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Motivating Example — 1/25 —

• Assume there are two types of weather “Sunny” and “Rainy”. We assume, a
prior, that their probabilities are 0.7 and 0.3, e.g., Pr(S unny) = 0.7,
Pr(Rainy) = 0.3.

• Every morning, you do two things: walking dogs (“W”) or reading (“R”). Assume
the following conditional probabilities:

Pr(W |S unny) = 0.8, Pr(R|S unny) = 0.2.
Pr(W |Rainy) = 0.2, Pr(R|Rainy) = 0.8.

• Assume we know your morning activity for a number of days: {W, W, R, R, W, W,
R, W, W, W}, but don’t know the weather. How can we estimate the weather
condition for each day?



Motivating Example (cont.) — 2/25 —

• Using Bayes’ rule, we can compute the following quantity for each day:

Pr(S unny|W) =
Pr(W |S unny)Pr(S unny)

Pr(W |S unny)Pr(S unny) + Pr(W |Rainy)Pr(Rainy)

=
0.8 ∗ 0.7

0.8 ∗ 0.7 + 0.2 ∗ 0.3
= 0.9

Pr(S unny|R) = ......

• However, this assumes independence of observations and completely ignores
the connections between weather changes, e.g., probability of today is Sunny
given yesterday is Sunny, etc.

• With the consideration the connections between weather changes, today’s
weather Pr(S unny|W) should also depend on yesterday’s weather, in addition to
the W/R status.

• Such an approach can be formalized by a “hidden Markov model” (HMM).



HMM problem setup — 3/25 —

• Assume we observe sequential data u = {u1, u2, . . . , uT } (your morning activities).

• u is generated by a chain of hidden, unobserved states: s = {s1, s2, . . . , sT }.

• Each st can take M states, with “initial probability” πk, k = 1, . . . ,M:
Pr(s1 = k) = πk,

∑
k πk = 1.

• The distribution of u conditional on s is represented as bk(u): ut|st = k ∼ bk(ut).
This is called “emission probability”.

• The changes of states between consecutive hidden state is specified by
“transition probability”: ak,l = Pr(st+1 = l|st = k). Or you can write this as ak→l.

• Assume the underlying states follow a Markov chain, that is, given present, the
future is independent of the past:

Pr(st+1|st, st−1, . . . , s1) = Pr(st+1|st).

To summarize: a HMM has observed data u, missing data s, and parameters
λ = {πk, bk(u), ak,l}.



Review: discrete time finite homogeneous Markov Chain— 4/25 —

• The possible states are included in a finite discrete set: {E1, E2, . . . , EM}.

• From time t to t + 1, make stochastic movement from one state to another.

• Markov Property: the state of st+1 only depends on the state of st, not the states
before time t:

Pr(st+1|st, st−1, . . . , s1) = Pr(st+1|st).

• Time-homogeneous transition probabilities property: P(st+1|st) independent of t.

• Denote the transition probability matrix by A. Define N step transition as:
ak,l(N) = Pr(st+N = l|st = k). It can be shown that A(N) = AN.



What can HMM do — 5/25 —

A HMM can answer following questions:

• Parameter estimation: estimate the initial/emission/transition probabilities.
λ̂ = argmaxλ Pr(u|λ).

• Estimate the probabilities of the underlying states given the observations:
Pr(s|u).

• The most likely path: given the observed data, what are the most likely
underlying states for all observations: ŝ = argmaxs Pr(s|λ,u).

• Predict future, e.g., Pr(ut+1|u, λ̂).

Examples of HMM applications:

• Speech recognition.

• DNA sequence analysis, e.g., gene finding, sequence alignment.

• Financial time series data.



HMM vs. mixture model — 6/25 —

• There’s close connection between a HMM and a mixture model: both have
hidden states/group assignment, initial and emission probabilities.

