Optimization

August 29, 2022

- An optimization problem is the problem of finding the best solution for an objective function.
- Optimization method plays an important role in statistics, for example, to find maximum likelihood estimate (MLE).
- Unconstrained vs. constrained optimization problem: whether there is constraint in the solution space.
- Most algorithms are based on iterative procedures.
- We'll spend next few lectures on several optimization methods, under the context of statistics:
 - New-Raphson, Fisher scoring, etc.
 - EM and MM.
 - Hidden Markov models.
 - Linear and quadratic programming.

Goal: Find the root for equation $f(\theta) = 0$.

Approach:

- 1. Choose an initial value $\theta^{(0)}$ as the starting point.
- 2. By Taylor expansion at $\theta^{(0)}$, we have $\tilde{f}(\theta) = f(\theta^{(0)}) + f'(\theta^{(0)})(\theta \theta^{(0)})$.
- 3. Setting $\tilde{f}(\theta) = 0$ gives an update of the parameter: $\theta^{(1)} = \theta^{(0)} f(\theta^{(0)})/f'(\theta^{(0)})$.
- 4. Repeated update until convergence: $\theta^{(k+1)} = \theta^{(k)} f(\theta^{(k)})/f'(\theta^{(k)})$.

Quadratic convergence: θ^* is the solution.

$$\lim_{k \to \infty} \frac{|\theta^{(k+1)} - \theta^*|}{|\theta^{(k)} - \theta^*|^2} = c \qquad \text{(rate = c > 0, order = 2)}$$

The # of significant digits nearly doubles at each step (in the neighborhood of θ^*).

Proof: By Taylor expansion (to the second order) at $\theta^{(k)}$,

$$0 = f(\theta^*) = f(\theta^{(k)}) + f'(\theta^{(k)})(\theta^* - \theta^{(k)}) + \frac{1}{2}f''(\xi^{(k)})(\theta^* - \theta^{(k)})^2, \quad \xi^{(k)} \in [\theta^*, \theta^{(k)}]$$

Dividing the equation by $f'(\theta^{(k)})$ gives

$$-f(\theta^{(k)})/f'(\theta^{(k)}) - (\theta^* - \theta^{(k)}) = \frac{f''(\xi^{(k)})}{2f'(\theta^{(k)})}(\theta^* - \theta^{(k)})^2.$$

The definition of $\theta^{(k+1)} = \theta^{(k)} - f(\theta^{(k)})/f'(\theta^{(k)})$ gives

$$\theta^{(k+1)} - \theta^* = \frac{f''(\xi^{(k)})}{2f'(\theta^{(k)})} (\theta^* - \theta^{(k)})^2.$$

What conditions are needed?

- $f'(\theta^{(k)}) \neq 0$ in the neighborhood of θ^* .
- $f''(\xi^{(k)})$ is bounded.
- Starting point is sufficiently close to the root θ^* (in order for the Taylor expansion to work).

Here is a list of some definitions related to maximum likelihood estimate:

When θ^* is a local maximum of l, $\dot{l}(\theta^*) = 0$, and $\ddot{l}(\theta^*)$ is negative definite.

Maximum Likelihood Estimation (MLE): $\hat{\theta} = \arg \max_{\theta} l(\theta)$.

Approach Find $\hat{\theta}$ such that $\hat{l}(\hat{\theta}) = 0$.

If the closed form solution for $\hat{l}(\hat{\theta}) = 0$ is difficult to obtain, one can use NR method (replace f by \hat{l}). The the NR update for solving MLE is:

$$\theta^{(k+1)} = \theta^{(k)} - \dot{l}(\theta^{(k)}) / \ddot{l}(\theta^{(k)}).$$

