Optimization

August 29, 2022

Optimization problem __1/33 —

e An optimization problem is the problem of finding the best solution for an
objective function.

e Optimization method plays an important role in statistics, for example, to find
maximum likelihood estimate (MLE).

e Unconstrained vs. constrained optimization problem: whether there is constraint
in the solution space.

e Most algorithms are based on iterative procedures.

o We'll spend next few lectures on several optimization methods, under the
context of statistics:
— New-Raphson, Fisher scoring, etc.
— EM and MM.
— Hidden Markov models.
— Linear and quadratic programming.

Review: Newton-Raphson (NR) method — 2/33 —

Goal: Find the root for equation f(6) = 0.
Approach:

1. Choose an initial value ¢ as the starting point.

2. By Taylor expansion at 6%, we have £(8) = f(8©) + (89)@ — 69).

3. Setting f(#) = 0 gives an update of the parameter: 6V = 60 — £(@©)/ £ (6O).
4. Repeated update until convergence: 6%t = g% — £(g®)/ £/(6%).

v

A

r
f(z) =0 f(x)
tangenti
f(x0)
tangent 2
f(x1)

— X

X1 XO

———

Newton-Raphson Method

NR method convergence rate — 3/33 —

Quadratic convergence: 6* is the solution.
. |0(k+1) . H*l
/}E?o 00 g =c (rate = ¢ > 0, order = 2)

The # of significant digits nearly doubles at each step (in the neighborhood of 6%).

Proof: By Taylor expansion (to the second order) at 6%,
1
0= fO) = fO9) + f(@N)O - 0) + S)0 - 00y, £V eler,0Y]

Dividing the equation by f’(6%) gives

f7EY)

(k)2
s 1

~fE/f00) - (" - 0Y) =

The definition of 8%*D = gk — £(@®)/ f"(6%) gives

g+ _ g — L‘f(k))(g* . 9("))2,
2f7(6W)
What conditions are needed?
e /(%) £ 0 in the neighborhood of 6*.
o (W) is bounded.

e Starting point is sufficiently close to the root 6* (in order for the Taylor expansion to work).

Review: maximum likelihood — 4/33 —

Here is a list of some definitions related to maximum likelihood estimate:

Parameter 6, a p-vector
Data X
Log likelihood I(0) = log Pr(X|6)
Score function (p-vector) () = (8l/86,, . ..,01/96,)
Hessian matrix (p x p) 1(6) = {6°1/06:06}; j-1...,

Fisher information 1(8) = —El(6) = EI(0){i(0)Y
Observed information — [(0)

When 6* is a local maximum of [, [(6*) = 0, and [(6*) is negative definite.

Application of NR method in MLE:
when @ is a scalar — 5/33 —

Maximum Likelihood Estimation (MLE): 6 = arg max, /(6).
Approach Find 6 such that i(6) = 0.

If the closed form solution for i(§) = 0 is difficult to obtain, one can use NR method
(replace f by [). The the NR update for solving MLE is:

ok D = g® _ jip®)y i,

What can go wrong?

— 6/33 —

e Bad starting point

e May not converge to the global maximum

e Saddle point: i(d) = 0, but /(d) is neither negative definite nor positive definite
(stationary point but not a local extremum; can be used to check the likelihood)

starting point & local extremum

global maximum

local maximum

N

6 — |

0
2 -
i \/

global minimum

>

local minimum

0 02

04

0.6

0.8

1

12

10

5

0

=5

-10

saddle point

10) = 6°

|

4 -3 =2 -1 0

1

saddle point
1(61,6,) = 67 — 65

Generalization to higher dimensions:
when 6 is a p-vector — 7/33 —

General Algorithm
1. (Starting point) Pick a starting point ¥ and let k = 0

2. (Iteration) Determine the direction d© (a p-vector) and the step size o'¥ (a

scalar) and calculate
gD = gb o ok gk

such that the likelihood will increase, i.e.:
10Dy > 1(gW)y

3. (Stop criteria) Stop iteration if
165D — 10 /(10| + &) < &

or
Ok1,j — Ok jl/(Okjl +€1) <€, j=1,...,p
for precisions such as €; = 107 and &, = 107°. Otherwise go to 2.

Key: Determine the direction and the step size

Generalization to higher dimensions (continued) — 8/33 —

Determining the direction (general framework, details later)

We generally pick d¥ = R=1i(6®), where R is a positive definite matrix.

Choosing a step size (given the direction). The goal is to find o® so that
165Dy > [(60)
e Step halving
— Start at a large value of o'®. Halve o until 1(6%1) > [(6%)
— Simple, robust, but relatively slow

e Linear search

— To find @ = arg max, [(6% + ad®)

— Approximate (6% + ad®) by doing a polynomial interpolation and find o*’
maximizing the polynomial

— Fast

Polynomial interpolation — 9/33 —

Given a set of p + 1 data points from the function f(a) = (6 + ad®), we can find a
unique polynomial with degree p that goes through the p + 1 data points. (For a
quadratic approximation, we only need 3 data points.)