• Difference is that mixture model assumes independent observations, HMM
assumes sequential observation with transition probability.
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Some results for a HMM — 7/25 —

According to Markov property, we have:

• Joint probability of hidden states:

P(s1, s2, . . . , sT ) = P(s1)P(s2|s1) . . . P(sT |sT−1)
= πs1as1,s2 . . . asT−1,sT

• Conditional on the states, the observations are independent of each other:

P(ui, u j|s) = P(ui|s)P(u j|s)

So the joint probability of observations, given hidden states is:

P(u|s) =
T∏

i=1

P(ui|si) =
T∏

i=1

bsi(ui)

Note: marginally the observations are NOT independent.



Some results for a HMM (cont.) — 8/25 —

• Joint probability of hidden states and observed data

P(u, s) = P(s)P(u|s)
= [P(s1)p(u1|s1)][P(s2|s1)P(u2|s2)] . . . [P(sT |sT−1)P(uT |sT )]
= πs1bs1(u1)as1,s2bs2(u2)as2,s3bs3(u3) . . . asT−1,sT bsT (uT )

• Marginal probability of observed data:

P(u) =
∑

s
P(s)P(u|s)

=
∑

s
πs1bs1(u1)as1,s2bs2(u2)as2,s3 . . . asT−1,sT bsT (uT )



Model Estimation — 9/25 —

• First need to make parametric assumption of the emission probabilities bk(u).

• In this lecture, we assume bk(u) is normal, e.g., bk(u) = N(u : µk, σ
2
k), then the

model parameters to be estimated are:

λ = {πk, µk, σk, ak,l : k, l = 1, . . . ,M}

• One can obtain the MLEs for λ from the marginal probability of observed data.
However it’s very difficult because the marginal probability involves summing
over all possible underlying states (

∑
s).

• Clever algorithm was invented to solve the problem.



Model Estimation (cont.) — 10/25 —

• Define Lk(t) to be the conditional probability of being in state k at position t given
the observed data u:

Lk(t) = P(st = k|u)

• Define Hk,l(t) be the conditional probability of being in state k at position t and
being in state l at position t + 1 (i.e., seeing a transition from k to l at t), given the
observed data u:

Hk,l(t) = P(st = k, st+1 = l|u)

• Note that Lk(t) =
∑M

l=1 Hk,l(t),
∑M

k=1 Lk(t) = 1.



Model Estimation (cont.) — 11/25 —

• Then the parameters can be estimated by EM:

– E-step: Compute Lk(t) and Hk,l(t) given current parameters.

– M-step: update parameters:

µk =

∑T
t=1 Lk(t)ut∑T

t=1 Lk(t)

σ2
k =

∑T
t=1 Lk(t)(ut − µk)2∑T

t=1 Lk(t)

ak,l =

∑T−1
t=1 Hk,l(t)∑T−1
t=1 Lk(t)

πk = Lk(1)

• Derivation steps are similar to that in M-component normal mixture model (try it
yourself). The new items are the transition probabilities.



Comparison with Normal mixture model — 12/25 —

• In the M-step, Lk(t) plays the role of the expected value for the missing data
(group assignment).

– In the mixture model (assuming independent observations), the state given
the observation is pt,k = P(st = k|ut).

– In a HMM, Lk(t) = P(st = k|u1, u2, . . . , uT ).

• If one ignores the connections among observations, e.g., st’s are independent
and thus ut’s are iid, then Lk(t) = pt,k, and HMM reduce to a M-component
Normal mixture model.

• In a mixture model, st only depends on ut because observations are
independent.

• In a HMM, st depends on the entire sequence of observations because of the
underlying Markov process.



The forward-backward algorithm — 13/25 —

The forward-backward algorithm is designed to efficiently compute:

Lk(t) = P(st = k|u)
Hk,l(t) = P(st = k, st+1 = l|u)

• Define the forward probability αk(t) as the joint probability of observing the
first t data ui, i = 1, . . . , t and being in state k at time t:

αk(t) = P(u1, u2, . . . , ut, st = k)

• The forward probability can be computed recursively:

αk(1) = πkbk(u1) 1 ≤ k ≤ M

αk(t) = bk(ut)
M∑

l=1

αl(t − 1)al,k 1 < t ≤ T, 1 ≤ k ≤ M.



