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Last lecture — 1/33 —

• General optimization problems

– Steepest ascent

– Newton Raphson

– Fisher scoring

• Nonlinear regression models

– Gauss-Newton

• Generalized linear models

– Iteratively reweighted least squares



Expectation–maximization (EM) algorithm — 2/33 —

• An iterative algorithm for maximizing likelihood when the model contains
unobserved latent variables.

• Was initially invented by computer scientist in special circumstances
(Baum-Welch algorithm).

• Generalized by Arthur Dempster, Nan Laird, and Donald Rubin in a classic 1977
JRSSB paper, which is widely known as the “DLR” paper.

• The algorithm iterate between E-step (expectation) and M-step (maximization).

• E-step: create a function for the expectation of the log-likelihood, evaluated
using the current estimate for the parameters.

• M-step: obtain parameters maximizing the expected log-likelihood from the E
step.



Motivating example of EM algorithm — 3/33 —

• Assume people’s total cholesterol levels (in mg/dL) follow normal distributions
with different means for disease and normal groups: N(µ1, σ

2
1) for disease, and

N(µ2, σ
2
2) for normal.

• We observe the cholesterol levels for 5 people (don’t know the disease status):
182, 263, 215, 155, 258.

• We want to estimate µ1, µ2, σ1 and σ2.

This is the typical “two-component normal mixture model”, e.g., data are from a
mixture of two normal distributions. The goal is to estimate model parameters.

We could, of course, form the likelihood function (multiplication of Normal densities)
and find its maximum by Newton-Raphson.



A sketch of an EM algorithm — 4/33 —

Some notations: For person i, denote the cholesterol by xi, and use Zi to indicate
disease status (unobserved). Define π be the proportion of diseased people in the
population.

Start by choosing reasonable initial values. Then:

• In the E-step, compute the probability of each person being in the diseased
group, given the current model parameters. We have (after some derivation)

λ(k)
i ≡ E[Zi|µ

(k)
1 , µ

(k)
2 , σ

(k)
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2 ] =
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• In the M-step, update parameters and group proportions by considering the
probabilities from E-step as weights. They are basically weighted average and
variance. For example,
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Example results — 5/33 —

We choose µ1 = 150, µ2 = 220, σ1 = σ2 = 30 as initial values.

• After first iteration, we have after E-step

Person 1 2 3 4 5
xi: cholesterol 182 263 215 155 258

λi: Prob. disease 0.5469 0.9985 0.9402 0.1288 0.9978

The estimates for parameters after M-step are (means and variances):
µ1 = 233.01, µ2 = 166.68, σ1 = 35.85, σ2 = 23.77, π = 0.72.

• At iteration 15 (converged), we have:

Person 1 2 3 4 5
xi: cholesterol 182 263 215 155 258

λi: Prob. disease 0.0277 1 0.9909 4e-04 1

The estimates for parameters are: µ1 = 244.8, µ2 = 168.5, σ1 = 22.2, σ2 = 13.8,
π = 0.6.



Another motivating example of EM algorithm — 6/33 —

ABO blood groups

Genotype Genotype Frequency Phenotype
AA p2

A A
AO 2pApO A
BB p2

B B
BO 2pBpO B
OO p2

O O
AB 2pApB AB

• The genotype frequencies above assume “Hardy-Weinberg equilibrium”.

• Data are available for n individuals. Observe phenotypes but not genotypes.

• We wish to obtain the MLEs of the underlying proportions pA, pB, and
pO = 1 − pA − pB (these are called “allele frequencies”).

• The likelihood is (from multinomial):

L(pA, pB) = (p2
A + 2pApO)nA × (p2

B + 2pBpO)nB × (p2
O)nO × (2pApB)nAB

nA, nB, nO, nAB are the numbers of individuals with phenotypes A, B, O, AB,
respectively.



Motivating example (Allele counting algorithm) — 7/33 —

Let nAA, nAO, nBB and nBO be the unobserved numbers of individuals with
genotypes AA, AO, BB and BO, respectively. They satisfy nAA + nAO = nA and
nBB + nBO = nB.

