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BIOS 731

Advanced Statistical Computing
Fall 2022

Lecture 12

Introduction to SMC

Steve Qin 
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Metropolis-Hastings Algorithm
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Remarks

• How to choose a good proposal function is 

crucial.

• Sometimes tuning is needed. 

– Rule of thumb: 30% acceptance rate

• Convergence is slow for high dimensional 

cases.

Summary on M-H algorithm

• Needs to know the density function of the 

target distribution (not necessarily to be 

complete)

• Up to a normalizing constant

• Easy to implement, ideal for homogeneous 

set of parameters (not too many). 

• Require burn-in

• Monitor convergence

4
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Convergence

• Trace plot
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Convergence

• Autocorrelation plot Good
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Convergence

• Autocorrelation plot Bad
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s = 0.5

8

Convergence

• Autocorrelation plot Okay s = 3.0
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References

• Metropolis et al. 1953, 

• Hastings 1973,

• Tutorial paper:

Chib and Greenberg (1995). Understanding 
the Metropolis--Hastings Algorithm. The 
American Statistician 49, 327-335.
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Gibbs Sampler

• Purpose: Draw random samples form a joint 

distribution (high dimensional) 

• Method: Iterative conditional sampling

1 2( , ,..., )  Target  ( )nx x x x x=

i [ ],   draw x ( | )i ii x x − ~



10/3/2022

6

11

Illustration of Gibbs Sampler
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Collapsing and grouping

• Want to sample from 

• Regular Gibbs sampler:

– Sample x1
(t+1) from 

– Sample x2
(t+1) from 

– …

– Sample xd
(t+1) from

• Alternatively:

– Grouping:

– Collapsing, i.e., integrate out xd: 

13
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standard grouping collapsing
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Examples
• Murray’s data

• Bivariate Gaussian with mean 0 and 

unknown covariance matrix Σ

standard collapsing
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Remarks 

• Avoid introducing unnecessary parameters 

into a Gibbs sampler,

• Do as much analytical work as possible,

• However, introducing some clever auxiliary 

variables can greatly improve computation 

efficiency. 

16
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An example

Design a Gibbs Sampler:

– x|y ~ N(y,1) ,

– y|x ~ N(x,1) .

17

n <- 1000

x <- rep(NA,n)

y <- rep(NA,n)

x[1] <- 0

y[1] <- 0

for(i in 1:(n-1)) {

x[i+1] <- rnorm(1,y[i],1)

y[i+1] <- rnorm(1,x[i+1],1)

}

plot(x,y) 

• Doesn’t seem to converge. 

• Unable to find a joint distribution F(X,Y) 

satisfies

– x|y ~ N(y,1) ,

– y|x ~ N(x,1) .

Pseudo Gibbs Sampler

18
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Summary of Gibbs sampler

• Special case of MH algorithm

• The most popular MCMC method, 

generally more efficient than MH.

• Require some mathematical derivation.

• Verify convergence of the sequence 

• Require burn in.

• Use multiple chains

• Be careful of pseudo Gibbs sampler! 19

20

References

• Geman and Geman 1984, 

• Gelfand and Smith 1990,

• Tutorial paper: 

Casella and George (1992). Explaining the 

Gibbs sampler. The American Statistician, 

46, 167-174.
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Sequential Monte Carlo
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Accept-reject method

• The accept-reject method

1. Generate X ~ g, U ~ Uniform(0,1),

2. Accept Y = X if U ≤ f(X)/Mg(X),

3. Repeat.  

29

Accept-reject method example

• Beta (α,β), α ≥ 1, β ≥ 1,

simulate Y ~ Uniform(0,1) and

U ~ Uniform(0,m), 

m is the max of the Beta density.

select X = Y if under curve

what is the acceptance rate?

30
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Importance sampling

• A variance reduction technique. 

• Certain values of the input random variables have 

more impact on the parameter being estimated than 

others. 

• If these "important" values are emphasized by 

sampling more frequently, then the estimator variance 

can be reduced. 

• Marshall (1956) suggested that one should focus on 

the region(s) of “importance” so as to save 

computational resource. 

• Essential in high-dimensional models.
31

Importance sampling

• Importance sampling: 

to evaluate

based on generating a sample              from

a given distribution g and approximating

which is based on 
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The algorithm

• To evaluate

– Draw              from a trial distribution g().  

– Calculate the importance weight 

– Approximate μ by

• Remark:    is better than the unbiased 

estimator 

why? 33
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The basic methodology of 

importance sampling

• To choose a distribution which "encourages" 

the important values. 

• This use of "biased" distributions will result 

in a biased estimator if it is applied directly.

