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BIOS 731

Advanced Statistical Computing
Fall 2022

Lecture 12
Introduction to SMC

Steve Qin

Metropolis-Hastings Algorithm

« Start with any X' =x,, and a “proposal chain” T(x,y)
* Suppose XV=x,. At time t+1,
— Draw  y~T(x,.y) (i.e., propose a move for the next step)
— Compute “goodness ratio”

r= FT(Y, %)
(X )T (X, Y)

— Acceptance/Rejection decision: Let

\fu+]: —

v, withp=min{lr/}
| x,, with - p
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Remarks

How to choose a good proposal function is
crucial.

Sometimes tuning is needed.
— Rule of thumb: 30% acceptance rate

Convergence is slow for high dimensional
cases.

Summary on M-H algorithm

Needs to know the density function of the
target distribution (not necessarily to be
complete)

Up to a normalizing constant

Easy to implement, ideal for homogeneous
set of parameters (not too many).

Require burn-in
Monitor convergence
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Convergence

» Trace plot
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Convergence

« Autocorrelation plot  Bad s=05
Convergence

- Autocorrelation plot  Okay s=3.0



References

Metropolis et al. 1953,
Hastings 1973,
Tutorial paper:

Chib and Greenberg (1995). Understanding
the Metropolis--Hastings Algorithm. The
American Statistician 49, 327-335.

Gibbs Sampler

 Purpose: Draw random samples form a joint
distribution (high dimensional)

X=(X,X,,..., X,) Target z(x)
» Method: Iterative conditional sampling

Vi, draw x; ~ (X | X_;;)

10
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[llustration of Gibbs Sampler

» Suppose the target distribution is:

* Gibbs sampler:
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(X.Y)~ "([8)[;1) m

[X[Y =y]~ N(py.l-p?)
[Y]X =x]~ N(px,l-p?)

Start from, say, (X,Y)=(10,10), we can take a look at the
trajectories. We took p=0.6.

. first 20 iterations » —first 100 jterations
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Collapsing and grouping

« Want to sample fromX = (X, X,,...,X;)

» Regular Gibbs sampler:

t+1 t t t
— Sample x, 3 from 204132 x0 x5,

1
— sample x,@ from Z(X™ | X, x,... x{P),

— sample & from (x| xP, xP .., xE),
* Alternatively:
— Grouping:  Xg4'=(Xy_1, Xg)-
— Collapsing, i.e., integrate out X;: X = (X, Xy,..., X4_1)

The three-schemes
l. P l.l _{.1/ e
‘ : 2t x";,)“ {_

ry
i

standard grouping collapsing
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Examples

* Murray’s data

e Bivariate Gaussian with mean 0 and
unknown covariance matrix 2

1 1 -1 -1 2 2 =2 =2 % % %
1 -1 1 -1 % %= % % 2 2 =2 =2

standard collapsing s

Z 1 Yobs: Yims Yonis.i | Yobs» Yrvis [-i]° 5 j

ymis | yobs'z' 2 i
Remarks

 Avoid introducing unnecessary parameters
into a Gibbs sampler,

» Do as much analytical work as possible,

» However, introducing some clever auxiliary
variables can greatly improve computation
efficiency.
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An example

Design a Gibbs Sampler:

- X|y - N(y,l) )

—ylx~N(x,1) .
Y (1) n <- 1000

X <-rep(NA,n)

y <-rep(NA,n)

X[1]<-0

y[1] <-0

for(i in 1:(n-1)) {
X[i+1] <- rnorm(1,y[i],1)
y[i+1] <- rnorm(1,x[i+1],1)

}

plot(x,y) 17

* Doesn’t seem to converge.

» Unable to find a joint distribution F(X,Y)
satisfies

- X|y - N(yll) ]
—y|x~N(x,1) .

Pseudo Gibbs Sampler
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Summary of Gibbs sampler

Special case of MH algorithm

The most popular MCMC method,
generally more efficient than MH.

Require some mathematical derivation.
Verify convergence of the sequence

Require burn in.

Use multiple chains

Be careful of pseudo Gibbs sampler! 1o

References

Geman and Geman 1984,
Gelfand and Smith 1990,
Tutorial paper:

Casella and George (1992). Explaining the
Gibbs sampler. The American Statistician,
46, 167-174.
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Convergence Diagnostics

Patrick Lam

Within Chain Variance

where

=

sj2 is just the formula for the variance of the jth chain. W is then
just the mean of the variances of each chain.

W likely underestimates the true variance of the stationary
distribution since our chains have probably not reached all the
points of the stationary distribution.

10/3/2022
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Between Chain Variance

n

]
p——
N

m-—1

(6 -
j=1

where

[

= 1.
0= 2

Jj=1

This is the variance of the chain means multiplied by n because
each chain is based on n draws.

