
Hidden Markov Model II

September 14, 2022

A brief review of HMM — 1/19 —

• HMM is used to model sequential data. Observed data are assumed to be
“emitted” from hidden states, where the hidden states is a “Markov chain”.

• A HMM is characterized by initial/emission/transition probabilities.

• Difference between HMM and mixture model is the correlations between hidden
states.

• The goals of HMM include (1) parameter estimation; (2) underlying states
estimation; (3) determine the best path.

• Use EM with “forward-backward” algorithm for parameter estimation.

• We will cover dynamic programming and Viterbi algorithm in this lecture.

Dynamic Programming (DP) — 2/19 —

“Two sledgehammers of the algorithms craft: dynamic programming and linear
programming”

• DP is a general optimization algorithm.

• Breaking the overall optimization problem into overlapping smaller problems.

• Solve each sub-problem once, and reuse the results, thus reducing the
computing cost (dramatically).

• Often working backward.

A simple DP example — 3/19 —

Find the shortest path from S to E in the directed acyclic graph below.

Dynamic&Programming&

A simple example:

Find the shortest path from S to E in the directed acyclic
graph below.

Take node D as an example. The way to get to D is
through B or C. So,

Algorithms, Dasgupta et al.

The problem can be solved backward. Take node D as an example. The way to get
to D is through B or C. So, dist(D) = min{dist(B) + 1, dist(C) + 3}.

Then work our way backward, we can find the best path.

Compare with exhaustive approach — 4/19 —

Dynamic&Programming&

A simple example:

Find the shortest path from S to E in the directed acyclic
graph below.

Take node D as an example. The way to get to D is
through B or C. So,

Algorithms, Dasgupta et al.

Using exhaustive search , one has to do:

• SABE: 1+6+2

• SCABE: 2+4+6+2

• SCDE: 2+3+1

• SCABDE: 2+4+6+1+1

Total is 11 additions. The complexity grows exponentially with the size of graph

Using DP, do:

• Dist(A)=min(1, 2+4)=1

• Dist(C)=2

• Dist(B)=dist(A)+6=1+6=7

• Dist(D)=min(dist(B)+1, dist(C)+3)=min(7+1, 2+3)=5

• Dist(E)=min(dist(B)+2, dist(D)+1)=min(7+2, 5+1)=6

Total is 6 additions. The complexity grows linearly with the size of graph.

Finding most likely hidden state sequence — 5/19 —

Under the notations:

• Observed data: u = {u1, u2, . . . , uT }.

• Hidden states: s = {s1, s2, . . . , sT }

• Model parameters: λ = {πk, bk(u), ak,l}.

We want to find the most possible “path”: ŝ = argmaxs Pr(s|λ,u). This is called the
rule of Maximum A Posteriori (MAP) (mode of the posterior probability).

Since we have:
Pr(s|λ,u) =

Pr(s,u|λ)
Pr(u|λ)

The denominator doesn’t involve s. So

argmax
s

Pr(s|λ,u) = argmax
s

Pr(s,u|λ)

In other words, to maximize the conditional probability, we can simply maximize the
joint probability.

The Viterbi Algorithm — 6/19 —

• The Viterbi algorithm maximizes an objective function G(s), where
s = {s1, . . . , sT } is a sequence of categorical values: st ∈ {1, . . . ,M}.

• G(s) satisfies following special property:

G(s) = g1(s1) + g2(s2, s1) + g3(s3, s2) + . . . + gT (sT , sT−1).

So the objective function can be expressed as sum of functions depending one
state and its preceding one.

• In a diagram, let gt(k, l) be the distance from state l at t − 1 to state k at t. At the
starting node, use g1(k) for state k. The optimal path can be found through DP.

Hidden Markov Model

Jia Li http://www.stat.psu.edu/⇠jiali

The Viterbi Algorithm in HMM — 7/19 —

In a HMM, the distance between nodes are the transition probabilities. But we still
need to consider emission probabilities.

Remember we want to find optimal sequence s∗:

s∗ = argmax
s

Pr(s,u|λ).

