
Lecture 1: Random number generation,
simulation, permutation, and bootstrap

August 25, 2022



Statistical simulation — 1/30 —

• Statistical simulation (Monte Carlo) is an important part of statistical method
research.

• The statistical theories/methods are all based on assumptions. So most
theorems state something like “if the data follow these models/assumptions,
then . . .”.

• The theories can hardly be verified in real world data because (1) the real data
never satisfy the assumption; and (2) the underlying truth is unknown (no “gold
standard”).

• In simulation, data are “created” in a well controlled environment (model
assumptions) and all truth are known. So the claim in the theorem can be
verified.



Random number generator (RNG) — 2/30 —

• Random number generator is the basis of statistical simulation. It serves to
generate random numbers from predefined statistical distributions.

• Traditional methods (flip a coin or dice) work, but don’t scale up.

• Computational methods are available to generate “pseudorandom” numbers.

The random number generation often starts from generating uniform(0,1). The
most common method: “Linear congruential generator”:

Xn+1 = (aXn + c) mod m

Here, a, c, and m are predefined numbers:

• X0: random number “seed”.

• a: multiplier, 1103515245 in glibc.

• c: increment, 12345 in glibc.

• m: modulus, for example, 232 or 264.

Un = Xn/m is distributed as Uniform(0,1).



Linear congruential generator — 3/30 —

a = 1103515245; c = 12345; m = 2ˆ32

n = 10000

x = numeric(n)

x[1] = 1 ## this is the random number seed

for( i in 2:n) {

x[i] = (a*x[i-1] + c) %% m

}

x = x/m

hist(x, 100)
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Random number generator (RNG) — 4/30 —

A few remarks about Linear congruential generator:

• The numbers generated will be exactly the same using the same seed.

• Want cycle of generator (number of steps before it begins repeating) to be large.

• Don’t generate more than m/1000 numbers.

RNG in R:

• set.seed is the function to specify random seed.

• Read the help for .Random.seed for more description about random number
generation in R.

• runif is used to generate uniform(0,1) r.v.

• My recommendation: always set and save random number seed during
simulation, so that the simulation results can be reproduced.



Simulate R.V. from other distributions — 5/30 —

When the distribution has a cumulative distribution function (cdf) F, the r.v. can
be obtained by inverting the cdf (“inversion sampling”). This is based on the theory
that the cdf is distributed as Uniform (0,1):

Algorithm: Assume F is the cdf of distributionD. Given u ∼ unif(0, 1), find a unique
real number x such that F(x) = u. Then x ∼ D.

Example: exponential distribution. When x ∼ exp(λ), the cdf is:
F(x) = 1 − exp(−λx). The inversion of cdf is: F−1(u) = −log(1 − u)/λ. Then to
generate exponential r.v., do:

• Generate uniform(0,1), r.v., denote by u.

• Calculate x = −log(1 − u)/λ.

When the inverted cdf is unavailable, one has to rely on other methods such as
acceptance-rejection. This will be covered later in MCMC classes.



Example: simulate exponential r.v. — 6/30 —

lambda=5

u = runif(1000)

x = -log(1-u) / lambda

## generate from R’s function

x2 = rexp(1000, lambda)

## compare

qqplot(x, x2, xlab="from inverting cdf", ylab="from rexp")

abline(0,1)
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Simulate discrete R.V. — 7/30 —

For discrete r.v. (such as from Poisson distribution), the CDF is usually called CMF
(cumulative distribution function), and it follows discrete uniform distribution.
The CMF can be represented as a table.

One can use the same procedure to invert CMF and generate discrete random
number. To invert the CMF, one needs to do a search in the CMF table to determine
which interval covers each element of uniform rv u.

Example: to generate Poisson random number with rate 5. A couple notes:

• I use the ppois function in R to compute the CMF. From scratch, you should
compute that from the Poisson CMF function.

• Pay attention to the use of “cut” function. This is a much cleaner and faster way
to do search than using a loop.



lambda = 5

## generate unif rv

u = runif(1000)

## compute and invert the CMF

cmf = ppois(1:100, lambda=lambda)

ix = min(which(cmf==1))

cmf = c(0, cmf[1:ix])

cmfTbl = table(cut(u, breaks=cmf, include.lowest=TRUE))

Y = rep(1:length(cmfTbl), as.numeric(cmfTbl))

## compare

qqplot(Y, rpois(1000, lambda=lambda), xlab="from inverting cmf", ylab="from rpois")

abline(0,1)
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Simulate random vectors — 9/30 —

Difficulty: Generating random vectors is more difficult, because we need to
consider the correlation structure.
Solution: Generate independent r.v.’s, then apply some kind of transformation.

