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Motivating Example — 1/25 —

e Assume there are two types of weather “Sunny” and “Rainy”. We assume, a
prior, that their probabilities are 0.7 and 0.3, e.g., Pr(Sunny) = 0.7,
Pr(Rainy) = 0.3.

e Every morning, you do two things: walking dogs (“W?”) or reading (“R”). Assume
the following conditional probabilities:

Pr(W|Sunny) = 0.8, Pr(R|S unny) = 0.2.
Pr(W|Rainy) = 0.2, Pr(R|Rainy) = 0.8.

e Assume we know your morning activity for a number of days: {W, W, R, R, W, W,
R, W, W, W}, but don’'t know the weather. How can we estimate the weather
condition for each day?



Motivating Example (cont.) — 2/25 —

e Using Bayes’ rule, we can compute the following quantity for each day:

Pr(W|S unny)Pr(S unny)
Pr(S unny|W) = , :
Pr(W|S unny)Pr(S unny) + Pr(W|Rainy)Pr(Rainy)
B 0.8 %0.7 0.9
S 08%0.7+02%03
Pr(SunnylR) = ......

e However, this assumes independence of observations and completely ignores
the connections between weather changes, e.g., probability of today is Sunny
given yesterday is Sunny, etc.

e With the consideration the connections between weather changes, today’s
weather Pr(Sunny|W) should also depend on yesterday’s weather, in addition to
the W/R status.

e Such an approach can be formalized by a “hidden Markov model” (HMM).



HMM problem setup — 3/25 —

e Assume we observe sequential data u = {uy, uo, . . ., ur} (your morning activities).
e u is generated by a chain of hidden, unobserved states: s = {51, 52, ..., s7}.

e Each s, can take M states, with “initial probability” =,k =1,..., M:
Pr(s; = k) = m, 2 = 1.

e The distribution of u conditional on s is represented as by (u): u,|s; = k ~ by(u,).
This is called “emission probability”.

e The changes of states between consecutive hidden state is specified by
“transition probability”: a;; = Pr(s,.; = l|s; = k). Or you can write this as a;_,;.

e Assume the underlying states follow a Markov chain, that is, given present, the
future is independent of the past:

Pr(si1lSe, Si—1, - .5 S1) = Pr(sg1ls;).

To summarize: a HMM has observed data u, missing data s, and parameters
A = {my, bi(u), ar ).



Review: discrete time finite homogeneous Markov Chain— 4/25 —

e The possible states are included in a finite discrete set: {Eq, Eo, ..., Ey}.
e From time 7 to r + 1, make stochastic movement from one state to another.

e Markov Property: the state of s,,; only depends on the state of s;, not the states
before time ¢:
Pr(selss, Si-1, ..., 51) = Pr(sialsy).

e Time-homogeneous transition probabilities property: P(s..1|s;) independent of r.

e Denote the transition probability matrix by A. Define N step transition as:
ai(N) = Pr(s;,y = l|s; = k). It can be shown that A(N) = AV,



What can HMM do — 5/25 —

A HMM can answer following questions:

e Parameter estimation: estimate the initial/emission/transition probabilities.
A= argmax, Pr(u|Ad).

e Estimate the probabilities of the underlying states given the observations:
Pr(s|u).

e The most likely path: given the observed data, what are the most likely
underlying states for all observations: § = argmaxg Pr(s|A, u).

e Predict future, e.g., Pr(u.|u, A).

Examples of HMM applications:
e Speech recognition.
e DNA sequence analysis, e.g., gene finding, sequence alignment.

e Financial time series data.



HMM vs. mixture model

— 6/25 —

e There’s close connection between a HMM and a mixture model: both have
hidden states/group assignment, initial and emission probabilities.

e Difference is that mixture model assumes independent observations, HMM
assumes sequential observation with transition probability.

Mixture model
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Some results for a HMM — 7/25 —

According to Markov property, we have:
¢ Joint probability of hidden states:

P(s1,82,...,57) = P(s1)P(s2ls1) ... P(s7|sT-1)

= T Usy,sp -« - Usp_y,s7

e Conditional on the states, the observations are independent of each other:
P(uj, ujls) = P(u;ls)P(uls)

So the joint probability of observations, given hidden states is:

T T
Pals) = | | Pals) = | | b
i=1 i=1

Note: marginally the observations are NOT independent.