The objective function can be expressed as:

G(s) = log Pr(s,u|λ) = log[πs1bs1(u1)as1,s2bs2(u2)as2,s3 . . . asT−1,sT bsT (uT)]
= [log πs1 + log bs1(u1)] + [log as1,s2 + log bs2(u2)] + . . . + [log asT−1,sT + log bsT (uT)]

If we define

g1(s1) = log πs1 + log bs1(u1)
gt(st, st−1) = log ast−1,st + log bst(ut)

then G(s) = g1(s1) +
∑T

t=2 gt(st, st−1), and Viterbi algorithm can be applied.

Viterbi training — 8/19 —

• Note: the Viterbi algorithm requires that the model parameters λ are known.

• “Viterbi training” algorithm can be applied to estimate λ. The steps are:

1. Choose initial values of λ.

2. Under current λ, find the optimal path s∗.
3. Let Lk(t) = 1(s∗t = k) and Hk,l(t) = 1(st−1 = k)1(st = l), then update λ using the

same M-step procedures derived before.

• Viterbi training replaces the step of computing forward and backward
probabilities by finding the optimal path s∗ under the current parameters using
Viterbi algorithm.

• Basically, it uses “hard” classification (0/1) to replace the “soft” classification
(probabilities).

Selecting the number of states (M) — 9/19 —

• This is a model selection problem.

• Since the whole data likelihood P(u) is available, this can be done by using
BIC/AIC.

• With one more state, there are more parameters from initial probability,
transition probabilities, and emission probability.

• However, based on my experience, BIC tends to select large M in real data,
especially when the chain is long.

• Sometimes have to use arbitrary criteria.

Multivariate HMM — 10/19 —

• So far we have discussed univariate HMM, e.g., ut is a scalar.

• When observation is a random vector, it can be modeled as a multivariate HMM.

• The emission probability bk(u) becomes a multivariate distribution.

• There are more parameters need to be estimated, but the procedure is the
same.

Multivariate HMM example: chromHMM — 11/19 —

Ernst & Kellis, Nature Method 2012

NATURE METHODS | VOL.9 NO.3 | MARCH 2012 | 215

CORRESPONDENCE

ChromHMM outputs both the learned chromatin-state model
parameters and the chromatin-state assignments for each genom-
ic position. The learned emission and transition parameters are
returned in both text and image format (Fig. 1), automatically
grouping chromatin states with similar emission parameters or
proximal genomic locations, although a user-specified reordering
can also be used (Supplementary Figs. 1–2 and Supplementary
Note). ChromHMM enables the study of the likely biological
roles of each chromatin state based on enrichment in diverse
external annotations and experimental data, shown as heat maps
and tables (Fig. 1), both for direct genomic overlap and at vari-
ous distances from a chromatin state (Supplementary Fig. 3).
ChromHMM also generates custom genome browser tracks6 that
show the resulting chromatin-state segmentation in dense view
(single color-coded track) or expanded view (each state shown
separately) (Fig. 1). All the files ChromHMM produces by default
are summarized on a webpage (Supplementary Data).

ChromHMM also enables the analysis of chromatin states
across multiple cell types. When the chromatin marks are com-
mon across the cell types, a common model can be learned by
a virtual ‘concatenation’ of the chromosomes of all cell types.
Alternatively a model can be learned by a virtual ‘stacking’ of all
marks across cell types, or independent models can be learned in
each cell type. Lastly, ChromHMM supports the comparison of
models with different number of chromatin states based on cor-
relations in their emission parameters (Supplementary Fig. 4).

We wrote the software in Java, which allows it to be run on
virtually any computer. ChromHMM and additional documenta-
tion is freely available at http://compbio.mit.edu/ChromHMM/.

ChromHMM: automating chromatin-
state discovery and characterization
To the Editor: Chromatin-state annotation using combinations
of chromatin modification patterns has emerged as a powerful
approach for discovering regulatory regions and their cell type–
specific activity patterns and for interpreting disease-association
studies1–5. However, the computational challenge of learning
chromatin-state models from large numbers of chromatin modi-
fication datasets in multiple cell types still requires extensive bio-
informatics expertise. To address this challenge, we developed
ChromHMM, an automated computational system for learning
chromatin states, characterizing their biological functions and
correlations with large-scale functional datasets and visualizing
the resulting genome-wide maps of chromatin-state annotations.