Estimated Variance

We can then estimate the variance of the stationary distribution as
a weighted average of W and B.

A 1 1
Var(6) = (1—- - )W + =B
n n
Because of overdispersion of the starting values, this overestimates
the true variance, but is unbiased if the starting distribution equals

the stationary distribution (if starting values were not
overdispersed).
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Gelman and Rubin Multiple Sequence Diagnostic

Steps (for each parameter):

1. Run m > 2 chains of length 2n from overdispersed starting
values.

2. Discard the first n draws in each chain.
3. Calculate the within-chain and between-chain variance.

4. Calculate the estimated variance of the parameter as a
weighted sum of the within-chain and between-chain variance.

5. Calculate the potential scale reduction factor.

Potential Scale Reduction Factor

The potential scale reduction factor is

~[Var(9)
“\Vw

When R is high (perhaps greater than 1.1 or 1.2), then we should
run our chains out longer to improve convergence to the stationary
distribution.

X

13



If we have more than one parameter, then we need to calculate the
potential scale reduction factor for each parameter.

We should run our chains out long enough so that all the potential
scale reduction factors are small enough.

We can then combine the mn total draws from our chains to
produce one chain from the stationary distribution.

Sequential Monte Carlo

10/3/2022
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Accept-reject method

» The accept-reject method
1. Generate X ~ g, U ~ Uniform(0,1),
2. AcceptY = X if U <f(X)/Mg(X),
3. Repeat.

29

Accept-reject method example

« Beta (a,8), a>1,5>1,
simulate Y ~ Uniform(0,1) and
U ~ Uniform(0,m),
m is the max of the Beta density.
select X =Y ifundercurve . ... oo

what is the acceptance rate? - |\
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Importance sampling

A variance reduction technique.

Certain values of the input random variables have
more impact on the parameter being estimated than
others.

If these "important” values are emphasized by
sampling more frequently, then the estimator variance
can be reduced.

Marshall (1956) suggested that one should focus on
the region(s) of “importance” so as to save
computational resource.

Essential in high-dimensional models.

31

Importance sampling

 Importance sampling:
to evaluate E, [h(X)]=[h(x)f (x)dx
based on generating a sample x,,---, X, from
a given distribution g and approximating
13 f(X)
Ef[h(X)]zaé g(X;)
which is based on

ey L)
E,[h(X)]= j (-5 0 900K )

h(X;)
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The algorithm

« Toevaluate #=E.[(X)]1=[h(x)z(x)dx

— Calculate the importance weight
wh =7r(x“)/g(x“’)), for j=1,...,m.

. (1) (Y] (m) (m)
w® W™

« Remark: 2 is better than the unbiased
estimator ﬁ:%{th(xm)+...+W<m>h(x<m>)}.

why? .

The basic methodology of
Importance sampling
» To choose a distribution which "encourages"

the important values.

 This use of "biased" distributions will result
in a biased estimator if it is applied directly.

» Weight to correct for the use of the biased
distribution to ensure unbiasness.

» The weight is given by the likelihood ratio,

34
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Importance sampling example

« Small tail probabilities:
Z~N(0,1), P(Z>4.5)
naive: simulate Z, ~ N(0,1), i=1,...,M.
calculate
P(Z > 4.5) zﬁil(zi > 4.5)

35

Importance sampling example

Let Y~TExp(4.5,1) with density

f(y)=e 9/ e™dx

Now simulated from f, and use importance
sampling, we obtain

M
Pz >45)~ =3 M) |y 5 45 — 000003377,
M i=1 fY (YI)

36
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Importance sampling example

## theoretical value

p0=1-pnorm(4.5)

## sample directly from normal distribution
## this needs large number of samples
z=rnorm (10000000)

pl=mean(z>4.5)

## importance sampling
n0=10000

Y=rexp (n0, 1)+4.5
a=dnorm(Y) /dexp (Y-4.5)

p2=mean (a)

c(p0, pl, p2)

37

Another example

2 2

Fla,y) = 0.5¢20(2—0.5) —45(y+0.1)* 4 o~ 45(x+0.4)? —60(y—0.5)

« Both grid-point method and vanilla Monte Carlo
methods wasted resources on “boring” desert area.