1. Start with initial estimates p(0) = (p(0)
A , p(0)

B , p(0)
O )

2. Step step k, calculate the expected nAA and nBB, given observed data and p(k)

n(k+1)
AA = E[nAA|nA, p(k)] = nA

p(k)
A p(k)

A

p(k)
A p(k)

A + 2p(k)
O p(k)

A

, n(k+1)
BB =?

3. Update p(k+1). Imagining that n(k+1)
AA , n(k+1)

BB and n(k+1)
AB were actually observed

p(k+1)
A = (2n(k+1)

AA + n(k+1)
AO + n(k+1)

AB )/(2n), p(k+1)
B =?

4. Repeat step 2 and 3 until the estimates converge



EM algorithm: Applications — 8/33 —

Expectation-Mmaximization algorithm (Dempster, Laird, & Rubin, 1977, JRSSB,
39:1–38) is a general iterative algorithm for parameter estimation by maximum
likelihood (optimization problems).

It is useful when

• Some of the random variables involved are not observed, i.e., considered
missing or incomplete.

• Directly maximizing the target likelihood function is difficult, but one can
introduce (missing) random variables so that maximizing the complete-data
likelihood is simple.

Typical problems include:

• Filling in missing data in a sample.

• Discovering the value of latent variables.

• Estimating parameters for finite mixtures model or HMMs.



Description of EM — 9/33 —

Notations:

• Yobs: observed data.

• Ymis: missing/latent data.

• θ: parameters of interests.

• f (Yobs,Ymis|θ): complete data likelihood.

• g(Yobs|θ): observe data likelihood, where g(Yobs|θ) =
∫

f (Yobs,Ymis|θ) dYmis

• c(Ymis|Yobs, θ): conditional likelihood of the missing data, given observed data.



Description of EM (cont.) — 10/33 —

It is difficult to find MLE θ̂ = arg maxθ g(Yobs|θ) = arg maxθ
∫

f (Yobs,Ymis|θ) dymis, but
easy to find θ̂C = arg maxθ f (Yobs,Ymis|θ) had we observed Ymis.

• E step: h(k)(θ) ≡ E
{
log f (Yobs,Ymis|θ)

∣∣∣∣Yobs, θ
(k)

}
• M step: θ(k+1) = arg maxθ h(k)(θ);

Nice properties (compared to Newton-Raphson):

1. Simplicity of implementation.

2. Stable monotone convergence.



Justification of EM — 11/33 —

The E-step creates a surrogate function (often called the “Q function”), which is the
expected value of the log likelihood function, with respect to the conditional
distribution of Ymis given Yobs, under the current estimate of the parameters θ(k).

The M-step maximizes the surrogate function.



Ascent property of EM — 12/33 —

Theorem: At each iteration of the EM algorithm,

log g(Yobs|θ
(k+1)) ≥ log g(Yobs|θ

(k))

and the equality holds if and only if θ(k+1) = θ(k).

Proof: The definition of θ(k+1) gives

E{log f (Yobs,Ymis|θ
(k+1))|Yobs, θ

(k)} ≥ E{log f (Yobs,Ymis|θ
(k))|Yobs, θ

(k)},

which can be expanded to

E{log c(Ymis|Yobs, θ
(k+1))|Yobs, θ

(k)}+log g(Yobs|θ
(k+1)) ≥ E{log c(Ymis|Yobs, θ

(k))|Yobs, θ
(k)}+log g(Yobs|θ

(k)).
(1)

By the non-negativity of the Kullback-Leibler divergence (the relative entropy), i.e.,∫
log

p(x)
q(x)

p(x)dx ≥ 0, for densities p(x), q(x),

we have∫
log

c(Ymis|Yobs, θ
(k))

c(Ymis|Yobs, θ(k+1))
c(Ymis|Yobs, θ

(k)) dymis = E
[
log

c(Ymis|Yobs, θ
(k))

c(Ymis|Yobs, θ(k+1))

∣∣∣∣∣Yobs, θ
(k)

]
≥ 0. (2)



Ascent property of EM (continued) — 13/33 —

Combining (1) and (2) yields

log g(Yobs|θ
(k+1)) ≥ log g(Yobs|θ

(k)),

thus we partially proved the theorem.