ChromHMM is based on a multivariate hidden Markov model
that models the observed combination of chromatin marks using
a product of independent Bernoulli random variables2, which
enables robust learning of complex patterns of many chromatin
modifications. As input, it receives a list of aligned reads for each
chromatin mark, which are automatically converted into pres-
ence or absence calls for each mark across the genome, based on
a Poisson background distribution. One can use an optional addi-
tional input of aligned reads for a control dataset to either adjust
the threshold for present or absent calls, or as an additional input
mark. Alternatively, the user can input files that contain calls from
an independent peak caller. By default, chromatin states are ana-
lyzed at 200-base-pair intervals that roughly approximate nucleo-
some sizes, but smaller or larger windows
can be specified. We also developed an
improved parameter-initialization proce-
dure that enables relatively efficient infer-
ence of comparable models across differ-
ent numbers of states (Supplementary
Note).

Figure 1 | Sample outputs of ChromHMM.
(a) Example of chromatin-state annotation
tracks produced from ChromHMM and visualized
in the UCSC genome browser6, including
dense view (top; single track), expanded view
(bottom; separate tracks). (b,c) Heat maps
for model parameters (b) and for chromatin-
state functional enrichments (c). The columns
indicate the relative percentage of the genome
represented by each chromatin state and relative
fold enrichment for several types of annotation.
CTCF, CTC-binding factor; WCE, whole-cell extract;
TSS, transcription start site; TES, transcript end
site; and GM12878 is a lymphoblastoid cell line.
Data in this example correspond to a previous
model learned across nine cell types3.

Scale
chr4:

GM12878

1_Active_Promoter
2_Weak_Promoter

3_Poised_Promoter
4_Strong_Enhancer
5_Strong_Enhancer
6_Weak_Enhancer
7_Weak_Enhancer

8_Insulator
9_Txn_Transition

10_Txn_Elongation
11_Weak_Txn
12_Repressed

13_Heterochrom/lo
14_Repetitive/CNV
15_Repetitive/CNV

50 kb
103650000 103700000 103750000

RefSeq Genes

 GM12878 (User ordered)

 GM12878 (User ordered)

NFKB1
NFKB1

MANBA

a

b c
Emission parameters

S
ta

te
 (

us
er

 o
rd

er
)

S
ta

te
 (

us
er

 o
rd

er
)

S
ta

te
 fr

om
 (

us
er

 o
rd

er
)

Transition parameters

Mark

C
T

C
F

H
3K

27
m

e3
H

3K
36

m
e3

H
4K

20
m

e1
H

3K
4m

e1
H

3K
4m

e2
H

3K
4m

e3
H

3K
27

ac
H

3K
9a

c
W

C
E

G
en

om
e

(%
)

R
ef

S
eq

 T
S

S
C

pG
 is

la
nd

R
ef

S
eq

 T
S

S
 2

 k
b

R
ef

S
eq

 e
xo

n
R

ef
S

eq
 g

en
e

R
ef

S
eq

 T
E

S
C

on
se

rv
ed

La
m

in
a

State to (user order)

Category

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

GM12878 fold enrichments

np
g

©
 2

01
2

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

• The observed data are multiple ChIP-seq datasets profiling histone modification
and protein binding strengths.

• The data are measurements from 200 bp bins genome-wide. There are around
10 million bins (chain is 10 million long).

• The goal is to segment the whole genome into a number of “states”.

• They run multivariate HMM, assuming the outcomes are independent.

