Lecture 1: Random number generation, simulation, permutation, and bootstrap

August 25, 2022

- Statistical simulation (Monte Carlo) is an important part of statistical method research.
- The statistical theories/methods are all based on assumptions. So most theorems state something like "if the data follow these models/assumptions, then".
- The theories can hardly be verified in real world data because (1) the real data never satisfy the assumption; and (2) the underlying truth is unknown (no "gold standard").
- In simulation, data are "created" in a well controlled environment (model assumptions) and all truth are known. So the claim in the theorem can be verified.

- Random number generator is the basis of statistical simulation. It serves to generate random numbers from predefined statistical distributions.
- Traditional methods (flip a coin or dice) work, but don't scale up.
- Computational methods are available to generate "pseudorandom" numbers.

The random number generation often starts from generating uniform(0,1). The most common method: "Linear congruential generator":

 $X_{n+1} = (aX_n + c) \bmod m$

Here, *a*, *c*, and *m* are predefined numbers:

- X₀: random number "seed".
- *a*: multiplier, 1103515245 in glibc.
- *c*: increment, 12345 in glibc.
- *m*: modulus, for example, 2^{32} or 2^{64} .

 $U_n = X_n/m$ is distributed as Uniform(0,1).

Linear congruential generator

```
a = 1103515245; c = 12345; m = 2^32
n = 10000
x = numeric(n)
x[1] = 1 ## this is the random number seed
for( i in 2:n) {
    x[i] = (a*x[i-1] + c) %% m
}
x = x/m
hist(x, 100)
```


- 3/30

A few remarks about Linear congruential generator:

- The numbers generated will be exactly the same using the same seed.
- Want cycle of generator (number of steps before it begins repeating) to be large.

- 4/30 –

• Don't generate more than m/1000 numbers.

RNG in R:

- set.seed is the function to specify random seed.
- Read the help for .Random.seed for more description about random number generation in R.
- runif is used to generate uniform(0,1) r.v.
- My recommendation: always set and save random number seed during simulation, so that the simulation results can be reproduced.

When the distribution has a cumulative distribution function (cdf) F, the r.v. can be obtained by inverting the cdf ("inversion sampling"). This is based on the theory that the cdf is distributed as Uniform (0,1):

Algorithm: Assume *F* is the cdf of distribution \mathcal{D} . Given $u \sim unif(0, 1)$, find a unique real number *x* such that F(x) = u. Then $x \sim \mathcal{D}$.

Example: exponential distribution. When $x \sim \exp(\lambda)$, the cdf is: $F(x) = 1 - exp(-\lambda x)$. The inversion of cdf is: $F^{-1}(u) = -log(1 - u)/\lambda$. Then to generate exponential r.v., do:

- Generate uniform(0,1), r.v., denote by *u*.
- Calculate $x = -log(1 u)/\lambda$.

When the inverted cdf is unavailable, one has to rely on other methods such as **acceptance-rejection**. This will be covered later in MCMC classes.

— 5/30 —

```
lambda=5
u = runif(1000)
x = -log(1-u) / lambda
## generate from R's function
x2 = rexp(1000, lambda)
## compare
qqplot(x, x2, xlab="from inverting cdf", ylab="from rexp")
abline(0,1)
```

6/30

For discrete r.v. (such as from Poisson distribution), the CDF is usually called **CMF** (cumulative distribution function), and it follows discrete uniform distribution. The CMF can be represented as a table.

— 7/30 –

One can use the same procedure to invert CMF and generate discrete random number. To invert the CMF, one needs to do a search in the CMF table to determine which interval covers each element of uniform rv u.

Example: to generate Poisson random number with rate 5. A couple notes:

- I use the **ppois** function in R to compute the CMF. From scratch, you should compute that from the Poisson CMF function.
- Pay attention to the use of "cut" function. This is a much cleaner and faster way to do search than using a loop.

```
lambda = 5
## generate unif rv
u = runif(1000)
## compute and invert the CMF
cmf = ppois(1:100, lambda=lambda)
ix = min(which(cmf==1))
cmf = c(0, cmf[1:ix])
cmfTbl = table(cut(u, breaks=cmf, include.lowest=TRUE))
Y = rep(1:length(cmfTbl), as.numeric(cmfTbl))
## compare
qqplot(Y, rpois(1000, lambda=lambda), xlab="from inverting cmf", ylab="from rpois")
abline(0,1)
```


Difficulty: Generating random vectors is more difficult, because we need to consider the correlation structure.

Solution: Generate **independent** r.v.'s, then apply some kind of transformation.