Now we need to proof the “if and only if” part. If the equality holds, i.e.,

log g(Yobs|θ
(k+1)) = log g(Yobs|θ

(k)), (3)

by (1) and (2) (both ≥ and ≤)

E{log c(Ymis|Yobs, θ
(k+1))|Yobs, θ

(k)} = E{log c(Ymis|Yobs, θ
(k))|Yobs, θ

(k)}.

The Kullback-Leibler divergence is zero if and only if

log c(Ymis|Yobs, θ
(k+1)) = log c(Ymis|Yobs, θ

(k)). (4)

Combining (3) and (4), we have

log f (Y |θ(k+1)) = log f (Y |θ(k)).

The uniqueness of θ leads to θ(k+1) = θ(k). �



Example 1: Grouped Multinomial Data — 14/33 —

Suppose Y = (y1, y2, y3, y4) has a multinomial distribution with cell probabilities(
1
2

+
θ

4
,
1 − θ

4
,
1 − θ

4
,
θ

4

)
.

Then the probability for Y is given by

L(θ|Y) ≡
(y1 + y2 + y3 + y4)!

y1!y2!y3!y4!

(
1
2

+
θ

4

)y1
(
1 − θ

4

)y2
(
1 − θ

4

)y3 (θ
4

)y4

.

If we use Newton-Raphson to directly maximize f (Y, θ), we need

l̇(θ|Y) =
y1/4

1/2 + θ/4
−

y2 + y3

1 − θ
+

y4

θ

l̈(θ|Y) = −
y1

(2 + θ)2 −
y2 + y3

(1 − θ)2 −
y4

θ2

The probability of the first cell is a trouble-maker!

How to avoid?



Example 1: Grouped Multinomial Data (continued) — 15/33 —

Suppose Y = (y1, y2, y3, y4) has a multinomial distribution with cell probabilities(
1
2

+
θ

4
,
1 − θ

4
,
1 − θ

4
,
θ

4

)
.

Define the complete-data: X = (x0, x1, y2, y3, y4) to have a multinomial distribution
with probabilities (

1
2
,
θ

4
,
1 − θ

4
,
1 − θ

4
,
θ

4

)
,

and to satisfy
x0 + x1 = y1

Observed-data log likelihood

l(θ|Y) ≡ y1 log
(
1
2

+
θ

4

)
+ (y2 + y3) log (1 − θ) + y4 log θ

Complete-data log likelihood

lC(θ|X) ≡ (x1 + y4) log θ + (y2 + y3) log (1 − θ)



Example 1: Grouped Multinomial Data (continued) — 16/33 —

E step: evaluate

x(k+1)
1 = E[x1|Y, θ(k)] = y1

θ(k)/4
1/2 + θ(k)/4

M step: maximize complete-data log likelihood with x1 replaced by x(k+1)
1

θ(k+1) =
x(k+1)

1 + y4

x(k+1)
1 + y4 + y2 + y3



Example 1: Grouped Multinomial Data (continued) — 17/33 —

We observe Y = (125, 18, 20, 34) and start EM with θ(0) = 0.5.

Parameter update Convergence to θ̂ Convergence rate
k θ(k) θ(k) − θ̂ (θ(k) − θ̂)/(θ(k−1) − θ̂)
0 .500000000 .126821498
1 .608247423 .018574075 .1465
2 .624321051 .002500447 .1346
3 .626488879 .000332619 .1330
4 .626777323 .000044176 .1328
5 .626815632 .000005866 .1328
6 .626820719 .000000779 .1328
7 .626821395 .000000104
8 .626821484 .000000014
θ̂ .626821498 Stop



Example 2: Normal mixtures — 18/33 —

Consider a J-group normal mixture, where x1, . . . , xn ∼
∑J

j=1 p jφ(xi|µ j, σ j). Here
φ(.|µ, σ) is the normal density. This is the clustering/finite mixture problem in which
EM is typically used for.