• Result segments the genome into 15 states.

chromHMM genome segmentation result on a gene:

NATURE METHODS | VOL.9 NO.3 | MARCH 2012 | 215

CORRESPONDENCE

ChromHMM outputs both the learned chromatin-state model
parameters and the chromatin-state assignments for each genom-
ic position. The learned emission and transition parameters are
returned in both text and image format (Fig. 1), automatically
grouping chromatin states with similar emission parameters or
proximal genomic locations, although a user-specified reordering
can also be used (Supplementary Figs. 1–2 and Supplementary
Note). ChromHMM enables the study of the likely biological
roles of each chromatin state based on enrichment in diverse
external annotations and experimental data, shown as heat maps
and tables (Fig. 1), both for direct genomic overlap and at vari-
ous distances from a chromatin state (Supplementary Fig. 3).
ChromHMM also generates custom genome browser tracks6 that
show the resulting chromatin-state segmentation in dense view
(single color-coded track) or expanded view (each state shown
separately) (Fig. 1). All the files ChromHMM produces by default
are summarized on a webpage (Supplementary Data).

ChromHMM also enables the analysis of chromatin states
across multiple cell types. When the chromatin marks are com-
mon across the cell types, a common model can be learned by
a virtual ‘concatenation’ of the chromosomes of all cell types.
Alternatively a model can be learned by a virtual ‘stacking’ of all
marks across cell types, or independent models can be learned in
each cell type. Lastly, ChromHMM supports the comparison of
models with different number of chromatin states based on cor-
relations in their emission parameters (Supplementary Fig. 4).

We wrote the software in Java, which allows it to be run on
virtually any computer. ChromHMM and additional documenta-
tion is freely available at http://compbio.mit.edu/ChromHMM/.

ChromHMM: automating chromatin-
state discovery and characterization
To the Editor: Chromatin-state annotation using combinations
of chromatin modification patterns has emerged as a powerful
approach for discovering regulatory regions and their cell type–
specific activity patterns and for interpreting disease-association
studies1–5. However, the computational challenge of learning
chromatin-state models from large numbers of chromatin modi-
fication datasets in multiple cell types still requires extensive bio-
informatics expertise. To address this challenge, we developed
ChromHMM, an automated computational system for learning
chromatin states, characterizing their biological functions and
correlations with large-scale functional datasets and visualizing
the resulting genome-wide maps of chromatin-state annotations.

ChromHMM is based on a multivariate hidden Markov model
that models the observed combination of chromatin marks using
a product of independent Bernoulli random variables2, which
enables robust learning of complex patterns of many chromatin
modifications. As input, it receives a list of aligned reads for each
chromatin mark, which are automatically converted into pres-
ence or absence calls for each mark across the genome, based on
a Poisson background distribution. One can use an optional addi-
tional input of aligned reads for a control dataset to either adjust
the threshold for present or absent calls, or as an additional input
mark. Alternatively, the user can input files that contain calls from
an independent peak caller. By default, chromatin states are ana-
lyzed at 200-base-pair intervals that roughly approximate nucleo-
some sizes, but smaller or larger windows
can be specified. We also developed an
improved parameter-initialization proce-
dure that enables relatively efficient infer-
ence of comparable models across differ-
ent numbers of states (Supplementary
Note).

Figure 1 | Sample outputs of ChromHMM.
(a) Example of chromatin-state annotation
tracks produced from ChromHMM and visualized
in the UCSC genome browser6, including
dense view (top; single track), expanded view
(bottom; separate tracks). (b,c) Heat maps
for model parameters (b) and for chromatin-
state functional enrichments (c). The columns
indicate the relative percentage of the genome
represented by each chromatin state and relative
fold enrichment for several types of annotation.
CTCF, CTC-binding factor; WCE, whole-cell extract;
TSS, transcription start site; TES, transcript end
site; and GM12878 is a lymphoblastoid cell line.
Data in this example correspond to a previous
model learned across nine cell types3.

Scale
chr4:

GM12878

1_Active_Promoter
2_Weak_Promoter

3_Poised_Promoter
4_Strong_Enhancer
5_Strong_Enhancer
6_Weak_Enhancer
7_Weak_Enhancer

8_Insulator
9_Txn_Transition

10_Txn_Elongation
11_Weak_Txn
12_Repressed

13_Heterochrom/lo
14_Repetitive/CNV
15_Repetitive/CNV

50 kb
103650000 103700000 103750000

RefSeq Genes

 GM12878 (User ordered)

 GM12878 (User ordered)

NFKB1
NFKB1

MANBA

a

b c
Emission parameters

S
ta

te
 (

us
er

 o
rd

er
)