- 9/30 -

Example: simulate from multivariate normal distribution $MVN(\mu, \Sigma)$ Let **Z** be a *p*-vector of independent N(0, 1) r.v.'s, Given $p \times p$ matrix **D**,

 $var(\mathbf{D}^T \mathbf{Z}) = \mathbf{D}^T var(\mathbf{Z})\mathbf{D} = \mathbf{D}^T \mathbf{D}$

The simulation steps are:

- 1. Perform **Cholesky decomposition** on Σ to find **D**: $\Sigma = \mathbf{D}^T \mathbf{D}$.
- 2. Simulate **Z** = $(z_1, ..., z_p)' \sim \text{iid } N(0, 1)$
- 3. Apply transformation $\mathbf{X} = \mathbf{D}^T \mathbf{Z} + \boldsymbol{\mu}$.

R function mvrnorm available in MASS pacakge.

Generating multivariate random vector from other distributions are usually harder. Recommended book: *Multivariate Statistical Simulation: A Guide to Selecting and Generating Continuous Multivariate Distributions*.

Example: generate from multivariate normal

```
## specify mean and variance/covariance matrix
mu = c(0,1)
Sigma = matrix(c(1.7, 0.5, 0.5, 0.8), nrow=2)
```

```
## Cholesky decomposition
D = chol(Sigma)
```

```
## generate 500 Z's.
Z = matrix(rnorm(1000), nrow=2)
## transform
X = t(D) %*% Z + mu
```

```
## check the means X
> rowMeans(X)
[1] -0.08976896 0.95802769
```

```
## check the variance/covariance matrix of X
> cov(t(X))
        [,1] [,2]
[1,] 1.7392114 0.5609027
[2,] 0.5609027 0.7380548
```

When simulating data from a model, need to parse out the constants, distributions, and model.

For example, to simulate data from the following linear model:

```
Y = 1 + 2X + \epsilon, X \sim N(0, 2), \epsilon \sim N(0, 1)
```

Here, 1 and 2 are "constants" for the linear model coefficients; N(0,2) and N(0,1) are distributions; "+" is the model.

```
n = 1000
X = rnorm(n, sd=2); eps = rnorm(n, sd=1)
Y = 1 + 2*X + eps
plot(X, Y)
```

In many cases, the data need to be simulated in a hierarchical way step by step. Just follow the model.

Example: a mixture of two non-linear models

 $Z \sim Bernoulli(0.2)$ $X \sim N(0, 9)$ $Y|Z = 0 \sim N(f_0(X), 1)$ $Y|Z = 1 \sim N(f_1(X), 1)$ $f_0(x) = exp(-0.2x)$ $f_1(x) = -5 + 2 * sin(0.5x)$

What are the constants, distribution, and model?

n = 1000 Z = rbinom(n,1,0.2) X = rnorm(n, mean=1, sd=3) Y = rep(NA, n) ix1 = Z == 0 Y[ix1] = rnorm(sum(ix1), mean=2*exp(-0.2*X[ix1]), sd=1) Y[!ix1] = rnorm(sum(!ix1), mean=-5 + 2*sin(0.5*X[!ix1]), sd=1)

plot(X, Y, cex=0.5, col="#00000050")

• In statistical inference, it is important to know the distribution of some statistics under null hypothesis (H_0), so that quantities like p-values can be derived.

— 14/30 -

- The null distribution is available theoretically in some cases. For example, assume $X_i \sim N(\mu, \sigma^2)$, i = 1, ..., n. Under $H_0 : \mu = 0$, we have $\overline{X} \sim N(0, \sigma^2/n)$. Then H_0 can be tested by comparing \overline{X} with $N(0, \sigma^2/n)$.
- When null distribution cannot be obtained, it is useful to use **permutation test** to "create" a null distribution from data.

The basic procedure of permutation test for H_0

- Permute data under H_0 for a number of times. Each time recompute the test statistics. The test statistics obtained from the permuted data form the null distribution.
- Compare the observed test statistics with the null distribution to obtain statistical significance.

Assume there are two sets of independent normal r.v.'s with the same known variance and different means: $X_i \sim N(\mu_1, \sigma^2)$, $Y_i \sim N(\mu_2, \sigma^2)$. We wish to test $H_0: \mu_1 = \mu_2$.

Define test statistics: $t = \overline{X} - \overline{Y}$. We know under null, we have $t \sim N(0, 2\sigma^2/n)$ (assuming same sample size *n* in both groups). Using permutation test, we do:

- 1. Pool X and Y together, denote the pooled vector by Z.
- 2. Randomly shuffle Z. For each shuffling, take the first *n* items as X (denote as X^*) and the next *n* items as Y (denote as Y^*).
- 3. Compute $t^* = \overline{X^*} \overline{Y^*}$.
- 4. Repeat steps 2 and 3 for a number of times. The result *t**'s form the null distribution of *t*.
- 5. To compute p-values, calculate $Pr(|t^*| > |t|)$.