Define indicator variable for observation i: (yi1, yi2, . . . , yiJ) follows a multinomial
distribution (with trail number=1) and cell probabilities p = (p1, p2, . . . , pJ). Clearly,∑

j yi j = 1. Given yi j∗ = 1 and yi j = 0 for j , j∗, we assume

xi | yi j∗ = 1 ∼ N(µ j∗, σ j∗).

Marginally, xi ∼
∑J

j=1 p jφ(xi | µ j, σ j). (Check this.)



In this problem, {xi} are the observed data; {xi, yi1, . . . , yiJ} are the complete data.

Observed-data log likelihood (have a sum within log, trouble)

l(µ,σ, p | x) ≡
∑

i

log


J∑

j=1

p jφ(xi | µ j, σ j)


Complete-data log likelihood (with known group assignments, easy)

lC(µ,σ, p | x, y) ≡
∑

i j

yi j

{
log p j + log φ(xi | µ j, σ j)

}
Practice to derive the above.



Example 2: Normal mixtures (continued) — 20/33 —

Complete-data log likelihood:

lC(µ,σ, p | x, y) ≡
∑

i j

yi j{log p j − (xi − µ j)2/(2σ2
j) − logσ j}

E step: evaluate for i = 1, . . . , n and j = 1, . . . , J,

ω(k)
i j ≡ E[yi j | xi,µ

(k),σ(k), p(k)]

= Pr(yi j = 1 | xi,µ
(k),σ(k), p(k))

=
p(k)

j φ(xi | µ
(k)
j , σ

(k)
j )∑

l p(k)
l φ(xi | µ

(k)
l , σ

(k)
l )

This is the posterior probability for observation i being in group j. From this, we can
get the Q function. (Try it.)

Note: it’s easy to get Q function in this case, because lC is linear to the data, Here
we only need to evaluate E[yi j|xi,µ

(k),σ(k), p(k)] and plug in to get E[lC]. In some
cases, we need to evaluate other expectations in order to get a Q function (see the
mixed effect model example later).



M step: maximize complete-data log likelihood with yi j replaced by ωi j

p(k+1)
j = n−1

∑
i

ω(k)
i j

µ(k+1)
j =

∑
i

ω(k)
i j xi

/∑
i

ω(k)
i j

σ(k+1)
j =

√∑
i

ω(k)
i j

(
xi − µ

(k)
j

)2
/∑

i

ω(k)
i j

Practice: When all groups share the same variance (σ2), what’s the M-step update
for σ2?

σ(k+1) =

√√√∑
j

∑
i

ω(k)
i j x2

i −

∑
i

ω(k)
i j xi

2 ∑
i

ω(k)
i j

 /
n



Example 2: two-component normal mixtures in R — 22/33 —

### two component EM

### pN(0,1)+(1-p)N(4,1)

EM_TwoMixtureNormal = function(p, mu1, mu2, sd1, sd2, X, maxiter=1000, tol=1e-5)

{

diff=1

iter=0

while (diff>tol & iter<maxiter) {

## E-step: compute omega:

d1=dnorm(X, mean=mu1, sd=sd1) # compute density in two groups

d2=dnorm(X, mean=mu2, sd=sd2)

omega=d1*p/(d1*p+d2*(1-p))

## M-step: update p, mu and sd

p.new=mean(omega)

mu1.new=sum(X*omega) / sum(omega)

mu2.new=sum(X*(1-omega)) / sum(1-omega)

resid1=X-mu1

resid2=X-mu2;



sd1.new=sqrt(sum(resid1ˆ2*omega) / sum(omega))

sd2.new=sqrt(sum(resid2ˆ2*(1-omega)) / sum(1-omega))

## calculate diff to check convergence

diff=sqrt(sum((mu1.new-mu1)ˆ2+(mu2.new-mu2)ˆ2

+(sd1.new-sd1)ˆ2+(sd2.new-sd2)ˆ2))

p=p.new;

mu1=mu1.new;

mu2=mu2.new;

sd1=sd1.new;

sd2=sd2.new;

iter=iter+1;

cat("Iter", iter, ": mu1=", mu1.new, ", mu2=",mu2.new, ", sd1=",sd1.new,

", sd2=",sd2.new, ", p=", p.new, ", diff=", diff, "\n")