Derivation of forward probability calculation — 14/25 —

αk(t) = P(u1, u2, . . . , ut, st = k)

=

M∑
l=1

P(u1, u2, . . . , ut, st = k, st−1 = l)

=

M∑
l=1

P(u1, u2, . . . , ut−1, st−1 = l)P(ut, st = k | u1, u2, . . . , ut−1, st−1 = l)

=

M∑
l=1

αl(t − 1)P(ut, st = k | st−1 = l)

=

M∑
l=1

αl(t − 1)P(ut | st = k, st−1 = l)P(st = k | st−1 = l)

=

M∑
l=1

αl(t − 1)P(ut | st = k)P(st = k | st−1 = l)

= bk(ut)
M∑

l=1

αl(t − 1)al,k



Backward probability — 15/25 —

• Define the backward probability βk(t) as the conditional probability of
observing the data after time t, ui, i = t + 1, . . . ,T , given the state at time t is k.

βk(t) = P(ut+1, . . . , uT | st = k) 1 ≤ t ≤ T − 1

• Again, the backward probability can be computed by following recursive formula:

βk(T ) = 1

βk(t) =
M∑

l=1

ak,l bl(ut+1) βl(t + 1) 1 ≤ t < T



Derivation of backward probability calculation — 16/25 —

βk(t) = P(ut+1, . . . , uT | st = k)

=

M∑
l=1

P(ut+1, . . . , uT , st+1 = l | st = k)

=

M∑
l=1

P(ut+1, . . . , uT | st+1 = l, st = k) P(st+1 = l | st = k)

=

M∑
l=1

P(ut+1, . . . , uT | st+1 = l) ak,l

=

M∑
l=1

P(ut+2, . . . , uT | st+1 = l, ut+1) P(ut+1|st+1 = l) ak,l

=

M∑
l=1

P(ut+2, . . . , uT | st+1 = l) bl(ut+1) ak,l

=

M∑
l=1

ak,l bl(ut+1) βl(t + 1)



Compute Lk(t) — 17/25 —

Compute Lk(t) using forward and backward probabilities:

Lk(t) ≡ P(st = k | u) =
P(u, st = k)

P(u)
=
αk(t) βk(t)

P(u)

Proof:

P(u, st = k) = P(u1, . . . , uT , st = k)
= P(u1, . . . , ut, st = k) P(ut+1, . . . , uT | u1, . . . , ut, st = k)
= P(u1, . . . , ut, st = k) P(ut+1, . . . , uT | st = k)
= αk(t) βk(t)



Compute Hk,l(t) — 18/25 —

Compute Hk,l(t) using forward and backward probabilities:

Hk,l(t) = P(st = k, st+1 = l|u) =
P(st = k, st+1 = l,u)

P(u)

=
1

P(u)
αk(t) ak,l bl(ut+1) βl(t + 1)

Proof:

P(st = k, st+1 = l,u) = P(u1, . . . , ut, . . . , uT , st = k, st+1 = l)
= P(u1, . . . , ut, st = k)P(ut+1, st+1 = l | st = k, u1, . . . , ut)

P(ut+2, . . . , uT | st+1 = l, st = k, u1, . . . , ut+1)
= αk(t)P(ut+1, st+1 = l | st = k)P(ut+2, . . . , uT | st+1 = l)
= αk(t)P(st+1 = l | st = k)P(ut+1 | st+1 = l, st = k) βl(t + 1)
= αk(t) ak,l P(ut+1 | st+1 = l) βl(t + 1)
= αk(t) ak,l bl(ut+1) βl(t + 1)



Compute P(u) — 19/25 —

The marginal observed data likelihood is:

P(u) =
M∑

k=1

αk(t)βk(t),∀t

Proof:

P(u) =
M∑

k=1

P(u1, . . . , ut, . . . , uT , st = k)

=

M∑
k=1

P(u1, . . . , ut, st = k)P(ut+1, . . . , uT | st = k, u1, . . . , ut)