- Bad starting point
- May not converge to the global maximum
- Saddle point: $\hat{l}(\hat{\theta}) = 0$, but $\hat{l}(\hat{\theta})$ is neither negative definite nor positive definite (stationary point but not a local extremum; can be used to check the likelihood)

starting point & local extremum

saddle point

$$l(\theta) = \theta^{3}$$

$$10 - \frac{1}{x^{3}} - \frac{1}{x^{$$

saddle point

$$l(\theta_1,\theta_2)=\theta_1^2-\theta_2^2$$

General Algorithm

- 1. (Starting point) Pick a starting point $\theta^{(0)}$ and let k=0
- 2. (**Iteration**) Determine the direction $d^{(k)}$ (a p-vector) and the step size $\alpha^{(k)}$ (a scalar) and calculate

$$\theta^{(k+1)} = \theta^{(k)} + \alpha^{(k)} d^{(k)},$$

such that the likelihood will increase, i.e.:

$$l(\theta^{(k+1)}) > l(\theta^{(k)})$$

3. (Stop criteria) Stop iteration if

$$|l(\theta^{(k+1)}) - l(\theta^{(k)})|/(|l(\theta^{(k)})| + \epsilon_1) < \epsilon_2$$

or

$$|\theta_{k+1,j} - \theta_{k,j}|/(|\theta_{k,j}| + \epsilon_1) < \epsilon_2, \quad j = 1, \dots, p$$

for precisions such as $\epsilon_1 = 10^{-4}$ and $\epsilon_2 = 10^{-6}$. Otherwise go to 2.

Key: Determine the direction and the step size

Determining the direction (general framework, details later)

We generally pick $d^{(k)} = R^{-1}\dot{l}(\theta^{(k)})$, where R is a positive definite matrix.

Choosing a step size (given the direction). The goal is to find $\alpha^{(k)}$ so that $l(\theta^{(k+1)}) > l(\theta^{(k)})$

- Step halving
 - Start at a large value of $\alpha^{(k)}$. Halve $\alpha^{(k)}$ until $l(\theta^{(k+1)}) > l(\theta^{(k)})$
 - Simple, robust, but relatively slow
- Linear search
 - To find $\alpha^{(k)} = \arg \max_{\alpha} l(\theta^{(k)} + \alpha d^{(k)})$
 - Approximate $l(\theta^{(k)} + \alpha d^{(k)})$ by doing a **polynomial interpolation** and find $\alpha^{(k)}$ maximizing the polynomial
 - Fast

Given a set of p+1 data points from the function $f(\alpha) \equiv l(\theta^{(k)} + \alpha d^{(k)})$, we can find a unique polynomial with degree p that goes through the p+1 data points. (For a quadratic approximation, we only need 3 data points.)

1. Steepest ascent: R = I = identity matrix

$$\begin{split} \boldsymbol{d}^{(k)} &= \dot{l}(\boldsymbol{\theta}^{(k)}) \\ \boldsymbol{\alpha}^{(k)} &= \arg\max_{\boldsymbol{\alpha}} \, l(\boldsymbol{\theta}^{(k)} + \boldsymbol{\alpha} \dot{l}(\boldsymbol{\theta}^{(k)})) \; \text{ or a small fixed number} \\ \boldsymbol{\theta}^{(k+1)} &= \boldsymbol{\theta}^{(k)} + \boldsymbol{\alpha}^{(k)} \dot{l}(\boldsymbol{\theta}^{(k)}) \end{split}$$

$\dot{l}(\theta^{(k)})$ is the steepest ascent direction

Proof: By Taylor expansion at $\theta^{(k)}$,

$$l(\theta^{(k)} + \Delta) - l(\theta^{(k)}) = \Delta^T \dot{l}(\theta^{(k)}) + o(||\Delta||)$$

By Cauchy-Schwarz inequality,

$$\Delta^T \dot{l}(\theta^{(k)}) \le ||\Delta|| \cdot ||\dot{l}(\theta^{(k)})||$$

The equality holds at $\Delta = \alpha \dot{l}(\theta^{(k)})$. So when $\Delta = \alpha \dot{l}(\theta^{(k)})$, $l(\theta^{(k)} + \Delta)$ increases the most. \Box

- Easy to implement; only require the first derivative/gradient/score
- Guarantee an increase at each step no matter where you start
- Converge slowly. The directions of two consecutive steps are orthogonal, so the algorithm "zigzags" to the maxima.