38
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Another example

 Use proposal function

= —90(x—0.5)2=10(y4+0.1)* —45(x+0.4)%—60(y—0.5)>
U(IU) x 0.5e 90(x—0.5)"—10(y+0.1) Te 15(x+0.4) i0(y—0.5) :

with (x,y) € [-1,1] x [-1,1], a truncated
mixture of bivariate Gaussian

. 0.5 L . —04 Lo
A6 A/ 180 SN 90
0464 {( —0.1 ) '.' ( 0 210 >} 051 {< 0.5 ) '.' ( 0 150 )}

Vanilla Monte Carlo Importance Sampling
f1=0.1307 1=0.1259
std ({2) = 0.009 std (2) = 0.0005
39

Sequential importance sampling
* For high dimensional problem, how to
design trial distribution is challenging.
« Suppose the target density of X= (X, X;,....X4)
can be decomposed as
7(X) = (X)X | %)+ 7 (% | X001 X )
then constructed trial density as
g(x) = gl(xl)gZ(XZ | X1)"‘gd (Xd | Xl""Xd—l)

40
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Sequential importance sampling
w(x) = (X )7w(Xy [ %)) 7w (X | X501 Xy 1)
95 (%) 9, (X, [ %)+ Gy (Xg | Xpses X4 1)

Suggest a recursive way of computing and
monitoring importance weight. Denote

then we have

W, (X,) = Wiy (X1) (X Xes)

g (X [ X¢)

1

Sequential importance sampling

» Advantages of the recursion scheme

— Can stop generating further components of x if
the partial weight is too small.

— Can take advantage of 7(X, | X,;) in designing
9: (% [Xc1)
» However, the scheme is impractical since
requires the knowledge of marginal
distribution z(X,).

42

21



10/3/2022

Sequential importance sampling

Add another layer of complexity:

Introduce a sequence of “auxiliary
distributions”z, (x,) 7, (X,) 7, (X) such that

7(X,) is a reasonable approximation of the
marginal distributionz(x,), fort=1,...,d -1
and 7y = .

Note the 7, are only required to be known up
to a normalizing constant.

43

The SIS procedure
Fort=2,....d,
Draw X; = X, from g,(x | %), and let
R
and let w,= w, , utﬂt_l()(t'l)gt O )
U, : incremental weight.

The key idea is to breaks a difficult task into
manageable pieces.

If w, is getting too small, reject.

44
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An application example of SIS

» Assume
— Constant population size N,
— Evolve in non-overlapping generation,
— The chromosomal region is sufficiently small,
— No recombination,

— “haplotype”: each chromosome only has one
parent.

45

Population genetics example

 Notation:
— E: set of all possible genetic types,
— 1> mutation rate per chromosome per generation,
— P=(P,): the mutation transition matrix,
— If a parental segment of type o € E,

a  withprobl— g,

its progeny is
Progeny {ﬂ with prob. zP, ;.

46
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Example data
» From Stephens and Donnelly (2000)
« E={C,T}
« The history H = (H,, H_1),-.., H1, H)

= {C}, {C.C}, {C T}, {CCT} {CTT} {T,T,T},

{17, {CTTTT} {CTTTT}

Coalescence example

10/3/2022

w47

« UseH=(H,,..., H4, H) to denote the whole

ancestral history (unobserved) of the 5
individuals.

« Compute the likelihood function

pe(H) = pg(ka) pe(ka+1| ka)"' pe(Ho | H—l) p9(3t0p| Ho)
p,(H_) =7,(H_,) 7y is the stationary distribution

of P. n. 0 _
— -5 it H;, = H;
non- 1446
polH; | Hi_y) Mo 7 1 - if £,
n 1 1+48

Y] otherwise,

o+ 7

H;, |+«

24



Coalescence calculation

* Fori=-(k-1),...,0

e i

nono 148
j),-_.':l‘ir,: | H; ) Ny T 1

non 1+4 )
Y] otherwise,

7 'l . ll J-
pe(stop| Hy) Z : ﬁ
[} [

[

_I”,‘-; l]. J_fl: .f.lrl:_l v - 5]

if f_lrl: J‘_lrl:_[ b o

Notations

n is the sample size at generation H; ;

n, is the number of chromosome of type o
in the sample.

0=2Nulv.
N population size,

v2 is the variance of the number of progeny
of a random chromosome.

49
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Strategies to estimate 6

« To get MLE, we need to compute likelihood

pe(Ho) > po(M).

Hreompatible with iy,
» Naive Monte Carlo won’t work because of
compatibility issue.
 An alternative is to simulate H backward starting
from H,and use weight to correct bias.

51

An SIS approach

« Simulate H_;, H_,,..., from a trial distribution
built up sequentially by revering the forward
sampling probability at a fixed 6,,. That is, for
i=1,...,k, we have

Po, (HL [H )
t H—t H—t+1 = - )
BRI SR I

the final trial distribution
g(H)=g,(H |Hy)---g.(H, [H_..)

52
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An SIS approach

By simulating from g() multiple copies of
the history, HO) | j=1,...,m, we can
approximate the likelihood function as

A 18 p (H(j))
Hy)=— P ),

Note the choice of 6, can influence the final
result.

53

Other examples of SIS

A Seli-Avoiding Walk of Length N=150

Growing a polymer

— Self avoid walk
Sequential imputation
for statistical missing
data problem.

More and details of
these examples, see

Liu 2001.

54
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