• Weight to correct for the use of the biased 

distribution to ensure unbiasness. 

• The weight is given by the likelihood ratio,

34
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Importance sampling example

• Small tail probabilities:

Z ~ N(0,1), P(Z > 4.5)

naïve: simulate Zi ~ N(0,1), i=1,…,M.

calculate   
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Importance sampling example

Let Y~TExp(4.5,1) with density

Now simulated from fY and use importance 

sampling, we obtain
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Importance sampling example

## theoretical value                                                                                     

p0=1-pnorm(4.5)

## sample directly from normal distribution                                                              

## this needs large number of samples                                                                    

z=rnorm(10000000)

p1=mean(z>4.5)

## importance sampling                                                                                   

n0=10000

Y=rexp(n0, 1)+4.5

a=dnorm(Y)/dexp(Y-4.5)

p2=mean(a)

c(p0, p1, p2)

37

Another example

• Both grid-point method and vanilla Monte Carlo 

methods wasted resources on “boring” desert area. 

38
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Another example 

• Use proposal function

with (x,y) ϵ [−1,1] x [−1,1], a truncated 

mixture of bivariate Gaussian

Vanilla Monte Carlo Importance Sampling
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Sequential importance sampling

• For high dimensional problem, how to 

design trial distribution is challenging. 

• Suppose the target density of

can be decomposed as

then constructed trial density as  

40

),...,,( 21 dxxx=x

),..,|()|()()( 11121 −= dd xxxxxx  x

),..,|()|()()( 1112211 −= ddd xxxgxxgxgg x



10/3/2022

21

Sequential importance sampling

Suggest a recursive way of computing and 

monitoring importance weight. Denote

then we have 
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Sequential importance sampling

• Advantages of the recursion scheme

– Can stop generating further components of x if 

the partial weight is too small.

– Can take advantage of                   in designing

• However, the scheme is impractical since 

requires the knowledge of marginal 

distribution π(xt). 

42
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Sequential importance sampling

• Add another layer of complexity:

• Introduce a sequence of “auxiliary 

distributions”                            such that

is a reasonable approximation of the 

marginal distribution         , for t = 1,…,d -1 

and πd = π.

• Note the πd  are only required to be known up 

to a normalizing constant. 
43
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The SIS procedure

For t = 2,…,d,

• Draw Xt = xt from                 , and let

• Compute

and let wt = wt -1 ut

• ut : incremental weight.

• The key idea is to breaks a difficult task into 

manageable pieces. 

• If wt is getting too small, reject.
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An application example of SIS

• Assume 

– Constant population size N,

– Evolve in non-overlapping generation,

– The chromosomal region is sufficiently small,

– No recombination,

– “haplotype”: each chromosome only has one 

parent.

45

Population genetics example

• Notation: 

– E: set of all possible genetic types,

– μ: mutation rate per chromosome per generation,

– : the mutation transition matrix,

– If a parental segment of type α ϵ E,

its progeny is   
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Example data

• From Stephens and Donnelly (2000)

• E={C,T}

• The history H = (H-k, H-(k-1),…, H-1, H0) 

= ({C}, {C,C}, {C,T}, {C,C,T}, {C,T,T}, {T,T,T},

{T,T,T,T}, {C,T,T,T,T}, {C,T,T,T,T}) 

47

Coalescence example

• Use H = (H-m,…, H-1, H0) to denote the whole 

ancestral history (unobserved) of the 5 

individuals. 

• Compute the likelihood function

, π0 is the stationary distribution 

of P.
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Coalescence calculation

• For i = -(k-1),…,0

49

Notations 

• n is the sample size at generation Hi-1 

• nα is the number of chromosome of type α

in the sample.

• θ=2Nμ/ν.

• N population size.

• ν2 is the variance of the number of progeny 

of a random chromosome. 

50
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Strategies to estimate θ

• To get MLE, we need to compute likelihood

• Naïve Monte Carlo won’t work because of 

compatibility issue. 

• An alternative is to simulate H backward starting 

from H0 and use weight to correct bias. 
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An SIS approach
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• Simulate H-1, H-1,…, from a trial distribution 

built up sequentially by revering the forward 

sampling probability at a fixed θ0. That is, for 

i =1,…,k, we have  

the final trial distribution 
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An SIS approach

• By simulating from g() multiple copies of 

the history, H(j) , j=1,…,m, we can 

approximate the likelihood function as

• Note the choice of θ0 can influence the final 

result.
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Other examples of SIS

• Growing a polymer

– Self avoid walk

• Sequential imputation 

for statistical  missing 

data problem.

• More and details of 

these examples, see 

Liu 2001. 
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