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Overview of the MM algorithm — 1/22 —

The MM algorithm is not an algorithm, but a strategy for constructing optimization
algorithms.

An MM algorithm operates by creating a surrogate function that minorizes or
majorizes the objective function. When the surrogate function is optimized, the
objective function is driven uphill or downhill as needed.

In minimization MM stands for Majorize–Minimize, and in maximization MM stands
for Minorize–Maximize.

The EM algorithm can be thought as a special case of MM.



Definition of an MM algorithm for Minimization — 2/22 —

• We first focus on the minimization problem, in which MM = Majorize–Minimize.

• A function g(θ|θ(k)) is said to majorize the function f (θ) at θ(k) provided

f (θ) ≤ g(θ|θ(k)) for all θ

f (θ(k)) = g(θ(k)|θ(k))

• We choose a majorizing function g(θ|θ(k)) and minimize it, instead of minimizing
f (θ). Denote θ(k+1) = arg minθ g(θ|θ(k)). Iterate until θ(k) converges.

• Descent property: f (θ(k+1)) ≤ g(θ(k+1)|θ(k)) ≤ g(θ(k)|θ(k)) = f (θ(k)).



Definition of an MM algorithm for Maxmization — 3/22 —

• In a maximization problem, MM = Minorize–Maximize.

• To maximize f (θ), we minorize it by a surrogate function g(θ|θ(k)) and maximize
g(θ|θ(k)) to produce the next iterate θ(k+1).

• A function g(θ|θ(k)) is said to minorize the function f (θ) at θ(k) provided that
−g(θ|θ(k)) majorizes − f (θ).



Separation of high-dimensional parameter spaces — 4/22 —

One of the key criteria in judging majorizing or minorizing functions is their ease of
optimization.

Successful MM algorithms in high-dimensional parameter spaces often rely on
surrogate functions in which the individual parameter components are separated,
i.e., for θ = (θ1, . . . , θp),

g(θ | θ(k)) =
p∑

j=1

q j(θ j),

where q j(.) are univariate functions.

Because the p univariate functions may be optimized one by one, this makes the
surrogate function easier to optimize at each iteration.



Advantages of the MM algorithm — 5/22 —

• Numerical stability: warranted by the descent property

• Simplicity: substitute a simple optimization problem for a difficult optimization
problem.

– It can turn a non-differentiable problem into a smooth problem (Example 2).

– It can separate the parameters of a problem (Example 3).

– It can linearize an optimization problem (Example 3).

– It can deal gracefully with equality and inequality constraints (Example 4).

– It can generate an algorithm that avoids large matrix inversion (5).

• Iteration is the price we pay for simplifying the original problem.



EM algorithm vs. MM algorithm — 6/22 —

• (EM) The E-step creates a surrogate function by identifying a complete-data
log-likelihood function and evaluating it with respect to the observed data. The
M-step maximizes the surrogate function. Every EM algorithm is an example of
an MM algorithm.

• (EM) demands creativity in identifying the missing data (complete data) and
technical skill in calculating an often complicated conditional expectation and
then maximizing it analytically.

• (MM) requires creativity in identifying the surrogate function, using proper
inequalities.

• (MM) easier to understand and sometimes easier to apply than EM algorithms.



Inequalities to construct majorizing/minorizing function — 7/22 —

• Property of convex function: κ(θ) is called convex if for any θ1, θ2 λ ∈ [0, 1]

κ (λθ1 + (1 − λ)θ2)) ≤ λκ(θ1) + (1 − λ)κ(θ2)

• Jensen’s Inequality: For a convex function κ(x) and any random variable X,

κ [E(X)] ≤ E [κ(X)]

• Supporting hyperplanes: If κ(.) is convex and differentiable, then

κ(θ) ≥ κ(θ(k)) +
[
∇κ(θ(k))

]′
(θ − θ(k)),

and equality holds when θ = θ(k).



Inequalities (continued) — 8/22 —

• Arithmetic-Geometric Mean Inequality: For nonnegative x1, . . . , xm,

m

√√
m∏

i=1

xi ≤
1
m

m∑
i=1

xi,

and the equality holds iff x1 = x2 = . . . = xm.

Proof by Jensen’s inequality:

Because negative logarithm is convex, we have

− log

 1
m

m∑
i=1

xi

 ≤ 1
m

m∑
i=1

− log xi = −

m∑
i=1

log x1/m
i = − log

 m∏
i=1

xi

1/m

The monotonicity of − log leads to the result. �



Inequalities (continued) — 9/22 —

• Cauchy-Schwartz Inequality: For p-vectors x and y,

x′y ≤ ||x|| · ||y||,

where ||x|| =
√∑p

i=1 x2
i is the norm of the vector.