Example: simulate from multivariate normal distribution MVN(µ,Σ)
Let Z be a p-vector of independent N(0, 1) r.v.’s, Given p × p matrix D,

var(DT Z) = DT var(Z)D = DT D

The simulation steps are:

1. Perform Cholesky decomposition on Σ to find D: Σ = DT D.

2. Simulate Z = (z1, . . . , zp)′ ∼ iid N(0, 1)

3. Apply transformation X = DT Z + µ.

R function mvrnorm available in MASS pacakge.

Generating multivariate random vector from other distributions are usually harder.
Recommended book: Multivariate Statistical Simulation: A Guide to Selecting
and Generating Continuous Multivariate Distributions.



Example: generate from multivariate normal — 10/30 —

## specify mean and variance/covariance matrix

mu = c(0,1)

Sigma = matrix(c(1.7, 0.5, 0.5, 0.8), nrow=2)

## Cholesky decomposition

D = chol(Sigma)

## generate 500 Z’s.

Z = matrix(rnorm(1000), nrow=2)

## transform

X = t(D) %*% Z + mu

## check the means X

> rowMeans(X)

[1] -0.08976896 0.95802769

## check the variance/covariance matrix of X

> cov(t(X))

[,1] [,2]

[1,] 1.7392114 0.5609027

[2,] 0.5609027 0.7380548



Simulate data from a model — 11/30 —

When simulating data from a model, need to parse out the constants, distributions,
and model.

For example, to simulate data from the following linear model:

Y = 1 + 2X + ε, X ∼ N(0, 2), ε ∼ N(0, 1)

Here, 1 and 2 are “constants” for the linear model coefficients; N(0,2) and N(0,1)
are distributions; “+” is the model.

n = 1000

X = rnorm(n, sd=2); eps = rnorm(n, sd=1)

Y = 1 + 2*X + eps

plot(X, Y)



Simulation: a more complicated example — 12/30 —

In many cases, the data need to be simulated in a hierarchical way step by step.
Just follow the model.

Example: a mixture of two non-linear models

Z ∼ Bernoulli(0.2)

X ∼ N(0, 9)

Y |Z = 0 ∼ N( f0(X), 1)

Y |Z = 1 ∼ N( f1(X), 1)

f0(x) = exp(−0.2x)

f1(x) = −5 + 2 ∗ sin(0.5x)

What are the constants, distribution, and model?



— 13/30 —

n = 1000

Z = rbinom(n,1,0.2)

X = rnorm(n, mean=1, sd=3)

Y = rep(NA, n)

ix1 = Z == 0

Y[ix1] = rnorm(sum(ix1), mean=2*exp(-0.2*X[ix1]), sd=1)

Y[!ix1] = rnorm(sum(!ix1), mean=-5 + 2*sin(0.5*X[!ix1]), sd=1)

plot(X, Y, cex=0.5, col="#00000050")
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Permutation test — 14/30 —

• In statistical inference, it is important to know the distribution of some statistics
under null hypothesis (H0), so that quantities like p-values can be derived.

• The null distribution is available theoretically in some cases. For example,
assume Xi ∼ N(µ, σ2), i = 1, . . . , n. Under H0 : µ = 0, we have X ∼ N(0, σ2/n).
Then H0 can be tested by comparing X with N(0, σ2/n).

• When null distribution cannot be obtained, it is useful to use permutation test to
“create” a null distribution from data.

The basic procedure of permutation test for H0

• Permute data under H0 for a number of times. Each time recompute the test
statistics. The test statistics obtained from the permuted data form the null
distribution.

• Compare the observed test statistics with the null distribution to obtain statistical
significance.



Permutation test example — 15/30 —

Assume there are two sets of independent normal r.v.’s with the same known
variance and different means: Xi ∼ N(µ1, σ

2), Yi ∼ N(µ2, σ
2). We wish to test

H0 : µ1 = µ2.

Define test statistics: t = X − Y. We know under null, we have t ∼ N(0, 2σ2/n)
(assuming same sample size n in both groups). Using permutation test, we do:

1. Pool X and Y together, denote the pooled vector by Z.

2. Randomly shuffle Z. For each shuffling, take the first n items as X (denote as
X∗) and the next n items as Y (denote as Y∗).

3. Compute t∗ = X∗ − Y∗.

4. Repeat steps 2 and 3 for a number of times. The result t∗’s form the null
distribution of t.

5. To compute p-values, calculate Pr(|t∗| > |t|).

NOTE: the random shuffling is based on H0, that X and Y are iid distributed.