S
ta

te
 (

us
er

 o
rd

er
)

S
ta

te
 fr

om
 (

us
er

 o
rd

er
)

Transition parameters

Mark

C
T

C
F

H
3K

27
m

e3
H

3K
36

m
e3

H
4K

20
m

e1
H

3K
4m

e1
H

3K
4m

e2
H

3K
4m

e3
H

3K
27

ac
H

3K
9a

c
W

C
E

G
en

om
e

(%
)

R
ef

S
eq

 T
S

S
C

pG
 is

la
nd

R
ef

S
eq

 T
S

S
 2

 k
b

R
ef

S
eq

 e
xo

n
R

ef
S

eq
 g

en
e

R
ef

S
eq

 T
E

S
C

on
se

rv
ed

La
m

in
a

State to (user order)

Category

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

GM12878 fold enrichments

np
g

©
 2

01
2

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

chromHMM emission and transition probabilities:

NATURE METHODS | VOL.9 NO.3 | MARCH 2012 | 215

CORRESPONDENCE

ChromHMM outputs both the learned chromatin-state model
parameters and the chromatin-state assignments for each genom-
ic position. The learned emission and transition parameters are
returned in both text and image format (Fig. 1), automatically
grouping chromatin states with similar emission parameters or
proximal genomic locations, although a user-specified reordering
can also be used (Supplementary Figs. 1–2 and Supplementary
Note). ChromHMM enables the study of the likely biological
roles of each chromatin state based on enrichment in diverse
external annotations and experimental data, shown as heat maps
and tables (Fig. 1), both for direct genomic overlap and at vari-
ous distances from a chromatin state (Supplementary Fig. 3).
ChromHMM also generates custom genome browser tracks6 that
show the resulting chromatin-state segmentation in dense view
(single color-coded track) or expanded view (each state shown
separately) (Fig. 1). All the files ChromHMM produces by default
are summarized on a webpage (Supplementary Data).

ChromHMM also enables the analysis of chromatin states
across multiple cell types. When the chromatin marks are com-
mon across the cell types, a common model can be learned by
a virtual ‘concatenation’ of the chromosomes of all cell types.
Alternatively a model can be learned by a virtual ‘stacking’ of all
marks across cell types, or independent models can be learned in
each cell type. Lastly, ChromHMM supports the comparison of
models with different number of chromatin states based on cor-
relations in their emission parameters (Supplementary Fig. 4).

We wrote the software in Java, which allows it to be run on
virtually any computer. ChromHMM and additional documenta-
tion is freely available at http://compbio.mit.edu/ChromHMM/.

ChromHMM: automating chromatin-
state discovery and characterization
To the Editor: Chromatin-state annotation using combinations
of chromatin modification patterns has emerged as a powerful
approach for discovering regulatory regions and their cell type–
specific activity patterns and for interpreting disease-association
studies1–5. However, the computational challenge of learning
chromatin-state models from large numbers of chromatin modi-
fication datasets in multiple cell types still requires extensive bio-
informatics expertise. To address this challenge, we developed
ChromHMM, an automated computational system for learning
chromatin states, characterizing their biological functions and
correlations with large-scale functional datasets and visualizing
the resulting genome-wide maps of chromatin-state annotations.

ChromHMM is based on a multivariate hidden Markov model
that models the observed combination of chromatin marks using
a product of independent Bernoulli random variables2, which
enables robust learning of complex patterns of many chromatin
modifications. As input, it receives a list of aligned reads for each
chromatin mark, which are automatically converted into pres-
ence or absence calls for each mark across the genome, based on
a Poisson background distribution. One can use an optional addi-
tional input of aligned reads for a control dataset to either adjust
the threshold for present or absent calls, or as an additional input
mark. Alternatively, the user can input files that contain calls from
an independent peak caller. By default, chromatin states are ana-
lyzed at 200-base-pair intervals that roughly approximate nucleo-
some sizes, but smaller or larger windows
can be specified. We also developed an
improved parameter-initialization proce-
dure that enables relatively efficient infer-
ence of comparable models across differ-
ent numbers of states (Supplementary
Note).