When $\alpha^{(k)}$ is chosen as $\arg\max_{\alpha} l(\theta^{(k)} + \alpha \dot{l}(\theta^{(k)}))$, the directions of two consecutive steps are orthogonal, i.e.,

$$[\dot{l}(\theta^{(k)})]^T\dot{l}(\theta^{(k+1)}) = 0.$$

Proof: By the definition of $\alpha^{(k)}$ and $\theta^{(k+1)}$

$$0 = \frac{\partial l(\theta^{(k)} + \alpha \dot{l}(\theta^{(k)}))}{\partial \alpha} \Big|_{\alpha = \alpha^{(k)}} = \dot{l}(\theta^{(k)} + \alpha^{(k)} \dot{l}(\theta^{(k)}))^T \dot{l}(\theta^{(k)}) = \dot{l}(\theta^{(k+1)})^T \dot{l}(\theta^{(k)}).$$

Find the maximum of the function $f(x) = 6x - x^3$.


```
fun0 \leftarrow function(x) return(-x^3 + 6*x) # target function
grd0 \leftarrow function(x) return(-3*x^2 + 6)
                                          # gradient
# Steepest Ascent Algorithm
Steepest_Ascent <- function(x, fun=fun0, grd=grd0, step=0.01, kmax=1000, tol1=1e-6, tol2=1e-4)
{
        diff <- 2*x # use a large value to get into the following "while" loop
        k <- 0
               # count iteration
        while (all(abs(diff) > tol1*(abs(x)+tol2)) & k \le k \le k stop criteria
        {
                               # calculate gradient using x
                g_x \leftarrow grd(x)
                diff <- step * g_x # calculate the update</pre>
                x \leftarrow x + diff # update x
                k < -k + 1
                                    # update iteration
        }
        f_x = fun(x)
        return(list(iteration=k, x=x, f_x=f_x, g_x=g_x))
}
```

```
> Steepest_Ascent(x=2, step=0.01)
$iteration
[1] 117
$x
[1] 1.414228
$f_x
[1] 5.656854
$g_x
[1] -0.0001380379
```

The data log-likelihood is usually summed over n observations: $l(\theta) = \sum_{i=1}^{n} l(x_i; \theta)$. When n is large, this poses heavy computational burden.

One can implement a "stochastic" version of the algorithm: **stochastic gradient descent** (SGD). Note: Gradient descent is just steepest descent.

Simple SGD algorithm: replace the gradient $\dot{l}(\theta)$ by the gradient computed from a single sample $\dot{l}(x_i;\theta)$, where x_i is randomly sampled.

"Mini-batch" SGD algorithm: compute the gradient based on a small number of observations.

- Advantage of SGD:
 - Evaluate gradient at one (or a few) observations, requires less memory.
 - Has better property to escape from local minimum (gradient is noisy).
- Disdvantage of SGD: even slower convergence.

2. Newton-Raphson: $R = -\ddot{l}(\theta^{(k)}) = \text{observed information}$

$$d^{(k)} = [-\ddot{l}(\theta^{(k)})]^{-1}\dot{l}(\theta^{(k)})$$

$$\theta^{(k+1)} = \theta^{(k)} + [-\ddot{l}(\theta^{(k)})]^{-1}\dot{l}(\theta^{(k)})$$

$$\alpha^{(k)} = 1 \text{ for all } k$$

- Fast, quadratic convergence
- Need very good starting points

Theorem: If R is positive definite, the equation set $Rd^{(k)} = \dot{l}(\theta^{(k)})$ has a unique solution for the direction $d^{(k)}$, and the direction ensures ascent of $l(\theta)$.

Proof: When R is positive definite, it is invertible. So we have a unique solution $d^{(k)} = R^{-1}\dot{l}(\theta^{(k)})$.