NOTE: the random shuffling is based on H_0 , that X and Y are iid distributed.

> x=rnorm(100, 0, 1)

```
> y=rnorm(100, 0.5, 1)
> t.test(x,y)
Welch Two Sample t-test
data: x and y
t = -1.9751, df = 197.962, p-value = 0.04965
> nsims = 50000
> t.obs = mean(x) - mean(y)
> t.perm = rep(0, nsims)
> for(i in 1:nsims) {
+ tmp = sample(c(x,y))
+ t.perm[i] = mean(tmp[1:100]) - mean(tmp[101:200])
+ }
> mean(abs(t.obs) < abs(t.perm))</pre>
[1] 0.04814
```

— 16/30 -

- Under linear regression setting (without intercept) $y_i = \beta x_i + \epsilon_i$. We want to test the coefficient: $H_0: \beta = 0$.
- Observed data are (x_i, y_i) pairs.
- Use ordinary least square estimator for β , denote as $\hat{\beta}(\mathbf{x}, \mathbf{y})$.

The permutation test steps are:

- 1. Keep y_i unchanged, permute (change the orders of) x_i to obtain a vector, denoted as x_i^* .
- 2. Obtain estimate under the permuted data: $\hat{\beta}^*(\mathbf{x}^*, \mathbf{y})$
- 3. Repeat steps 1 and 2. $\hat{\beta}^*$ form the null distribution for $\hat{\beta}$.
- 4. P-value = $Pr(|\hat{\beta}^*| > |\hat{\beta}|)$.

NOTE: the random shuffling of x_i is based on the H_0 , that is there is no association between x and y.

```
> x = rnorm(100); y = 0.2 * x + rnorm(100)
```

```
> summary(lm(y<sup>x</sup>-1))
```

Coefficients: Estimate Std. Error t value Pr(>|t|)0.1502 0.1050 1.431 0.156Х > nsims=5000> beta.obs = $coef(lm(y^x-1))$ > beta.perm = rep(0, nsims) > for(i in 1:nsims) { xstar = sample(x) +beta.perm[i] = coef(lm(y^xstar-1)) + + } > mean(abs(beta.obs) < abs(beta.perm))</pre>

[1] 0.157

- "Bootstrap" is a simple procedure to estimate the sampling distribution (such as mean, variance, confidence interval, etc.) of some statistics.
- Developed by Brad Efron (see Efron (1979) AOS), extending the "jackknife" algorithm.
- The basic idea is to resample the observed data **with replacement** and create a distribution of the statistics.
- Show good performances compared with jackknife.
- Computationally intensive, but algorithmically easy.

- Observe data $\mathbf{x} = \{x_1, \dots, x_n\}$.
- Parameter of interest is θ , for example, $\theta = E[X]$.
- Let $\hat{\theta}(\mathbf{x})$ be an estimator for θ (such as the MLE). Note $\hat{\theta}$ is a random variable.
- We want to obtain some quantity from $\hat{\theta}$, denoted as $\xi(\hat{\theta})$, for example, the distributional properties of $\hat{\theta}$: its mean, variance, quantiles, etc.

Ideally, we would need to observe a number of independent datasets, compute $\hat{\theta}$ from each of them, and then compute the $\xi(\hat{\theta})$.

Assume $x_i \sim \text{iid } f(\theta)$, where f is known.

The **parametric bootstrap** procedure involves repeating following steps for N times. At the k^{th} time, do:

- 1. Simulate \mathbf{x}_i^* iid from $f(\theta)$.
- 2. Compute $\hat{\theta}_i(\mathbf{x}_i^*)$.

Then ξ can be calculated from $\hat{\theta}_i(\mathbf{x}_i^*)$.

Problem setup is the same as in parametric bootstrap, except that the distribution f is unknown. In this case, since x cannot be generated from a known parametric distribution, they will be drawn from the observed data.

— 22/30 —

The **non-parametric bootstrap** procedure involves repeating following steps for N times. Assume the observed data has n data points. At the k^{th} time, do:

- 1. Draw \mathbf{x}_{i}^{*} from the observed data \mathbf{x} . Note that \mathbf{x}_{i}^{*} must have the same length as \mathbf{x} , and the drawing is sampling *with replacement*.
- 2. Compute $\hat{\theta}_i(\mathbf{x}_i^*)$.