A
y

X X X, Xu

Survey of basic methods — 10/33 —

1. Steepest ascent: R = I = identity matrix
4% = Z(H(k))
a® = arg max (6% + «i(6™)) or a small fixed number

oD =) 4 o ®jph)

1(0%) is the steepest ascent direction
Proof- By Taylor expansion at 6%,
10D + A) — 16P) = ATi(6P) + o(|All)
By Cauchy-Schwarz inequality,
ATIEY) < Al 11iE)|

The equality holds at A = «i(6F). So when A = «i(6%), (6% + A) increases the most. O

e Easy to implement; only require the first derivative/gradient/score
e Guarantee an increase at each step no matter where you start

e Converge slowly. The directions of two consecutive steps are orthogonal, so the
algorithm “zigzags” to the maxima.

Steepest ascent (continued) —11/33 —

When o'® is chosen as arg max, (8% + «i(6'®)), the directions of two
consecutive steps are orthogonal, i.e.,

[0)T i6*+V) = 0,

Proof: By the definition of o' and g%V

OOV + al(6™))
- Oa

0 = (0% + P [O0NT[(@X) = (0% T [(e).

a=ak)

> > >

Example: Steepest Ascent — 12/33 —

Find the maximum of the function f(x) = 6x — x°.

Example: Steepest Ascent (cont.) — 13/33 —

fun® <- function(x) return(- x"3 + 6%x) # target function
grd® <- function(x) return(- 3*x"2 + 6) # gradient

Steepest Ascent Algorithm
Steepest_Ascent <- function(x, fun=fun®, grd=grd®, step=0.01, kmax=1000, toll=le-6, tol2=1e-4)

{

diff <- 2*x # use a large value to get into the following "while" loop
k <- 0 # count iteration

while (all(abs(diff) > toll*(abs(x)+tol2)) & k <= kmax) # stop criteria

{
g_x <- grd(x) # calculate gradient using x
diff <- step * g_x # calculate the update
X <- x + diff # update x
k <-k +1 # update iteration
}
f x = fun(x)

return(list(iteration=k, x=x, f_x=f_x, g_x=g_x))

Example: Steepest Ascent (cont)) — 14/33 —

> Steepest_Ascent(x=2, step=0.01)

$iteration

[1] 117

$x

[1] 1.414228

$f x

[1] 5.656854

$g_x

[1] -0.0001380379

In large dataset — 15/33 —

The data log-likelihood is usually summed over n observations: /(0) = }.°_, I(x;;).
When n is large, this poses heavy computational burden.

One can implement a “stochastic” version of the algorithm: stochastic gradient
descent (SGD). Note: Gradient descent is just steepest descent.

Simple SGD algorithm: replace the gradient i(6) by the gradient computed from a
single sample (x;; 0), where x; is randomly sampled.

“Mini-batch” SGD algorithm: compute the gradient based on a small number of
observations.

e Advantage of SGD:

— Evaluate gradient at one (or a few) observations, requires less memory.
— Has better property to escape from local minimum (gradient is noisy).

e Disdvantage of SGD: even slower convergence.

Survey of basic methods (continued) — 16/33 —

2. Newton-Raphson: R = —/(8¥) = observed information
d" = [-[0)]"1(6"Y)
gD = 6o 4 [—i(e%)]ie®)
a® =1 forall k

e Fast, quadratic convergence

e Need very good starting points

Theorem: If R is positive definite, the equation set Rd® = [(6™) has a unique solution for
the direction d®, and the direction ensures ascent of /(6).

Proof: When R is positive definite, it is invertible. So we have a unique solution
d® = R71jeW).
Let 6%+D = g® 1 ogd® = g% + oR~1[(6®). By Taylor expansion,

1% DY ~ 1(6P) + @0 R7i(0W).

The positive definite matrix R ensures that [(6%tD) > [(§) for positive a. O

Newton-Raphson vs. steepest ascent —17/33 —

e Newton-Raphson converges much faster than steepest ascent (gradient
descent).

e NR requires the computation of second derivative, which can be difficult and
computationally expensive. In contrast, gradient descent requires only the first
derivative, which is easy to compute.

e For poorly behaved objective function (non-convex), gradient-based methods
are often more stable.

e Gradient-based method (especially SGD) is widely used in modern machine
learning.