Some results for a HMM (cont.) — 8/25 —

e Joint probability of hidden states and observed data

P(u,s) = P(s)P(uls)
= [P(s1)pQui|s)IP(sals1)P(uzls)] . .. [P(stlsT—1)P(ur|st)]

— T[Slbsl(ul)asl,SzbS2(u2)aS2,S3bS3(u3) e aST_l,STbST(uT)

e Marginal probability of observed data:

P(u) = Z P(s)P(uls)

— Z ﬂslbsl(ul)asl,szbsz(MZ)asz,S3 “ee aST_l,STbST(uT)

A



Model Estimation — 9/25 —

e First need to make parametric assumption of the emission probabilities b, (u).

e In this lecture, we assume by(u) is normal, e.g., bi(u) = N(u : i, o), then the
model parameters to be estimated are:

ﬂ’ — {ﬂk’/'tk70-k7ak,l : k’l — 1""’M}

e One can obtain the MLEs for A from the marginal probability of observed data.
However it’s very difficult because the marginal probability involves summing
over all possible underlying states (}.,).

e Clever algorithm was invented to solve the problem.



Model Estimation (cont.) — 10/25 —

e Define L,(¢) to be the conditional probability of being in state k at position 7 given
the observed data u:
Li(t) = P(s; = klu)

e Define Hy ;(¢) be the conditional probability of being in state £ at position ¢ and
being in state [ at position 7 + 1 (i.e., seeing a transition from k to / at ), given the
observed data u:

Hy (1) = P(s; = k, 501 = llu)

e Note that Li(r) = 3, Hy (1), Yt Li(t) = 1.



Model Estimation (cont.) — 11/25 —

e Then the parameters can be estimated by EM:

— E-step: Compute L,(r) and Hy () given current parameters.
— M-step: update parameters:

1 = Zthl Li(t)u,
ZtT:1 Lk(f)
o2 = Yot L) (g — pui)?
ZtT=1 Lk(t)
i = Sy He(t)
D ety M1()
e = Li(1)

e Derivation steps are similar to that in M-component normal mixture model (try it
yourself). The new items are the transition probabilities.



Comparison with Normal mixture model — 12/25 —

e In the M-step, L(¢) plays the role of the expected value for the missing data
(group assignment).

— In the mixture model (assuming independent observations), the state given
the observation is p;x = P(s; = klu,).

— Ina HMM, L,(¢) = P(s; = kluy, ua, . .., ur).
e If one ignores the connections among observations, e.g., s,'s are independent

and thus u,’s are iid, then Li(?) = p;x, and HMM reduce to a M-component
Normal mixture model.

e In a mixture model, s; only depends on u, because observations are
independent.

e In a HMM, s; depends on the entire sequence of observations because of the
underlying Markov process.



The forward-backward algorithm — 13/25 —

The forward-backward algorithm is designed to efficiently compute:

Li(t) = P(s; = klu)
Hy (1) = P(s; = k, $41 = llu)

e Define the forward probability a,(7) as the joint probability of observing the
first r data u;,i = 1,...,t and being in state k at time ¢:

ap(t) = P(uy,uy, ..., U, S = k)

e The forward probability can be computed recursively:

ay(l) =mb(uy)) 1<k<M

() = b(u) ) ent = Daye 1 <t<T,1<k< M.
=1



Derivation of forward probability calculation — 14/25 —

a/k(t) — P(ulau29 cees Uy St = k)
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Backward probability — 15/25 —

e Define the backward probability 5.(7) as the conditional probability of
observing the data after time ¢, u;,,i =t + 1,...,T, given the state at time 7 is k.

IBk(t):P(ut+1’°°°,uT|St:k) IStST_l

e Again, the backward probability can be computed by following recursive formula:

Bi(T) =1
M
But) = > a bilu) Bt +1) 1<t<T

[=1



Derivation of backward probability calculation — 16/25 —

Bi(t) = P(upsr, ... ur | sy = k)

M
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Compute L;(t) — 17/25 —

Compute L,(1) using forward and backward probabilities:

Pu, si = k) _ ax(®) Bi()

Li(t) = P(s; =k |u) = Pw) P(u)

Proof:

Pu,s;,=k)=Puy,...,ur,s; =k)
=Puy,...,u;, 8, = k) P(Usyq, ..., ur | Uy, ..., U, S, = k)
=P(uy,...,u;, 8, = k) P(Uspq, ..., ur | s; = k)
= ay (1) Bi(?)