Then the ξ can be calculated from $\hat{\theta}_i(\mathbf{x}_i^*)$.

So the only difference between parametric and non-parametric bootstrap is the way to generate data:

- In parametric bootstrap: simulate from parametric distribution.
- In non-parametric bootstrap: sample with replacement from observed data.

Problem setup:

• Under linear regression setting (again we omit the intercept to simplify the problem): $y_i = \beta x_i + \epsilon_i$.

— 23/30 -

• We wish to study the property of OLS estimator, denoted by $\hat{\beta}(\mathbf{x}, \mathbf{y})$.

Parametric bootstrap is based on assumption that $\epsilon_i \sim N(0, \sigma^2)$. Steps are:

- 1. Obtain $\hat{\beta}(\mathbf{x}, \mathbf{y})$ from observed data.
- 2. Sample $\epsilon_i^* \sim N(0, \sigma^2)$.
- 3. Create new **y**: $y_i^* = \hat{\beta} x_i + \epsilon_i^*$.
- 4. Estimate the coefficient based on new data: $\hat{\beta}^*(\mathbf{x}, \mathbf{y}^*)$

Repeat steps 2–4 for many times, then the properties of OLS estimator (such as mean/variance) can be estimated from $\hat{\beta}^*(\mathbf{x}^*, \mathbf{y})$.

Non-parametric bootstrap doesn't require the distributional assumption on ϵ_i . The residuals are resampled from the observed values.

- 1. Obtain $\hat{\beta}(\mathbf{x}, \mathbf{y})$ from observed data.
- 2. Compute the observed residuals: $\hat{\epsilon}_i = y_i \hat{\beta} x_i$.
- 3. Sample ϵ_i^* by drawing from $\{\hat{\epsilon}_i\}$ with replacement.
- 4. Create new **y**: $y_i^* = \hat{\beta} x_i + \epsilon_i^*$.
- 5. Estimate the coefficient based on new data: $\hat{\beta}^*(\mathbf{x}, \mathbf{y}^*)$

We will estimate the 95% confidence interval for regression coefficient.

Generate data and compute theoretical value:

— 26/30 -

Parametric bootstrap - sample residual from normal distribution:

Non-parametric bootstrap - sample residual from observed values:

```
> eps.obs = y - beta.obs*x
> for(i in 1:nsims) {
+ eps.star = sample(eps.obs, replace=TRUE)
+ y.star = beta.obs *x + eps.star
+ beta.boot[i] = coef(lm(y.star~x-1))
+ }
> quantile(beta.boot, c(0.025, 0.975))
2.5% 97.5%
0.4011628 0.7690787
```

In big data set, bootstrap poses significant computational challenge, since the bootstrapped data must have the same length as the original data.

-28/30

The "**b** out of **n** bootstrap" algorithm:

Bickel et al. (1997) *Resampling fewer than n observations: Gains, losses, and remedies for losses*, **Statistica Sinica**:

- 1. Repeatedly subsample *b* data points with replacement from the original data (of size *n*), and then compute $\hat{\theta}_b$ from the subsample.
- 2. Compute ξ from $\hat{\theta}_b$'s.
- 3. Analytically correct the results using prior knowledge of the convergence rate of $\hat{\theta}_b$.

"**Bag of Little Bootstrap**" (BLB) approach, from Kleiner et al. (2014) A scalable bootstrap for massive data. **JRSSB**:

1. Subsample s subsets from the original data (of size n), each with size b (<< n).

- 2. For each subsample, do:
 - (a) Repeatedly sample *n* points with replacement from the subsample (up-sampling), and compute $\hat{\theta}_n^*$ on each resample.
 - (b) Compute an estimate of ξ based on $\hat{\theta}_n^*$'s, denote as ξ_s .
- 3. Average ξ_s 's as the final estimate of ξ .

Advantages

- More automatic than the "b out of n bootstrap" approach.
- Since b << n, the size-n subsamples are highly repetitive. Each subsample can be represented as a vector of counts from an n-trial uniform multinomial distribution over b objects. This leads to less memory usage and faster computing.
- Highly parallelizable.

- Random number generation:
 - Linear congruential generator for generating Uniform(0,1) r.v.;
 - Inverting cdf to generate r.v. from other distributions;
 - simulate random vectors from MVN.
- Simulating data: follow the model.
- Permutation test. The key is to shuffle data under null hypothesis, then recompute test statistics and form the null distribution.
- Bootstrap algorithm. Include parametric (draw from parametric distribution) or non-parametric (draw from observed data with replacement).
- Smart approaches for big data bootstrap.
- After class: review slides, play with the R codes.