• Quadratic upper bound: Suppose a convex function κ(θ) is twice differentiable
and have bounded curvature, we can find a positive definite matrix M such that
M − ∇2κ(θ) is nonnegative definite. Then we can majorize κ(θ) by a quadratic
function with sufficient high curvature and tangent to κ(θ) at θ(k), i.e.,

κ(θ) ≤ κ(θ(k)) +
[
∇κ(θ(k))

]′
(θ − θ(k)) +

1
2

(θ − θ(k))′M(θ − θ(k))

Note: flipping the above results, we can find a quadratic lower bound for a
concave function, when M is negative definite and ∇2κ(θ) − M is nonnegative
definite.



Example 1: EM algorithms — 10/22 —

• By Jensen’s inequality and the convexity of the function − log(y), we have for
probability densities a(y) and b(y) that

− log
{

E
[
a(Y)
b(Y)

]}
≤ E

[
− log

a(Y)
b(Y)

]
.

• If Y has the density b(y), then E[a(Y)/b(Y)] = 1. The left-hand side vanishes,
and we obtain

E[log a(Y)] ≤ E[log b(Y)],

which is sometimes known as the information inequality (Kullback-Leibler
information).

• This inequality guarantees that a minorizing function is constructed in the E-step
of any EM algorithm, making every EM algorithm an MM algorithm.



Exampel 1: EM algorithms (continued) — 11/22 —

• We have the decomposition

h(k)(θ) ≡ E{log f (Yobs,Ymis|θ)|Yobs, θ
(k)} = E{log c(Ymis|Yobs, θ)|Yobs, θ

(k)}+ log g(Yobs|θ)

• By the information inequality,

E{log c(Ymis|Yobs, θ)|Yobs, θ
(k)} ≤ E{log c(Ymis|Yobs, θ

(k))|Yobs, θ
(k)},∀θ

Note: here within the expectation operation, Ymis|Yobs, θ
(k) is a random variable,

with density function c(Ymis|Yobs, θ
(k)).

• We obtain the surrogate function that minorizes the objective function

log g(Yobs|θ) ≥ h(k)(θ) − E{log c(Ymis|Yobs, θ
(k))|Yobs, θ

(k)} (1)

Note: The second term of (1) does not depend on θ.



Example 2: Finding a Sample Median — 12/22 —

• Consider the sequence of numbers y1, . . . , yn. The sample median θ minimizes
the non-differentiable objective function

f (θ) =
n∑

i=1

|yi − θ|.

• The quadratic function

hi(θ|θ(k)) =
(yi − θ)2

2|yi − θ(k)|
+

1
2
|yi − θ

(k)|

majorizes |yi − θ| at the point θ(k) (Arithmetic-Geometric Mean Inequality).

• Hence, g(θ|θ(k)) =
∑n

i=1 hi(θ|θ(k)) majorizes f (θ).



Example 2: Finding a Sample Median (continued) — 13/22 —

• We have following objective function (a weighted sum of squares):

g(θ|θ(k)) =
1
2

n∑
i=1

[
(yi − θ)2

|yi − θ(k)|
+ |yi − θ

(k)|

]

• The minimum of g(θ|θ(k)) occurs at

θ(k+1) =

∑n
i=1 w(k)

i yi∑n
i=1 w(k)

i

, w(k)
i = |yi − θ

(k)|−1

• This algorithm works except when a weight w(k)
i = ∞. It generalizes to sample

quantiles, least L1 regression and quantile regression.



Example 3: Bradley-Terry Ranking — 14/22 —

• Consider a sports league with n teams. Assign team i the skill level θi, where
θ1 = 1 for identifiability. Bradley and Terry proposed the model

Pr(i beats j) =
θi

θi + θ j
.

• If bi j is the number of times i beats j, then the likelihood of the data is

L(θ) =
∏
i, j

(
θi

θi + θ j

)bi j

.

We estimate θ by maximizing f (θ) = ln L(θ) and then rank the teams on the
basis of the estimates.

• The log-likelihood is: f (θ) =
∑

i, j bi j

[
ln θi − ln(θi + θ j)

]
.

• We need to linearize the term − ln(θi + θ j) to separate parameters.



Example 3: Bradley-Terry Ranking (continued) — 15/22 —

• By the supporting hyperplane property (κ(θ) ≥ κ(θ(k)) +
[
∇κ(θ(k))

]′
(θ − θ(k))

when κ is convex) and the convexity of − ln(.), we have

− ln y ≥ − ln x − x−1(y − x) = − ln x − y/x + 1

• The inequality indicates that

− ln(θi + θ j) ≥ − ln(θ(k)
i + θ

(k)
j ) −

θi + θ j

θ(k)
i + θ

(k)
j

+ 1

• Thus, the minorizing function is:

g(θ|θ(k)) =
∑
i, j

bi j

ln θi − ln(θ(k)
i + θ

(k)
j ) −

θi + θ j

θ(k)
i + θ

(k)
j

+ 1

 .
• The parameters are now separated. We can easily find the optimal point

θ(k+1)
i =

∑
i, j bi j∑

i, j(bi j + b ji)/(θ
(k)
i + θ

(k)
j )
.