Compute Hy (1) — 18/25 —

Compute Hy,(t) using forward and backward probabilities:

P(s; =k, 5011 =Lu
Hi (1) = P(s; =k, s;41 = llu) = (s; P(Lt:)l )
1

= m (1) ax; bi(ur) Bi(t + 1)

Proof:

P(s;=k, 5,01 =Lu)= Pluy,...,usy...,ur,s; =Kk, S;11 = 1)
= P(uy,...,u;, 8y = K)P(uspy, Sep1 =1L s, =k, ug, ..., uy)
P(uiso, ... ur | g1 = Lsy = kyup, oo, Uggr)
= ar(OPWs1, See1 =1 st = )Py, .. ur | Si41 = 1)
= ap(OP(sp1 = 1] 5t = )PWrsr | S0 = Losy = k) Bit + 1)
= ay(t) arg P(uper | 041 =D Bit + 1)
= ax(t) agy bi(uy) Bi(t + 1)



Compute P(u) — 19/25 —

The marginal observed data likelihood is:

M
P) = ) aOBi(®), ¥t
k=1

Proof:

M
P(u):ZP(ul,...,ut,...,uT,St:k)
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The estimation algorithm — 20/25 —

To summarize, estimation of model parameters requires iterating following steps,
under the current estimates of parameters:

1. Compute the forward and backward probabilities (two matrices of dimension
M XxT):

ay(l) =mbi(uy)) 1<k<M

M
() = b(u) Y en(t = Daye 1 <t<T,1<k<M.
=1

BT) =1
M
Bi(t) = Z a1 bius) Bt +1) 1<t <T

[=1



The estimation algorithm (cont.) — 21/25 —

2. Compute whole data likelihood: P(u) = Z,i”:l ar(1)Bi(1). This is independent of t.
Canuser=1lort=T.

3. Compute L(r) and Hy (¢) from forward/backward probabilities:

L(t) = Clk(;)(f;c(f)
1
H (1) = @) (1) axg bi(ur) Bi(t + 1)

4. Update parameters using Li(t) and Hy (t) (assuming Normal emission
probabilities):

_ i w5 N L — )’

DT 710 D Y0 91()

5 Hio)

X5 L)

Mk

7y , = Li(1)



Numerical consideration — 22/25 —

Long HMM chain causes numerical problem.
e The computation of forward/backward matrices requires multiplying probabilities.

e Probabilities are quantities less than 1. Multiplying too many probabilities gives
very small number, and will exceed the computer precision quickly and become
0 numerically.

Solution: the computation of forward/backward matrices are done in logarithm
scale, i.e., instead of storing P, we store log P.

e Running exp(-1000) *exp(-1000) gives 0 in R, but we know it's exp(-2000).

However we also have sums of probabillities.
e We can’t exp the numbers back, sum up, and then take log.

e log(e® + ) will become negative infinity when a or b are negative number with
large absolute values: try to run log(exp(-1000) + exp(-1000)) in R.



Numerical consideration (cont.) — 23/25 —

Use the following trick to deal with the scenario:
log(e + €%) = log(e(1 + e"~%) = a + log(1 + €’79).

e It equals b when b >> a, equals a when b << a.

e When the values of b and a are close, the computation is numerically stable.

Following is an R implementation of the algorithm, which works for two vectors:

Raddlog <- function (a, b)
{
result <- rep(®, length(a))
1dx1l <- a > b + 200
result[idxl] <- a[idx1]
1dx2 <- b > a + 200
result[1dx2] <- b[1dx2]
1dx0 <- !'(idx1 | 1idx2)
result[idx0] <- a[idx®] + loglp(exp(b[idx0] - a[idx0]))
result



Numerical consideration (cont.)

— 24/25 —

Some simple tests:

> log(exp(-100)+exp(-100))
[1] -99.30685

> Raddlog(-100, -100)

[1] -99.30685

> log(exp(-1000)+exp(-1000))
[1] -Inf

> Raddlog(-1000, -1000)

[1] -999.3069

> log(exp(-100)+exp(-1000))
[1] -100

> Raddlog(-100, -1000)

[1] -100



Review — 25/25 —

e HMM is used to model sequential data.

e Difference between HMM and mixture model: mixture model assumes iid
observations, HMM assumes underlying sequential correlation among hidden
states.

e Important components in a HMM: initial, emission and transition probabilities.

e Goals of HMM: estimate hidden states and model parameters, find best path,
future prediction.

e Parameter estimation via EM and forward-backward algorithm.

e Next lecture: dynamic programming and Viterbi algorithm to find the best path.