Figure 1 | Sample outputs of ChromHMM.
(a) Example of chromatin-state annotation
tracks produced from ChromHMM and visualized
in the UCSC genome browser6, including
dense view (top; single track), expanded view
(bottom; separate tracks). (b,c) Heat maps
for model parameters (b) and for chromatin-
state functional enrichments (c). The columns
indicate the relative percentage of the genome
represented by each chromatin state and relative
fold enrichment for several types of annotation.
CTCF, CTC-binding factor; WCE, whole-cell extract;
TSS, transcription start site; TES, transcript end
site; and GM12878 is a lymphoblastoid cell line.
Data in this example correspond to a previous
model learned across nine cell types3.

Scale
chr4:

GM12878

1_Active_Promoter
2_Weak_Promoter

3_Poised_Promoter
4_Strong_Enhancer
5_Strong_Enhancer
6_Weak_Enhancer
7_Weak_Enhancer

8_Insulator
9_Txn_Transition

10_Txn_Elongation
11_Weak_Txn
12_Repressed

13_Heterochrom/lo
14_Repetitive/CNV
15_Repetitive/CNV

50 kb
103650000 103700000 103750000

RefSeq Genes

 GM12878 (User ordered)

 GM12878 (User ordered)

NFKB1
NFKB1

MANBA

a

b c
Emission parameters

S
ta

te
 (

us
er

 o
rd

er
)

S
ta

te
 (

us
er

 o
rd

er
)

S
ta

te
 fr

om
 (

us
er

 o
rd

er
)

Transition parameters

Mark

C
T

C
F

H
3K

27
m

e3
H

3K
36

m
e3

H
4K

20
m

e1
H

3K
4m

e1
H

3K
4m

e2
H

3K
4m

e3
H

3K
27

ac
H

3K
9a

c
W

C
E

G
en

om
e

(%
)

R
ef

S
eq

 T
S

S
C

pG
 is

la
nd

R
ef

S
eq

 T
S

S
 2

 k
b

R
ef

S
eq

 e
xo

n
R

ef
S

eq
 g

en
e

R
ef

S
eq

 T
E

S
C

on
se

rv
ed

La
m

in
a

State to (user order)

Category

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

GM12878 fold enrichments

np
g

©
 2

01
2

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

Auto-regressive HMM (ARHMM) — 14/19 —

• The observations within a state have spatial correlations (remember HMM
assumes observations are independent conditional on state).

• There are different ways to model the spatial correlations within a state, such as
AR model or smoothing.

• Advantage over HMM: avoid over-fitting. The state segmentation of the chain is
smoother.

Example – Define CpG island — 15/19 —

• DNA sequence is a long (3 billion for human) string of four letters: A, C, G, T.

• The appearance of “CG” is rare, due DNA methylation, mutations and selection
pressure.

• However, there are regions where “CG” appears more frequently compared with
the rest of the genome. Such regions are called “CpG islands”, and they often
mark important regions (such as gene promoters).

• The CpG islands can be detected by modeling the DNA sequence using HMM.

• Observed data are C+G content and CG appearance in 16bp bins.

GC content plot in a small region:
Redefining CpG islands using HMMs 505

Fig. 5. GC content plots. A region with no Alu repeats was divided into nonoverlapping segments of length 256 bases.
The points are the GC content of each segment. The curve is the result of a kernel smoother of the points.

for GC content as well. In Section 4, we describe the relevance of this characteristic in our approach to
defining islands.

Figures 2 and 4 support the claims that CpGs are clustered and that O/E can be satisfactorily modeled
by 2 states. Therefore, a 2-state HMM is a natural method to consider. However, modeling the emission
probability at a single location is complicated because GC content, needed to compute O/E, varies widely
across the genome, as seen in Figure 5. Another complication is that the distribution of CpG counts at
a single location is somewhat complicated because outcomes from consecutive locations are not inde-
pendent. For example, CG dinucleotide cannot start at consecutive bases. In Section 4, we described a
procedure, motivated by HMMs, that overcomes the described problems of existing approaches and the
difficulties of modeling sequence data directly. By modeling CpG counts in small bins instead of base-
to-base transitions, the complexity of the emission model is greatly reduced. The models are therefore
relatively simple and can be fit without cutoff choices which facilitated the extension to species for which
CGI have never been reported.