Example 4: Handling Constraints — 16/22 —

• Consider the problem of minimizing f (θ) subject to the constraints v j(θ) ≥ 0
for 1 ≤ j ≤ q, where each v j(θ) is a concave, differentiable function.

• By the supporting hyperplane property and the convexity of −v j(θ),

v j(θ(k)) − v j(θ) ≥ −
[
∇v j(θ(k))

]′ (
θ − θ(k)

)
. (2)

• Again, by the supporting hyperplane property and the convexity of − ln(.), we
have − ln y + ln x ≥ −x−1(y − x) =⇒ x(− ln y + ln x) ≥ x − y. Then:

v j(θ(k))
[
− ln v j(θ) + ln v j(θ(k))

]
≥ v j(θ(k)) − v j(θ). (3)

• By (2) and (3),

v j(θ(k))
[
− ln v j(θ) + ln v j(θ(k))

]
+

[
∇v j(θ(k))

]′ (
θ − θ(k)

)
≥ 0,

and the equality holds when θ = θ(k).



Example 4: Handling Constraints (continued) — 17/22 —

• Summing over j and multiplying by a positive tuning parameter ω, we construct
the surrogate function that majorizes f (θ),

g(θ|θ(k)) = f (θ) + ω
q∑

j=1

[
v j(θ(k)) ln

v j(θ(k))
v j(θ)

+
[
∇v j(θ(k))

]′ (
θ − θ(k)

)]
≥ f (θ)

• Note:

– Majorization gets rid of the inequality constraints.

– The presence of ln v j(θ) ensures v j(θ) ≥ 0.

• An initial point θ(0) must be selected with all inequality constraints strictly
satisfied. All iterates stay within the interior region but allows strict inequalities to
become equalities in the limit.

• The minimization step of the MM algorithm can be carried out approximately by
Newton’s method.

• Where there are linear equality constraints Aθ = b in addition to the inequality
constraints v j(θ) ≥ 0, these should be enforced by introducing Lagrange
multipliers during the minimization of g(θ|θ(k)).



Example 5: An MM algorithm for Logistic Regression — 18/22 —

• We have an n × 1 vector Y of binary responses and an n × p matrix X of
predictors. The logistic regression model assumes that

πi(θ) ≡ Pr(Yi = 1) =
exp(θ′xi)

1 + exp(θ′xi)
.

Then the log likelihood is

l(θ) ≡
n∑

i=1

Yiθ
′xi −

n∑
i=1

log
{
1 + exp(θ′xi)

}
.

• The Hessian can be obtained by direct differentiation:

∇2l(θ) = −
n∑

i=1

πi(θ) [1 − πi(θ)] xix′i . (4)



• Remember the definition of quadratic lower bound:

κ(θ) ≥ κ(θ(k)) +
[
∇κ(θ(k))

]′
(θ − θ(k)) +

1
2

(θ − θ(k))′M(θ − θ(k))

where κ(θ) is concave and twice differentiable, and M is a negative definite
matrix.

• Since πi(θ) [1 − πi(θ)] is bounded above by 1/4, we may define the negative
definite matrix M = −1

4X′X such that ∇2l(θ) − M is nonnegative definite. Thus,

g(θ|θ(k)) = l(θ(k)) +
[
∇l(θ(k))

]′
(θ − θ(k)) +

1
2

(θ − θ(k))′M(θ − θ(k))

is a quadratic lower bound of l(θ) (note: l(θ) is concave).



Example 5: Logistic Regression (continued) — 20/22 —

• The MM algorithm proceeds by maximizing g(θ|θ(k)), giving

θ(k+1) = θ(k) − M−1∇l(θ(k))

= θ(k) + 4(X′X)−1X′
[
Y − π(θ(k))

]
.

• Computational advantage of the MM algorithm over Newton-Raphson

– MM: invert X′X only once.

– NR: invert the Hessian (4) for every iteration.



Comparing MM & Newton Raphson — 21/22 —

• Convergence rate

– NR: a quadratic rate lim ||θ(k+1) − θ̂||/||θ(k+1) − θ̂||2 = c (constant)

– MM: a linear rate lim ||θ(k+1) − θ̂||/||θ(k+1) − θ̂|| = c < 1

• Complexity of each iteration

– NR: require evaluation and inversion of Hessian, O(p3)

– MM: separates parameters, O(p) or O(p2)

• Stability of the algorithm

– NR: behave poorly if started too far from an optimum point

– MM: guaranteed to increase/decrease the objective function at every iteration

In conclusion, well-designed MM algorithms tend to require more iterations but
simpler iterations than Newton-Raphson; thus MM sometimes enjoy an advantage
in computation speed and numerical stability.



Applications of the MM algorithm in Statistics — 22/22 —

• Quantile regression (Hunter and Lange, 2000)

• Survival analysis (Hunter and Lange, 2002)

• Paired and multiple comparisons (Hunter 2004)

• Variable selection (Hunter and Li, 2002)

• DNA sequence analysis (Sabatti and Lange, 2002)