}

}



Example 2: normal mixtures in R (continued) — 24/33 —

> ## simulation

> p0=0.3;

> n=5000;

> X1=rnorm(n*p0); # n*p0 indiviudals from N(0,1)

> X2=rnorm(n*(1-p0), mean=4) # n*(1-p0) individuals from N(4,1)

> X=c(X1,X2) # observed data

> hist(X, 50)
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Example 2: Normal mixtures in R (continued) — 25/33 —

> ## initial values for EM

> p=0.5

> mu1=quantile(X, 0.1);

> mu2=quantile(X, 0.9)

> sd1=sd2=sd(X)

> c(p, mu1, mu2, sd1, sd2)

0.5000000 -0.3903964 5.0651073 2.0738555 2.0738555

> EM_TwoMixtureNormal(p, mu1, mu2, sd1, sd2, X)

Iter 1: mu1=0.8697, mu2=4.0109, sd1=2.1342, sd2=1.5508, p=0.3916, diff=1.7252

Iter 2: mu1=0.9877, mu2=3.9000, sd1=1.8949, sd2=1.2262, p=0.3843, diff=0.4345

Iter 3: mu1=0.8353, mu2=4.0047, sd1=1.7812, sd2=1.0749, p=0.3862, diff=0.2645

Iter 4: mu1=0.7203, mu2=4.0716, sd1=1.6474, sd2=0.9899, p=0.3852, diff=0.2070

...

Iter 44: mu1=-0.0048, mu2=3.9515, sd1=0.9885, sd2=1.0316, p=0.2959, diff=1.9e-05

Iter 45: mu1=-0.0048, mu2=3.9515, sd1=0.9885, sd2=1.0316, p=0.2959, diff=1.4e-05

Iter 46: mu1=-0.0049, mu2=3.9515, sd1=0.9885, sd2=1.0316, p=0.2959, diff=1.1e-05

Iter 47: mu1=-0.0049, mu2=3.9515, sd1=0.9885, sd2=1.0316, p=0.2959, diff=8.7e-06



In class practice (time allows): Poisson mixture — 26/33 —

Using the same notations as in Normal mixture model. now assume the data is
from a mixture of Poisson distributions.
Consider x1, . . . , xn ∼

∑J
j=1 p jφ(xi|λ j), where φ(.|λ) is the Poisson density. Again use

yi j to indicate group assignments, (yi1, yi2, . . . , yiJ) follows a multinomial distribution
with cell probabilities p = (p1, p2, . . . , pJ).

Now the observed-data log likelihood

l(λ, p|x) ≡
∑

i

log


J∑

j=1

p j(xi log λ j − λ j)


Complete-data log likelihood

lC(λ, p|x, y) ≡
∑

i j

yi j

{
log p j + (xi log λ j − λ j)

}

Derivate the EM iterations!



Example 3: Mixed-effects model (time permitting) — 27/33 —

Mixed effect model is often used in clustered data and repeated measurements,
such as longitudinal data.

For a dataset of i = 1, . . . ,N subjects, each with ni observations. let Yi be the
outcome (ni × 1), Xi be the “fixed effect” design matrix (ni × p), and Zi be the
“random effect” design matrix (ni × q), . The linear mixed effect model is given by

Yi = Xiβ + Zibi + εi, bi ∼ Nq(0,D), εi ∼ Nni(0, σ
2Ini), bi, εi independent

• bi is a vector of random effect coefficients, which cannot be “estimated”
(because they don’t exist). It is characterized by its variance D.

• The model parameters are (β,D, σ2)



• The Observed-data log-likelihood is

l(β,D, σ2|Y1, . . . ,YN) ≡
∑

i

{
−

1
2

(Yi − Xiβ)′Σ−1
i (Yi − Xiβ) −

1
2

log |Σi|

}
,

where Σi = ZiDZ′i + σ2Ini.