4. MODEL

For any given genome, we assumed that each chromosome is divided into 3 states: Alu repetitive ele-
ments, baseline, and CGI. Because the locations of the Alu-repetitive elements are well characterized,
they are inherently not of interest for the current statistical problem and therefore such regions were
removed. Hence, we characterize the problem as that of a semi-HMM, with a known state for Alu repet-
itive elements. Our analysis then considers the 2-state chain conditional on being in a non-Alu repetitive
state.

We followed the basic statistical concepts first used by Churchill (1989), described by Durbin and
others (1998) and used by bioinformatic tools such as Multiple EM for Motif Elicitation (Bailey and
others, 2006), Motif Alignment & Search Tool (Bailey, 1998), and Basic Local Alignment Search Tool
(Altschul and others, 1990). The foundation of these tools is the stochastic modeling of bases in the
genome. We denote B(t) as the base at genomic location t , pb(t) the probability that B(t) = b for
b = A, T,G,C , and pCG(t) the probability of being CpG at location t . The depletion of CpG implies
that the probability of a C at location t followed by a G is less likely than would be predicted by chance
under independence: pCG(t) < pC (t) × pG(t + 1). We have argued that a useful model for detection
of CGI needs 2 states to describe changes in pC (t), pG(t), and pCG(t). However, we have specified
3 parameters for each genomic location t , resulting in an overdetermined system. Placing parsimonious
modeling assumptions on the chain of bases that imply in a 2-state stochastic process for the chain of CpGs
would result in undue complexity. Instead, we describe and motivate simple assumptions that permitted
the derivation of a useful model from the general model described above.

We first divided the non-Alu regions into nonoverlapping segments of length L bp. For the results
shown here, we used L = 16. This choice is justified in Section 4.2. We denoted NC (s), NG(s), and
NCG(s) as the number of C , G, and CpG in segment s, and Y (s) the hidden state for segment s with 2

Our way to model this: the observation follows a smooth curve within each
segmentation.

506 H. WU AND OTHERS

states: Y (s) = 1 as CGI and Y (s) = 0 as baseline. We assume Y (s) is a stationary first-order Markov
chain.

As discussed in Section 3.2, the GC content NC (s) + NG(s) and CpG count NCG(s) are not indepen-
dent. In order to fit an HMM on Y (s), one has to evaluate the joint likelihood by a complicated numerical
method such as Monte Carlo Markov chain. Given the size of genomes (3 billion bases for human), we
opted for an intuitive and computational feasible approach: we modeled the data generating process with
a hierarchical model that we subsequently fit using direct estimates in an iterative stepped approach. The
most complex portion of the model involves a model for the GC content, NC (s) + NG(s). We require a
model that adheres to the following: (i) it must account for jumps in GC content, (ii) slowly varying trends
must also be accounted for, and (iii) fitting must be reasonably fast and able to accommodate the large
size of the data.

We first defined a latent Markov process X (s) to be the hidden state for segment s with states: X (s) =
1 as high GC count regions and X (s) = 0 as baseline. We assumed that X (s) was a stationary first-order
Markov chain with invariant probabilities πi = Pr{X (s) = i}, say, and 2× 2 transition matrix P . Let {S j }
be the collection of segments defined by a constant latent state. That is, S1 = {1, . . . , M1}, where M1 is
the smallest index so that X (M1) ̸= X (M1−1); S2 = {M1+1, . . . , M2}, where M2 > M1 is the smallest
index so that X (M2) ̸= X (M2 − 1); and so on. This process divided the segments into regions of low or
high GC content.

