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Motivation 

• Generate random samples from arbitrary 

probability distributions.

• Ideally, the random samples are i.i.d.

– Independent

– Identically distributed

• Extremely hard problem especially for high 

dimensional distributions.

2



9/28/2022

2

3

Markov Chain Monte Carlo

• The goal is to generates sequence of random 

samples from an arbitrary probability 

density function (usually high dimensional), 

• The sequence of random samples form a 

Markov chain,

• The purpose is simulation (Monte Carlo).

What is Monte Carlo
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How simulation works?

https://www.caee.utexas.edu/prof/kockelman/IntersectionSimulations/index.html#
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Applications of Monte Carlo

• Optimization

• Numerical integration

• Generate random samples

9
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Motivation

• Generate iid r.v. from high-dimensional 

arbitrary distributions is extremely difficult.

• Drop the “independent” requirement.

• How about also drop the “identically 

distributed” requirement?
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Markov chain

• Assume a finite state, discrete Markov chain 

with N different states. 

• Random process Xn, n = 0,1,2,…

• Markov property,

• Time-homogeneous

• Order 

– Future state depends on the past m states.
13
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Key parameters

• Transition matrix

• Initial probability distribution π(0)

• Stationary distribution (invariant/equilibrium) 
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Reducibility

• A state j is accessible from state i (written 

i→ j) if

• A Markov chain is irreducible if it is 

possible to get to any state from any state.
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Recurrence

• A state i is transient if given that we start in 

state i, there is a non-zero probability that 

we will never return to i. State i is recurrent

if it is not transient.
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Ergodicity 

• A state i is ergodic if it is aperiodic and 

positive recurrent. If all states in an 

irreducible Markov chain are ergodic, the 

chain is ergodic.
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Reversible Markov chains

• Consider an ergodic Markov chain that 

converges to an invariant distribution π. A 

Markov chain is reversible if for all x, y ϵ S,

which is known as the detailed balance 

equation.

• An ergodic chain in equilibrium and 

satisfying the detailed balance condition has 

π as its unique stationary distribution.  
18
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Markov Chain Monte Carlo

• The goal is to generates sequence of random 

samples from an arbitrary probability 

density function (usually high dimensional), 

• The sequence of random samples form a 

Markov chain,

in Markov chain, P → π

in MCMC, π → P.

Examples
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Bayesian Inference
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( )Dirichlet Prior
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History

• Metropolis, N., Rosenbluth, A. W., 

Rosenbluth, M. N., Teller, A. H. and Teller, 

E. (1953).

Equation of state calculations by fast 

computing machines. Journal of Chemical 

Physics, 21, 1087–1092.
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Metropolis algorithm

• Direct sampling from the target distribution is 

difficult,

• Generating candidate draws from a proposal 

distribution,

• These draws then “corrected” so that 

asymptotically, they can be viewed as random 

samples from the desired target distribution. 
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Pseudo code

• Initialize X0,

• Repeat

– Sample Y ~ q(x,.), 

– Sample U ~ Uniform (0,1),

– If U ≤ α (X,Y), set Xi = y,

– Otherwise Xi = x.

25

An informal derivation
• Find α (X,Y):

• Joint density of current Markov chain state and the 

proposal is g(x,y) = q(x,y)π(x) 

• Suppose q satisfies detail balance

q(x,y) π(x) = q(y,x)π(y)

• If q(x,y) π(x) > q(y,x)π(y), introduce

α(x,y) < 1 and α(y,x) =1 

hence

• If q(x,y) π(x) > q(y,x)π(y), …

• The probability of acceptance is

26
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Metropolis-Hastings Algorithm
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Remarks

• Relies only on 

calculation of 

target pdf up to a 

normalizing 

constant. 
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Remarks

• How to choose a good proposal function is 

crucial.

• Sometimes tuning is needed. 

– Rule of thumb: 30% acceptance rate

• Convergence is slow for high dimensional 

cases.
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Illustration of Metropolis-Hastings

• Suppose we try to sample from a bi-variate 

normal distributions.

• Start from (0, 0)

• Proposed move at each step is a two 

dimensional random walk  
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Illustration of Metropolis-Hastings

• At each step, calculate

since  
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Convergence

• Trace plot Good
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Convergence

• Trace plot Bad
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Convergence

• Trace plot
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Convergence

• Autocorrelation plot Good
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Convergence

• Autocorrelation plot Bad
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Convergence

• Autocorrelation plot Okay s = 3.0
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Gibbs Sampler

• Purpose: Draw random samples form a joint 

distribution (high dimensional) 

• Method: Iterative conditional sampling

1 2( , ,..., )  Target  ( )nx x x x x=

i [ ],   draw x ( | )i ii x x −

40

Illustration of Gibbs Sampler
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46, 167-174.
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Remarks

• Gibbs Sampler is a special case of Metropolis-

Hastings

• Compare to EM algorithm, Gibbs sampler and 

Metropolis-Hastings are stochastic procedures

• Verify convergence of the sequence 

• Require Burn in

• Use multiple chains