Let
$$\theta^{(k+1)} = \theta^{(k)} + \alpha d^{(k)} = \theta^{(k)} + \alpha R^{-1} \dot{l}(\theta^{(k)})$$
. By Taylor expansion,
$$l(\theta^{(k+1)}) \approx l(\theta^{(k)}) + \alpha \dot{l}(\theta^{(k)})^T R^{-1} \dot{l}(\theta^{(k)}).$$

The positive definite matrix R ensures that $l(\theta^{(k+1)}) > l(\theta^{(k)})$ for positive α . \square

- Newton-Raphson converges much faster than steepest ascent (gradient descent).
- NR requires the computation of second derivative, which can be difficult and computationally expensive. In contrast, gradient descent requires only the first derivative, which is easy to compute.
- For poorly behaved objective function (non-convex), gradient-based methods are often more stable.
- Gradient-based method (especially SGD) is widely used in modern machine learning.

```
fun0 \leftarrow function(x) return(-x^3 + 6*x) # target function
grd0 \leftarrow function(x) return(-3*x^2 + 6)
                                            # gradient
hes0 <- function(x) return(- 6*x)
                                            # Hessian
# Newton-Raphson Algorithm
Newton_Raphson <- function(x, fun=fun0, grd=grd0, hes=hes0, kmax=1000, tol1=1e-6, tol2=1e-4)
{
        diff <- 2*x
        k < - 0
        while (all(abs(diff) > tol1*(abs(x)+tol2)) & k \le k \le k
        {
                g_x \leftarrow grd(x)
                h_x \leftarrow hes(x)
                                 # calculate the second derivative (Hessian)
                diff < -g_x/h_x
                                       # calculate the update
                x \leftarrow x + diff
                k \leftarrow k + 1
        }
        f_x = fun(x)
        return(list(iteration=k, x=x, f_x=f_x, g_x=g_x, h_x=h_x))
}
```

```
> Newton_Raphson(x=2)

$iteration
[1] 5
$x
[1] 1.414214
$f_x
[1] 5.656854
$g_x
[1] -1.353229e-11
```

\$h_x

[1] -8.485281

3. Modification of Newton-Raphson

- **Fisher scoring**: replace $-\ddot{l}(\theta)$ with $-E\ddot{l}(\theta)$
 - $-E\ddot{l}(\theta) = E\dot{l}(\theta)\dot{l}(\theta)'$ is always positive and stabilize the algorithm
 - $-E\ddot{l}(\theta)$ can have a simpler form than $-\ddot{l}(\theta)$
 - Newton-Raphson and Fisher scoring are equivalent for parameter estimation in GLM with canonical link.
- **Quasi-Newton**: aka "variable metric methods" or "secant methods". Approximate $\ddot{l}(\theta)$ in a way that
 - avoids calculating Hessian and its inverse
 - has convergence properties similar to Newton

In the Poisson regression model of n subjects,

- The responses $Y_i \sim \mathsf{Poisson}(\lambda_i) = (Y_i!)^{-1} \lambda_i^{Y_i} e^{-\lambda_i}$. We know that $\lambda_i = \mathrm{E}(Y_i|X_i)$.
- We relate the mean of Y_i to X_i by $g(\lambda_i) = X_i\beta$. Taking derivative on both sides,

$$g'(\lambda_i)\frac{\partial \lambda_i}{\partial \beta} = X_i \quad \Rightarrow \quad \frac{\partial \lambda_i}{\partial \beta} = \frac{X_i}{g'(\lambda_i)}$$

- Log likelihood: $l(\beta) = \sum_{i=1}^{n} (Y_i \log \lambda_i \lambda_i)$, where λ_i 's satisfy $g(\lambda_i) = X_i \beta$.
- Maximum likelihood estimation: $\hat{\beta} = \arg \max_{\beta} l(\beta)$