=

M∑
k=1

P(u1, . . . , ut, st = k)P(ut+1, . . . , uT | st = k)

=

M∑
k=1

αk(t)βk(t)



The estimation algorithm — 20/25 —

To summarize, estimation of model parameters requires iterating following steps,
under the current estimates of parameters:

1. Compute the forward and backward probabilities (two matrices of dimension
M × T ):

αk(1) = πkbk(u1) 1 ≤ k ≤ M

αk(t) = bk(ut)
M∑

l=1

αl(t − 1)al,k 1 < t ≤ T, 1 ≤ k ≤ M.

βk(T ) = 1

βk(t) =
M∑

l=1

ak,l bl(ut+1) βl(t + 1) 1 ≤ t < T



The estimation algorithm (cont.) — 21/25 —

2. Compute whole data likelihood: P(u) =
∑M

k=1 αk(t)βk(t). This is independent of t.
Can use t = 1 or t = T .

3. Compute Lk(t) and Hk,l(t) from forward/backward probabilities:

Lk(t) =
αk(t) βk(t)

P(u)

Hk,l(t) =
1

P(u)
αk(t) ak,l bl(ut+1) βl(t + 1)

4. Update parameters using Lk(t) and Hk,l(t) (assuming Normal emission
probabilities):

µk =

∑T
t=1 Lk(t)ut∑T

t=1 Lk(t)
, σ2

k =

∑T
t=1 Lk(t)(ut − µk)2∑T

t=1 Lk(t)
,

ak,l =

∑T−1
t=1 Hk,l(t)∑T−1
t=1 Lk(t)

, πk = Lk(1)



Numerical consideration — 22/25 —

Long HMM chain causes numerical problem.

• The computation of forward/backward matrices requires multiplying probabilities.

• Probabilities are quantities less than 1. Multiplying too many probabilities gives
very small number, and will exceed the computer precision quickly and become
0 numerically.

Solution: the computation of forward/backward matrices are done in logarithm
scale, i.e., instead of storing P, we store log P.

• Running exp(-1000)*exp(-1000) gives 0 in R, but we know it’s exp(-2000).

However we also have sums of probabilities.

• We can’t exp the numbers back, sum up, and then take log.

• log(ea + eb) will become negative infinity when a or b are negative number with
large absolute values: try to run log(exp(-1000) + exp(-1000)) in R.



Numerical consideration (cont.) — 23/25 —

Use the following trick to deal with the scenario:
log(ea + eb) = log(ea(1 + eb−a)) = a + log(1 + eb−a).

• It equals b when b >> a, equals a when b << a.

• When the values of b and a are close, the computation is numerically stable.

Following is an R implementation of the algorithm, which works for two vectors:

Raddlog <- function (a, b)

{

result <- rep(0, length(a))

idx1 <- a > b + 200

result[idx1] <- a[idx1]

idx2 <- b > a + 200

result[idx2] <- b[idx2]

idx0 <- !(idx1 | idx2)

result[idx0] <- a[idx0] + log1p(exp(b[idx0] - a[idx0]))

result

}



Numerical consideration (cont.) — 24/25 —

Some simple tests:

> log(exp(-100)+exp(-100))

[1] -99.30685

> Raddlog(-100, -100)

[1] -99.30685

> log(exp(-1000)+exp(-1000))

[1] -Inf

> Raddlog(-1000, -1000)

[1] -999.3069

> log(exp(-100)+exp(-1000))

[1] -100

> Raddlog(-100, -1000)

[1] -100



Review — 25/25 —

• HMM is used to model sequential data.

• Difference between HMM and mixture model: mixture model assumes iid
observations, HMM assumes underlying sequential correlation among hidden
states.

• Important components in a HMM: initial, emission and transition probabilities.

• Goals of HMM: estimate hidden states and model parameters, find best path,
future prediction.

• Parameter estimation via EM and forward-backward algorithm.

• Next lecture: dynamic programming and Viterbi algorithm to find the best path.