Example: Newton Raphson — 18/33 —

fun® <- function(x) return(- x"3 + 6%X) # target function
grd® <- function(x) return(- 3*x"2 + 6) # gradient
hes® <- function(x) return(- 6*x) # Hessian

Newton-Raphson Algorithm
Newton_Raphson <- function(x, fun=fun®, grd=grd®, hes=hes®, kmax=1000, toll=1le-6, tol2=1e-4)
{

diff <- 2*x

k <- 0

while (all(abs(diff) > toll*(abs(x)+tol2)) & k <= kmax)

{
g_x <- grd(x)
h_x <- hes(x) # calculate the second derivative (Hessian)
diff <- -g_x/h_x # calculate the update
X <- x + diff
k <-k +1
}
f x = fun(x)

return(list(iteration=k, x=x, f_x=f_x, g_x=g_x, h_x=h_x))

Example: Newton Raphson — 19/33 —

> Newton_Raphson(x=2)

$iteration

[1] 5

$x

[1] 1.414214

$£f_x

[1] 5.656854

$9_x

[1] -1.353229e-11
$h_x

[1] -8.485281

Survey of basic methods (continued) — 20/33 —

3. Modification of Newton-Raphson

e Fisher scoring: replace —I(0) with —E/(0)
— —El(9) = Ei(0)I[(9) is always positive and stabilize the algorithm
— —El(0) can have a simpler form than —{(6)

— Newton-Raphson and Fisher scoring are equivalent for parameter estimation
in GLM with canonical link.

e Quasi-Newton: aka “variable metric methods” or “secant methods”.
Approximate [(0) in a way that

— avoids calculating Hessian and its inverse
— has convergence properties similar to Newton

Fisher Scoring example: Poisson regression — 21/33 —

In the Poisson regression model of n subjects,

e The responses Y; ~ Poisson(4;) = (Y,—!)‘l/lf"e‘ﬂi . We know that A; = E(Y;|X)).

e We relate the mean of Y; to X; by g(4;) = X;8. Taking derivative on both sides,

'(/l-)%—X- N 04; _ _Xi
S T B~)

e Log likelihood: /(B) = > ,(Y;log A; — A;), where A;’s satisfy g(41;) = X,5.

e Maximum likelihood estimation: 5 = arg maxg /()
Newton-Raphson needs

. Y, \ou (Y) 1
l(ﬁ):Z(Z_l)%_Z(/u 1)g’<ﬂi X

o Yod 1 (Y gl
0= Zﬁﬁﬁ P Z(- ' unras™

B ot N1 (% g
T Igmzl Z()Agmw Z(ﬂi l)gm“

l

Fisher Scoring example: Poisson regression (continued) — 22/33 —

Fisher scoring needs /(8) and

E[iB)] = Z— R

which is [(8) without the extra terms involving Y.

With the canonical link for Poisson regression:
g(4;) = log 4;,

we have

g()=4" and g"(4) = -4
So that the extra terms equal to zero (check this!) and we conclude that
Newton-Raphson and Fisher scoring are equivalent.

Nonlinear Regression Models — 23/33 —

Data: (x;,y;))fori=1,...,n

Notation and assumptions
e Model: y; = h(x;,B) + €, where ¢ i N(0, 0?) and A(.) is known and non-linear
e Residual: ¢;(8) = y; — h(x;, 8)

e Jacobian: {J(B)};; = ‘”’(;’jﬁ) = ag"T(f), an X p matrix

Goal: to obtain I\/ILE,@ = arg ming S (B), where S(B) = >,; {yvi — h(x,-,,B)}2 = [e(B)]! e(B)
IS the residual sum of squares.

We could use Newton-Raphson algorithm.

e Gradient: g,(8) = > = 2 3 ei(B) %y .., 8(B) = ~2J(B)" e(B)

1 . (9 S 0 ; 0 ; 0 ;
e Hessian: H;(B) = 7, a(? 23 de; (ﬁ%ﬁeéﬁi gﬁ(f) gﬂ(ﬁ?)}

Problem: Hessian could be hard to obtain.

Gauss-Newton algorithm

— 24/33 —

Recall in linear regression models, we minimize

@) = - xlp)

l

Since S (B) is a quadratic function, it is easy to get the solution:

(o) (5o

I I

Now in the nonlinear regression models, we want to minimize

SB) =) {yi = h(xi, B)Y
Idea: Approximate h(x;, 8) by a linear function, iteratively at %

Given S© and by Taylor expansion of a(x;, 8) at B, S (8) becomes

N ONE
SB =~) {yi — h,) — (g — poyr L)} = 3" o) - B - B9 1))

op

l

l

Gauss-Newton algorithm (cont.) — 25/33 —

1. Find a good starting point 5

2. Atstep k + 1,

(a) Form e(8%) and J(B%¥)

(b) Use a standard linear regression routine to obtain
60 = [IE) JE) I B)Te(BY)
(c) Obtain the new estimate g%V = gk 4 §®

e Does not need computing Hessian matrix.
e Needs good starting values.
e Requires J(B®)T J(5%¥) to be invertible.

e This is not a general optimization method. Only applicable to lease square
problem.