Newton-Raphson needs

$$\dot{l}(\beta) = \sum_{i} \left(\frac{Y_{i}}{\lambda_{i}} - 1\right) \frac{\partial \lambda_{i}}{\partial \beta} = \sum_{i} \left(\frac{Y_{i}}{\lambda_{i}} - 1\right) \frac{1}{g'(\lambda_{i})} X_{i}$$

$$\ddot{l}(\beta) = -\sum_{i} \frac{Y_{i}}{\lambda_{i}^{2}} \frac{\partial \lambda_{i}}{\partial \beta} \frac{1}{g'(\lambda_{i})} X_{i} - \sum_{i} \left(\frac{Y_{i}}{\lambda_{i}} - 1\right) \frac{g''(\lambda_{i})}{g'(\lambda_{i})^{2}} \frac{\partial \lambda_{i}}{\partial \beta} X_{i}$$

$$= -\sum_{i} \frac{1}{\lambda_{i}} \frac{1}{g'(\lambda_{i})^{2}} X_{i}^{2} - \sum_{i} \left(\frac{Y_{i}}{\lambda_{i}} - 1\right) \frac{1}{\lambda_{i}} \frac{1}{g'(\lambda_{i})^{2}} X_{i}^{2} - \sum_{i} \left(\frac{Y_{i}}{\lambda_{i}} - 1\right) \frac{g''(\lambda_{i})}{g'(\lambda_{i})^{3}} X_{i}^{2}$$

Fisher scoring needs $\dot{l}(\beta)$ and

$$E\left[\ddot{l}(\beta)\right] = -\sum_{i} \frac{1}{\lambda_{i}} \frac{1}{g'(\lambda_{i})^{2}} X_{i}^{2}$$

which is $\ddot{l}(\beta)$ without the extra terms involving Y.

With the canonical link for Poisson regression:

$$g(\lambda_i) = \log \lambda_i$$

we have

$$g'(\lambda_i) = \lambda_i^{-1}$$
 and $g''(\lambda_i) = -\lambda_i^{-2}$.

So that the extra terms equal to zero (check this!) and we conclude that Newton-Raphson and Fisher scoring are equivalent.

Data: (x_i, y_i) for i = 1, ..., n

Notation and assumptions

- Model: $y_i = h(x_i, \beta) + \epsilon_i$, where $\epsilon_i \stackrel{i.i.d}{\sim} N(0, \sigma^2)$ and h(.) is known and non-linear
- Residual: $e_i(\beta) = y_i h(x_i, \beta)$
- Jacobian: $\{J(\beta)\}_{ij} = \frac{\partial h(x_i,\beta)}{\partial \beta_j} = -\frac{\partial e_i(\beta)}{\partial \beta_j}$, a $n \times p$ matrix

Goal: to obtain MLE $\hat{\beta} = \arg\min_{\beta} S(\beta)$, where $S(\beta) = \sum_{i} \{y_i - h(x_i, \beta)\}^2 = [e(\beta)]^T e(\beta)$ is the residual sum of squares.

We could use Newton-Raphson algorithm.

- Gradient: $g_j(\beta) = \frac{\partial S(\beta)}{\partial \beta_j} = 2 \sum_i e_i(\beta) \frac{\partial e_i(\beta)}{\partial \beta_j}$, i.e., $g(\beta) = -2J(\beta)^T e(\beta)$
- Hessian: $H_{jr}(\beta) = \frac{\partial^2 S(\beta)}{\partial \beta_j \partial \beta_r} = 2 \sum_i \{e_i(\beta) \frac{\partial^2 e_i(\beta)}{\partial \beta_j \partial \beta_r} + \frac{\partial e_i(\beta)}{\partial \beta_j} \frac{\partial e_i(\beta)}{\partial \beta_r} \}$

Problem: Hessian could be hard to obtain.