• This likelihood can be directly maximized for (β,D, σ2), but difficult.

– Since there are some constraints on the parameters (σ2 needs to be positive,
D needs to be positive definite), this needs to be maximized by restricted
maximum likelihood (REML).

• This can be fit by EM, treating bi’s as missing data.



Example 3: Mixed-effects model (continued) — 29/33 —

Complete-data log-likelihood
Note the equivalence of (εi, bi) and (Yi, bi) and the fact that(

bi

εi

)
= N

{(
0
0

)
,

(
D 0
0 σ2Ini

)}

lC(β,D, σ2|ε1, . . . , εN, b1, . . . , bN) ≡
∑

i

{
−

1
2

b′iDbi −
1
2

log |D| −
1

2σ2ε
′
i εi −

ni

2
logσ2

}
The parameter that maximizes the complete-data log-likelihood is obtained as,
conditional on other parameters,

D = N−1
N∑

i=1

bib′i

σ2 =

 N∑
i=1

ni


−1 N∑

i=1

ε′i εi

β =

 N∑
i=1

X′i Xi


−1 N∑

i=1

X′i (Yi − Zibi).



Example 3: Mixed-effects model (continued) — 30/33 —

E step: to evaluate

E
(
bib′i | Yi, β

(k),D(k), σ2(k)
)

E
(
ε′i ε | Yi, β

(k),D(k), σ2(k)
)

E
(
bi | Yi, β

(k),D(k), σ2(k)
)

We use the relationship

E(bib′i | Yi) = E(bi | Yi)E(b′i | Yi) + Var(bi | Yi).

Thus we need to calculate E(bi | Yi) and Var(bi | Yi). Recall the conditional
distribution for multivariate normal variables(

Yi

bi

)
= N

{(
Xiβ

0

)
,

(
ZiDZ′i + σ2Ini ZiD

DZ′i D

)}
,

Let Σi = ZiDZ′i + σ2Ini. We known that

E(bi | Yi) = 0 + DZ′i Σ
−1
i (Yi − Xiβ)

Var(bi | Yi) = D − DZ′i Σ
−1
i ZiD.



Example 3: Mixed-effects model (continued) — 31/33 —

Similarly, We use the relationship

E(ε′i εi | Yi) = E(ε′i | Yi)E(εi | Yi) + Var(εi | Yi).

We can derive (
Yi

εi

)
= N

{(
Xiβ

0

)
,

(
ZiDZ′i + σ2Ini σ

2Ini

σ2Ini σ2Ini

)}
.

Let Σi = ZiDZ′i + σ2Ini. Then we have

E(εi | Yi) = 0 + σ2Σ−1
i (Yi − Xiβ)

Var(εi | Yi) = σ2Ini − σ
4Σ−1

i .

M step

D(k+1) = N−1
N∑

i=1

E[bib′i | Yi, β
(k),D(k), σ2(k))]

σ2(k+1) =

 N∑
i=1

ni


−1 N∑

i=1

E[ε′i εi | Yi, β
(k),D(k), σ2(k)]

β(k+1) =

 N∑
i=1

X′i Xi


−1 N∑

i=1

X′i E[Yi − Zibi | Yi, β
(k),D(k), σ2(k)].



Issues — 32/33 —

1. Stopping rules

• |l(θ(k+1)) − l(θ(k))| < ε for m consecutive steps, where l(θ) is observed-data
log-likelihood.

This is bad! l(θ) may not change much even when θ does.

• ||θ(k+1) − θ(k)|| < ε for m consecutive steps

This could run into problems when the components of θ are of very different
magnitudes.

• |θ(k+1)
j − θ(k)

j | < ε1(|θ(k)
j | + ε2) for j = 1, . . . , p



Issues (continued) — 33/33 —

2. Local vs. global max

• There may be multiple modes.

• EM may converge to a saddle point.

• Solution: Multiple starting points.

3. Starting points

• Use information from the context.

• Use a crude method (such as the method of moments).

4. Slow convergence

• EM can be painfully slow to converge near the maximum.

• Solution: Switch to another optimization algorithm when you get near the
maximum.