Permutation test example - R code — 16/30 —

> x=rnorm(100, 0, 1)

> y=rnorm(100, 0.5, 1)

> t.test(x,y)

Welch Two Sample t-test

data: x and y

t = -1.9751, df = 197.962, p-value = 0.04965

> nsims=50000

> t.obs = mean(x) - mean(y)

> t.perm = rep(0, nsims)

> for(i in 1:nsims) {

+ tmp = sample(c(x,y))

+ t.perm[i] = mean(tmp[1:100]) - mean(tmp[101:200])

+ }

> mean(abs(t.obs) < abs(t.perm))

[1] 0.04814



Permutation test - another example — 17/30 —

• Under linear regression setting (without intercept) yi = βxi + εi. We want to test
the coefficient: H0 : β = 0.

• Observed data are (xi, yi) pairs.

• Use ordinary least square estimator for β, denote as β̂(x, y).

The permutation test steps are:

1. Keep yi unchanged, permute (change the orders of) xi to obtain a vector,
denoted as x∗i .

2. Obtain estimate under the permuted data: β̂∗(x∗, y)

3. Repeat steps 1 and 2. β̂∗ form the null distribution for β̂.

4. P-value = Pr(|β̂∗| > |β̂|).

NOTE: the random shuffling of xi is based on the H0, that is there is no association
between x and y.



Permutation test another example - R code — 18/30 —

> x = rnorm(100); y = 0.2 * x + rnorm(100)

> summary(lm(y˜x-1))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

x 0.1502 0.1050 1.431 0.156

> nsims=5000

> beta.obs = coef(lm(y˜x-1))

> beta.perm = rep(0, nsims)

> for(i in 1:nsims) {

+ xstar = sample(x)

+ beta.perm[i] = coef(lm(y˜xstar-1))

+ }

> mean(abs(beta.obs) < abs(beta.perm))

[1] 0.157



The bootstrap — 19/30 —

• “Bootstrap” is a simple procedure to estimate the sampling distribution (such as
mean, variance, confidence interval, etc.) of some statistics.

• Developed by Brad Efron (see Efron (1979) AOS), extending the “jackknife”
algorithm.

• The basic idea is to resample the observed data with replacement and create
a distribution of the statistics.

• Show good performances compared with jackknife.

• Computationally intensive, but algorithmically easy.



Problem setup — 20/30 —

• Observe data x = {x1, . . . , xn}.

• Parameter of interest is θ, for example, θ = E[X].

• Let θ̂(x) be an estimator for θ (such as the MLE). Note θ̂ is a random variable.

• We want to obtain some quantity from θ̂, denoted as ξ(θ̂), for example, the
distributional properties of θ̂: its mean, variance, quantiles, etc.

Ideally, we would need to observe a number of independent datasets, compute θ̂
from each of them, and then compute the ξ(θ̂).

The Unachievable Ideal

Ideally, we would
1 Observe many independent datasets of size n
2 Compute ✓̂n on each
3 Compute ⇠ based on these multiple realizations of ✓̂n.

X
(m)
1 , . . . , X(m)

n

X
(1)
1 , . . . , X(1)

n

...

X
(2)
1 , . . . , X(2)

n

✓̂(1)
n

✓̂(2)
n

✓̂(m)
n

...

⇠(✓̂(1)
n , . . . , ✓̂(m)

n )

But, we only observe one dataset of size n



Parametric bootstrap — 21/30 —

Assume xi ∼ iid f (θ), where f is known.

The parametric bootstrap procedure involves repeating following steps for N
times. At the kth time, do:

1. Simulate x∗i iid from f (θ).

2. Compute θ̂i(x∗i ).

Then ξ can be calculated from θ̂i(x∗i ).



Non-parametric bootstrap — 22/30 —

Problem setup is the same as in parametric bootstrap, except that the distribution f
is unknown. In this case, since x cannot be generated from a known parametric
distribution, they will be drawn from the observed data.

The non-parametric bootstrap procedure involves repeating following steps for N
times. Assume the observed data has n data points. At the kth time, do:

1. Draw x∗i from the observed data x. Note that x∗i must have the same length as x,
and the drawing is sampling with replacement.

2. Compute θ̂i(x∗i ).

Then the ξ can be calculated from θ̂i(x∗i ).

So the only difference between parametric and non-parametric bootstrap is the way
to generate data:

• In parametric bootstrap: simulate from parametric distribution.

• In non-parametric bootstrap: sample with replacement from observed data.