Recall in linear regression models, we minimize

$$S(\beta) = \sum_{i} \left\{ y_i - x_i^T \beta \right\}^2$$

Since $S(\beta)$ is a quadratic function, it is easy to get the solution:

$$\hat{\beta} = \left(\sum_{i} x_{i} x_{i}^{T}\right)^{-1} \left(\sum_{i} x_{i} y_{i}\right)$$

Now in the nonlinear regression models, we want to minimize

$$S(\beta) = \sum_{i} \{y_i - h(x_i, \beta)\}^2$$

Idea: Approximate $h(x_i, \beta)$ by a linear function, iteratively at $\beta^{(k)}$

Given $\beta^{(k)}$ and by Taylor expansion of $h(x_i, \beta)$ at $\beta^{(k)}$, $S(\beta)$ becomes

$$S(\beta) \approx \sum_{i} \left\{ y_i - h(x_i, \beta^{(k)}) - (\beta - \beta^{(k)})^T \frac{\partial h(x_i, \beta^{(k)})}{\partial \beta} \right\}^2 = \sum_{i} \left\{ e(\beta^{(k)}) - (\beta - \beta^{(k)})^T J(\beta^{(k)}) \right\}^2$$

- 1. Find a good starting point $\beta^{(0)}$
- 2. At step k + 1,
 - (a) Form $e(\beta^{(k)})$ and $J(\beta^{(k)})$
 - (b) Use a standard linear regression routine to obtain $\delta^{(k)} = [J(\beta^{(k)})^T J(\beta^{(k)})]^{-1} J(\beta^{(k)})^T e(\beta^{(k)})$
 - (c) Obtain the new estimate $\beta^{(k+1)} = \beta^{(k)} + \delta^{(k)}$
- Does not need computing Hessian matrix.
- Needs good starting values.
- Requires $J(\beta^{(k)})^T J(\beta^{(k)})$ to be invertible.
- This is not a general optimization method. Only applicable to lease square problem.

Data: (y_i, x_i) for i = 1, ..., n

Notation and assumptions

- Mean: $E(y|x) = \mu$
- Link $g: g(\mu) = x'\beta$
- Variance function V: $Var(y|x) = \phi V(\mu)$: mean-variance dependency.
- Log likelihood (exponential dispersion model with canonical parameter θ and dispersion parameter ϕ): $l(\theta, \phi; y) = \{y\theta b(\theta)\}/a(\phi) + c(y, \phi)$

We can obtain

- Score function: $\dot{l} = \{y b'(\theta)\}/a(\phi)$
- Observed information: $-\ddot{l} = b''(\theta)/a(\phi)$
- Mean (in θ): $E(y|x) = a(\phi)E(\dot{l}) + b'(\theta) = b'(\theta)$ (expected score at true θ is 0).
- Variance (in θ , ϕ): Var(y|x) = E($y b'(\theta)$)² = $a(\phi)^2$ E(ll') = $a(\phi)^2$ E(-l) = $b''(\theta)a(\phi)$

Canonical link: Function g satisfies $g(\mu) = \theta$. Thus $g = (b')^{-1}$

Model	Normal	Poisson	Binomial	Gamma
ϕ	σ^2	1	1/ <i>m</i>	$1/\nu$
b(heta)	$\theta^2/2$	$\exp(\theta)$	$\log(1 + e^{\theta})$	$-\log(-\theta)$
μ	$oldsymbol{ heta}$	$\exp(\theta)$	$e^{\theta}/(1+e^{\theta})$	$-1/\theta$
Canonical link g	identity	log	logit	reciprocal
Variance function V	1	μ	$\mu(1-\mu)$	μ^2

In GLM, there is usually no closed form solutions for the MLE, so the model fitting is done in numerical way (iterative algorithm).

Recall in linear regression models, $E(y_i|x_i) = x_i^T \beta$, and we minimize

$$S(\beta) = \sum_{i} \left\{ y_i - x_i^T \beta \right\}^2$$

The ordinary least square (OLS) solution (which is also the MLE when data is normal):

$$\hat{\beta} = \left(\sum_{i} x_{i} x_{i}^{T}\right)^{-1} \left(\sum_{i} x_{i} y_{i}\right)$$

In GLM, consider to construct a similar quadratic function $S(\beta)$.

Question: Can we minimize $S(\beta) = \sum_{i} \{g(y_i) - x_i^T \beta\}^2$?