The lowest level of the hierarchy characterized the unknown proportion of GC content in segment
s and was denoted by p(s). The model for p(s) must account for the fast variation in the chain of GC
content as well as the slow variation within segments of similar type, as shown in Figure 5. We posited
the following model on p(s):

p(s) | s ∈ S j and X (Mj) = i ∼ Normal{ci + f (s), τ 2},
where

∑
s f (s) = 0 represented smooth deviations, while the additive constant ci represents jumps in the

GC contents. Conditioned on p(s), the observed GC content NC (s)+NG(s) follows Binomial distribution:

NC (s) + NG(s) | p(s) ∼ Bin{L , p(s)}.
For this approach, we approximated the binomial distribution with the normal density. We did not force
a binomial variance and estimated it from the data when fitting HMM. This gives us added flexibility,
though it requires {NC (s) + NG(s)}/L to lie away from the 0 and 1 boundaries for the distributional
assumptions to be valid. However, this is well indicated by the data. Under the above model assumptions,
the GC content subtracting the slow variation forms a first-order HMM:

NC (s) + NG(s) − L f (s) | X (Mj) = i ∼ Normal(ci , σ 2).

Note that we originally tried using smoothed GC content instead of the proposed 2-state model. How-
ever, results showed that CGIs associated with low GC content are generally not associated with epigenetic
marks and need to be filtered out. Furthermore, we observed sharp changes in GC content as shown in
Figure 5. To avoid arbitrarily selecting a cutoff for GC content and account for the GC content jumps, we
implemented the HMM approach.

Finally, conditioned on {p(s)} and Y (s) = i , we assumed an HMM on NCG(s) with Poisson emission
probabilities with conditional means

ai × L × pC (s) × pG(s) = ai × L × 1
4
p(s)2.

Here, we are making the parsimony assumption that pC (s) = pG(s) = 1
2 p(s). This assumption, though

perhaps aggressive if the bin sizes are small, is biologically well motivated. Further, the Poisson

For details, read Wu et al. (2010) Redefining CpG islands using hidden Markov
models. Biostatistics.

Another example of ARHMM — 17/19 —

Rashid et al. (2014) Some Statistical Strategies for DAE-seq Data Analysis:
Variable Selection and Modeling Dependencies among Observations. JASA

• The goal is to detect long range histone modified regions.

• We want the regions to be long, but directly fitting a HMM often gives overly
fragmented, short regions.

• Use AR model for the spatial dependence.

Figure 4.
Classification performance comparison of the FMR, HMM, and AR-HMM models in
GM12878 H3K36me3 ChIP-seq data. A) The total length of significantly enriched regions
(which are generated by collapsing adjacent significant windows) that overlap a gene body
across FDR thresholds. B) Average lengths of significant regions across FDR thresholds. C)
Number of genes overlapped with significant regions across FDR thresholds. D) Median
proportion of gene bodies covered by significantly enriched regions. E–F) Examples of
regions called as enriched by each method.

Rashid et al. Page 25

J Am Stat Assoc. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Other variations of HMM — 18/19 —

Non-homogeneous HMM
Transition probability varies along the chain. Have to impose some constrains on
the transition probabilities so that they can be estimated.

Higher-order HMM
Assume the hidden states are from a higher order Markov chain, e.g., the current
state depends on several previous states.

Hierarchical HMM (HHMM)
Each state of the HHMM is itself an HHMM, e.g., the states of the HHMM emit
sequences of observation that follows another HHMM.

2D HMM
Used in image segmentation. Inputs are 2D data emitted from a Markov random
field. Need to model the transition from one observation to its neighbor. However a
fully connected 2D HMM is NP-hard (computationally unsolvable). So different
approximation is used (Pseudo 2D HMM).

Review — 19/19 —

• HMM is used to model sequential data. Observed data are assumed to be
“emitted” from hidden states, where the hidden states is a “Markov chain”.

• A HMM is characterized by initial/emission/transition probabilities.

• Difference between HMM and mixture model is that HMM assumes correlations
between hidden states, whereas mixture model assumes independence.

• The goals of HMM include (1) parameter estimation; (2) underlying states
estimation; (3) determine the best path.

• Parameter estimation can be done by EM with “forward-backward” algorithm.

• Dynamic program (DP) is a general optimization method to find the shortest
path in a directed acyclic graph.

• Viterbi algorithm is a DP algorithm applied in finding the optimal path for a HMM.

• Viterbi training is a simplified version of forward-backward algorithm. It uses
hard classification to replace soft classification.