Bootstrap example: linear regression — 23/30 —

Problem setup:

• Under linear regression setting (again we omit the intercept to simplify the
problem): yi = βxi + εi.

• We wish to study the property of OLS estimator, denoted by β̂(x, y).

Parametric bootstrap is based on assumption that εi ∼ N(0, σ2). Steps are:

1. Obtain β̂(x, y) from observed data.

2. Sample ε∗i ∼ N(0, σ2).

3. Create new y: y∗i = β̂xi + ε∗i .

4. Estimate the coefficient based on new data: β̂∗(x, y∗)

Repeat steps 2–4 for many times, then the properties of OLS estimator (such as
mean/variance) can be estimated from β̂∗(x∗, y).



Bootstrap example: linear regression (cont.) — 24/30 —

Non-parametric bootstrap doesn’t require the distributional assumption on εi. The
residuals are resampled from the observed values.

1. Obtain β̂(x, y) from observed data.

2. Compute the observed residuals: ε̂i = yi − β̂xi.

3. Sample ε∗i by drawing from {ε̂i} with replacement.

4. Create new y: y∗i = β̂xi + ε∗i .

5. Estimate the coefficient based on new data: β̂∗(x, y∗)



Bootstrap example: linear regression – R codes — 25/30 —

We will estimate the 95% confidence interval for regression coefficient.

Generate data and compute theoretical value:

> x = rnorm(100)

> y = 0.5 * x + rnorm(100)

> fit = lm(y˜x-1)

> confint(fit)

2.5 % 97.5 %

x 0.4002036 0.7638744



Bootstrap example: linear regression – R codes — 26/30 —

Parametric bootstrap - sample residual from normal distribution:

> nsims = 1000

> beta.obs = coef(fit)

> beta.boot = rep(0, nsims)

> for(i in 1:nsims) {

+ eps.star = rnorm(100)

+ y.star = beta.obs * x + eps.star

+ beta.boot[i] = coef(lm(y.star˜x-1))

+ }

> quantile(beta.boot, c(0.025, 0.975))

2.5% 97.5%

0.4098746 0.7595921



Bootstrap example: linear regression – R codes — 27/30 —

Non-parametric bootstrap - sample residual from observed values:

> eps.obs = y - beta.obs*x

> for(i in 1:nsims) {

+ eps.star = sample(eps.obs, replace=TRUE)

+ y.star = beta.obs *x + eps.star

+ beta.boot[i] = coef(lm(y.star˜x-1))

+ }

> quantile(beta.boot, c(0.025, 0.975))

2.5% 97.5%

0.4011628 0.7690787



Bootstrap in big data — 28/30 —

In big data set, bootstrap poses significant computational challenge, since the
bootstrapped data must have the same length as the original data.

The “b out of n bootstrap” algorithm:

Bickel et al. (1997) Resampling fewer than n observations: Gains, losses, and
remedies for losses, Statistica Sinica:

1. Repeatedly subsample b data points with replacement from the original data
(of size n), and then compute θ̂b from the subsample.

2. Compute ξ from θ̂b’s.

3. Analytically correct the results using prior knowledge of the convergence rate of
θ̂b.



Bootstrap in big data (cont.) — 29/30 —

“Bag of Little Bootstrap” (BLB) approach, from Kleiner et al. (2014) A scalable
bootstrap for massive data. JRSSB:

1. Subsample s subsets from the original data (of size n), each with size b (<< n).

2. For each subsample, do:

(a) Repeatedly sample n points with replacement from the subsample
(up-sampling), and compute θ̂∗n on each resample.

(b) Compute an estimate of ξ based on θ̂∗n’s, denote as ξs.

3. Average ξs’s as the final estimate of ξ.

Advantages

• More automatic than the “b out of n bootstrap” approach.

• Since b << n, the size-n subsamples are highly repetitive. Each subsample can
be represented as a vector of counts from an n-trial uniform multinomial
distribution over b objects. This leads to less memory usage and faster
computing.

• Highly parallelizable.



A quick review — 30/30 —

• Random number generation:

– Linear congruential generator for generating Uniform(0,1) r.v.;

– Inverting cdf to generate r.v. from other distributions;

– simulate random vectors from MVN.

• Simulating data: follow the model.

• Permutation test. The key is to shuffle data under null hypothesis, then
recompute test statistics and form the null distribution.

• Bootstrap algorithm. Include parametric (draw from parametric distribution) or
non-parametric (draw from observed data with replacement).

• Smart approaches for big data bootstrap.

• After class: review slides, play with the R codes.