Answer: No, because $\mathbb{E}\{g(y_i)|x_i\} \neq g(\mathbb{E}\{y_i|x_i\}) = x_i^T \beta$, since g is nonlinear. This means we cannot transform y_i by g and then run linear regression.

Idea: Approximate $g(y_i)$ by a linear function so that the OLS formula can be used.

Algorithm: at step k with current solution $\beta^{(k)}$, linearize $g(y_i)$ around $\hat{\mu}_i^{(k)} = g^{-1}(x_i^T \beta^{(k)})$ (the fitted value for y_i at current step).

Denote the linearized value by $\tilde{y}_{i}^{(k)}$.

$$\tilde{y}_i^{(k)} = g(\hat{\mu}_i^{(k)}) + (y_i - \hat{\mu}_i^{(k)})g'(\hat{\mu}_i^{(k)})$$

 $\tilde{y}_{i}^{(k)}$ is known as the adjusted response,

Now we can regress $\tilde{y}_i^{(k)}$ on x_i to estimate $\beta^{(k+1)}$. However, $\tilde{y}_i^{(k)}$ is heteroscedastic, i.e., the variances are not identical. Note: for most distributions the variances is related to the mean.

Derive the variances of $\tilde{y}_i^{(k)}$, and use the inverse of the variance as weights in a weighted least square (WLS):

$$W_i^{(k)} = \left\{ \text{Var}(\tilde{y}_i^{(k)}) \right\}^{-1} = \left[\{ g'(\hat{\mu}_i^{(k)}) \}^2 V(\hat{\mu}_i^{(k)}) \right]^{-1}$$

Given $\beta^{(k)}$, we can minimize the following:

$$S(\beta) = \sum_{i} W_{i}^{(k)} \left\{ \tilde{y}_{i}^{(k)} - x_{i}^{T} \beta \right\}^{2}$$

IRLS algorithm:

- 1. Start with initial estimates, generally $\hat{\mu}_i^{(0)} = y_i$
- 2. Form $\tilde{y}_i^{(k)}$ and $W_i^{(k)}$, both depend on $\hat{\mu}_i^{(k)}$
- 3. Estimate $\beta^{(k+1)}$ by regressing $\tilde{y}_i^{(k)}$ on x_i with weights $W_i^{(k)}$
- 4. Form $\hat{\mu}_{i}^{(k+1)} = g^{-1}(x_{i}^{T}\beta^{(k+1)})$ and return to step 2.

Model	Poisson	Binomial	Gamma
$\mu = g^{-1}(\eta)$	e^{η}	$e^{\eta}/(1+e^{\eta})$	$1/\eta$
$g'(\mu)$	$1/\mu$	$1/[\mu(1-\mu)]$	$-1/\mu^{2}$
$V(\mu)$	μ	$\mu(1-\mu)$	μ^2

- McCullagh and Nelder (1983) showed that IRLS is equivalent to Fisher scoring.
- Using the canonical link, IRLS is also equivalent to Newton-Raphson.
- IRLS is attractive because no special optimization algorithm is required, just a subroutine that computes weighted least square estimates.

- Optimization method is important in statistics, (i.e., to find MLE), or in general machine learning (minimize some loss function).
- Maximizing/minimizing an objective function is achieved by solving the equation that the first derivative is 0 (need to check second derivative).
- Steepest ascent method:
 - Only need gradient.
 - Slow convergence.
 - In large dataset with ill-behaved objective function, stochastic version (SGD) usually works better.

- Newton-Raphson (NR) method:
 - Quadratic convergence rate.
 - Could stuck in local maximum.
 - In higher dimension, the problems are to find directions and step sizes in each iteration.
- Fisher scoring: use expected information matrix.
 - NR use observed information matrix.
 - The expected information is more stable and simpler.
 - Fisher scoring and Newton-Raphson are equivalent under canonical link.
- Gauss-Newton algorithm for non-linear regression: Hessian matrix is not needed.