Generalized linear models (GLM) — 26/33 —

Data: (y,,x,) fori=1,...,n
Notation and assumptions
e Mean: E(y|x) = u
e Link g: g(u) = X'
e Variance function V: Var(y|x) = ¢V(u): mean-variance dependency.

e Log likelihood (exponential dispersion model with canonical parameter 6 and
dispersion parameter ¢): 1(0, ¢;y) = {y0 — b(0)}/a(p) + c(v, })

We can obtain
e Score function: [= {y — b’(0)}/a(¢)

e Observed information: —/ = b”(68)/a(¢)
e Mean (in 6): E(y|x) = a(¢)E(]) + b’(0) = b'(6) (expected score at true 6 is 0).
e Variance (in 6, ¢): Var(y|x) = E(y — b'(0))?* = a(¢)*E(Il') = a(¢)’E(=) = b""(0)a(¢)

Canonical link: Function g satisfies g(u) = 6. Thus g = (b")™!

GLM

— 27/33 —

Model Normal Poisson Binomial Gamma
¢ o2 1 1/m 1/v
b(6) 02/2 exp®) log(l +¢?) —log(-0)
u 0 exp@ /(1+e -1/0

Canonical link g
Variance function V

identity log logit reciprocal
1 pooop(l—p

Iteratively reweighted least squares for GLM — 28/33 —

In GLM, there is usually no closed form solutions for the MLE, so the model fitting is
done in numerical way (iterative algorithm).

Recall in linear regression models, E(yi|x;) = x! 8, and we minimize

@) =) - xlB)

l

The ordinary least square (OLS) solution (which is also the MLE when data is

normal): B
p=(Xnot| [En]

I i

In GLM, consider to construct a similar quadratic function S (B).

Question: Can we minimize S(8) = 3, {g(v) - 7B} ?

Answer: No, because E {g(y;)|x;} # g(E {yilx;}) = xiT,B, since g is nonlinear. This
means we cannot transform y; by g and then run linear regression.

Iteratively reweighted least squares — 29/33 —

Idea: Approximate g(y;) by a linear function so that the OLS formula can be used.

Algorithm: at step k with current solution S, linearize g(y;) around

A

A" = g71(x7p®) (the fitted value for y; at current step).

Denote the linearized value by y§k>.

~k Ak Ak /Ak
7 = ¢(@™) + (3 — 2)g' (@)

7 is known as the adjusted response,

Now we can regress 7. on x; to estimate 8**. However, 7' is heteroscedastic,

l.e., the variances are not identical. Note: for most distributions the variances is
related to the mean.

Derive the variances of yﬁ"), and use the inverse of the variance as weights in a

weighted least square (WLS):

W = {VarGiO) = [1g @ P v

Given %, we can minimize the following:

S(B) = Z Wi(k) {yl(k) _ xiT ,8}2

IRLS algorithm:

1. Start with initial estimates, generally 4 =y,

2. Form 7 and W, both depend on 2"

3. Estimate g%+ by regressing 7" on x; with weights W "

4. Form gV = g71(x"g**D) and return to step 2.

Iteratively reweighted least squares (continued) — 31/33 —

Model Poisson Binomial Gamma
p=g"'n e el(l+eh) 1/

g'(u) Vp U —w] =1/

V(u) It p(1 — p) s

e McCullagh and Nelder (1983) showed that IRLS is equivalent to Fisher scoring.
e Using the canonical link, IRLS is also equivalent to Newton-Raphson.

e IRLS is attractive because no special optimization algorithm is required, just a
subroutine that computes weighted least square estimates.

A quick review — 32/33 —

e Optimization method is important in statistics, (i.e., to find MLE), or in general
machine learning (minimize some loss function).

e Maximizing/minimizing an objective function is achieved by solving the equation
that the first derivative is 0 (need to check second derivative).

e Steepest ascent method:

— Only need gradient.
— Slow convergence.

— In large dataset with ill-behaved objective function, stochastic version (SGD)
usually works better.

e Newton-Raphson (NR) method:

— Quadratic convergence rate.
— Could stuck in local maximum.

— In higher dimension, the problems are to find directions and step sizes in
each iteration.

e Fisher scoring: use expected information matrix.

— NR use observed information matrix.
— The expected information is more stable and simpler.
— Fisher scoring and Newton-Raphson are equivalent under canonical link.

e Gauss-Newton algorithm for non-linear regression: Hessian matrix is not
needed.

