2ei(β)
∂β j∂βr

+
∂ei(β)
∂β j

∂ei(β)
∂βr
}

Problem: Hessian could be hard to obtain.

Gauss-Newton algorithm — 24/33 —

Recall in linear regression models, we minimize

S (β) =
∑

i

{
yi − xT

i β
}2

Since S (β) is a quadratic function, it is easy to get the solution:

β̂ =

∑
i

xixT
i

−1 ∑
i

xiyi


Now in the nonlinear regression models, we want to minimize

S (β) =
∑

i

{yi − h(xi, β)}2

Idea: Approximate h(xi, β) by a linear function, iteratively at β(k)

Given β(k) and by Taylor expansion of h(xi, β) at β(k), S (β) becomes

S (β) ≈
∑

i

{
yi − h(xi, β

(k)) − (β − β(k))T ∂h(xi, β
(k))

∂β

}2

=
∑

i

{
e(β(k)) − (β − β(k))T J(β(k))

}2

Gauss-Newton algorithm (cont.) — 25/33 —

1. Find a good starting point β(0)

2. At step k + 1,

(a) Form e(β(k)) and J(β(k))

(b) Use a standard linear regression routine to obtain
δ(k) = [J(β(k))T J(β(k))]−1J(β(k))T e(β(k))

(c) Obtain the new estimate β(k+1) = β(k) + δ(k)

• Does not need computing Hessian matrix.

• Needs good starting values.

• Requires J(β(k))T J(β(k)) to be invertible.

• This is not a general optimization method. Only applicable to lease square
problem.

Generalized linear models (GLM) — 26/33 —

Data: (yi, xi) for i = 1, . . . , n

Notation and assumptions

• Mean: E(y|x) = µ

• Link g: g(µ) = x′β

• Variance function V: Var(y|x) = φV(µ): mean-variance dependency.

• Log likelihood (exponential dispersion model with canonical parameter θ and
dispersion parameter φ): l(θ, φ; y) = {yθ − b(θ)}/a(φ) + c(y, φ)

We can obtain

• Score function: l̇ = {y − b′(θ)}/a(φ)

• Observed information: −l̈ = b′′(θ)/a(φ)

• Mean (in θ): E(y|x) = a(φ)E(l̇) + b′(θ) = b′(θ) (expected score at true θ is 0).

• Variance (in θ, φ): Var(y|x) = E(y − b′(θ))2 = a(φ)2E(l̇l̇′) = a(φ)2E(−l̈) = b′′(θ)a(φ)

Canonical link: Function g satisfies g(µ) = θ. Thus g = (b′)−1

GLM — 27/33 —

Model Normal Poisson Binomial Gamma
φ σ2 1 1/m 1/ν

b(θ) θ2/2 exp(θ) log(1 + eθ) − log(−θ)
µ θ exp(θ) eθ/(1 + eθ) −1/θ

Canonical link g identity log logit reciprocal
Variance function V 1 µ µ(1 − µ) µ2

Iteratively reweighted least squares for GLM — 28/33 —

In GLM, there is usually no closed form solutions for the MLE, so the model fitting is
done in numerical way (iterative algorithm).

Recall in linear regression models, E(yi|xi) = xT
i β, and we minimize

S (β) =
∑

i

{
yi − xT

i β
}2

The ordinary least square (OLS) solution (which is also the MLE when data is
normal):

β̂ =

∑
i

xixT
i

−1 ∑
i

xiyi


In GLM, consider to construct a similar quadratic function S (β).

Question: Can we minimize S (β) =
∑

i

{
g(yi) − xT

i β
}2

?

Answer: No, because E {g(yi)|xi} , g(E {yi|xi}) = xT
i β, since g is nonlinear. This

means we cannot transform yi by g and then run linear regression.

Iteratively reweighted least squares — 29/33 —

Idea: Approximate g(yi) by a linear function so that the OLS formula can be used.

Algorithm: at step k with current solution β(k), linearize g(yi) around
µ̂(k)

i = g−1(xT
i β

(k)) (the fitted value for yi at current step).

Denote the linearized value by ỹ(k)
i .

ỹ(k)
i = g(µ̂(k)

i) + (yi − µ̂
(k)
i)g′(µ̂(k)

i)

ỹ(k)
i is known as the adjusted response,

Now we can regress ỹ(k)
i on xi to estimate β(k+1). However, ỹ(k)

i is heteroscedastic,
i.e., the variances are not identical. Note: for most distributions the variances is
related to the mean.

Derive the variances of ỹ(k)
i , and use the inverse of the variance as weights in a

weighted least square (WLS):

W (k)
i =

{
Var(ỹ(k)

i)
}−1

=
[
{g′(µ̂(k)

i)}2V(µ̂(k)
i)

]−1

Given β(k), we can minimize the following:

S (β) =
∑

i

W (k)
i

{
ỹ(k)

i − xT
i β

}2

IRLS algorithm:

1. Start with initial estimates, generally µ̂(0)
i = yi

2. Form ỹ(k)
i and W (k)

i , both depend on µ̂(k)
i

3. Estimate β(k+1) by regressing ỹ(k)
i on xi with weights W (k)

i

4. Form µ̂(k+1)
i = g−1(xT

i β
(k+1)) and return to step 2.

Iteratively reweighted least squares (continued) — 31/33 —

Model Poisson Binomial Gamma
µ = g−1(η) eη eη/(1 + eη) 1/η

g′(µ) 1/µ 1/[µ(1 − µ)] −1/µ2

V(µ) µ µ(1 − µ) µ2

• McCullagh and Nelder (1983) showed that IRLS is equivalent to Fisher scoring.

• Using the canonical link, IRLS is also equivalent to Newton-Raphson.

• IRLS is attractive because no special optimization algorithm is required, just a
subroutine that computes weighted least square estimates.

A quick review — 32/33 —

• Optimization method is important in statistics, (i.e., to find MLE), or in general
machine learning (minimize some loss function).

• Maximizing/minimizing an objective function is achieved by solving the equation
that the first derivative is 0 (need to check second derivative).

• Steepest ascent method:

– Only need gradient.

– Slow convergence.

– In large dataset with ill-behaved objective function, stochastic version (SGD)
usually works better.

• Newton-Raphson (NR) method:

– Quadratic convergence rate.

– Could stuck in local maximum.

– In higher dimension, the problems are to find directions and step sizes in
each iteration.

• Fisher scoring: use expected information matrix.

– NR use observed information matrix.

– The expected information is more stable and simpler.

– Fisher scoring and Newton-Raphson are equivalent under canonical link.

• Gauss-Newton algorithm for non-linear regression: Hessian matrix is not
needed.

