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e Modern technologies often produce “high-dimensional data” with large
number of variables.

¢ In high-dimensional data, most of the variables (features) are irrelevant,
redundant, or noisy.

¢ |n “dimension reduction”, we want to use a small number of features to
capture most information in data. Major approaches include:

— Feature selection: select a subset of the original variables.

— Feature projection: transforms the data from high to low-dimensional
space. The features are not among the original variables, but are
transformation of the original variables.



Dimension reduction (cont.) — 2/36 —

e Examples of Common Feature projection methods:
— XCA: principal component analysis (PCA), independent component
analysis (ICA).
— Embedding methods: Locally-linear embedding (LLE), t-distributed

stochastic neighbor embedding (tSNE), Uniform Manifold Approximation
and Projection (UMAP), etc.

— Non-negative Matrix Factorization (NMF).
— Local Dirichlet Allocation (LDA).
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Problem setup:
Given a non-negative matrix V, find non-negative matrices W and H such that:

V~WH

History:
1. Originally proposed in chemometrics to extract information from chemical
systems in the 1970s.

2. Later became well-known after Lee & Seung (Nature, 1999; NIPS, 2001)
proposed algorithms to conduct NMF and studied their statistical properties.

3. Gained popularity recently among computer vision, audio signal processing,
bioinformatics, etc.
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Factorization:
e Factorize m x n matrix V into an m x r matrix W and r X n matrix H.
e Usually r is chosen to be smaller than n, so that W and H have lower
dimension than original matrix V.
Interpretation:
e NMF can be rewritten by column as:
v Wh
where v and & are the corresponding columns of V and H.

e Each v (one observed data point) is approximated by a linear combination of
the columns of W, weighted by the elements of 4.
— W: Basis vectors — columns of W spans the low dimensional space.

— H: The coordinates of the projection of the original data to the low
dimensional space.
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e To find an approximate factorization V ~ WH, one need to define the cost
function to quantify the quality of approximation.

e Commonly, the square of the Euclidean distance between A and B is
adopted:

lA-BIP = ) (A - By’
i

Therefore, we can formulate NMF as the following optimization problem:

Problem:

e Minimize ||V — WH|> with respect to W and H, subject to the constraints that
W, H>0



Properties — 6/36 —

e Although ||V — WH]||? is convex in W only or H only, it is not convex in both
variables together.

e Therefore, one can not expect an algorithm finding the global minima.

e Gradient descent is the simple technique to find at least the local minima.
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Input: Non-negative matrix V € R7>" and factorization rank r.
Outputs: W, H >0s.t. V~ WH

Algorithm:
1. (Starting point) Generate some initial matrices W® > 0 and H© > 0;

2. (Iteration) Forr=1,2,...do

(VH"DT),
ik (W(Z—I)H(t—l)H(t—l)T)ik

) WDV,
kj = "Tkj (W(t—l)Tw(t—l)H(t—l))kj
forallie{1,2,..,m}, je{l1,2,...,n},ke{l,2,...,r}

3. (Stop criteria) Stop iteration if W and H are at a stationary point.
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Note
e Initialization

— K-means can help to generate initial matrices W,

— Can use Quadratic Programmming (QP) to get the initial matrices H, by
solving V = WO H.

— Can use existing knowledge or cross-validation to find r.
e lterations

— The Euclidean distance ||V — WH|| is non-increasing under the update
rules.

— The proof for non-increasing was provided in Lee & Seung, NIPS 2001,
using an auxiliary function similar to that used in the EM algorithm.
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One can also use Quadratic Programming (QP) in the updating steps:

efForr=1,2,...do

W — solve{V = WOH"D. w® > ()

HY « solvelV = WOHY; H" > 0}

Each step is a QP problem.

The QP updates are easier to implement and modify if there are additional
restrictions you want to put on W and/or H.
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The NMF package provide functions (nmf) to solve NMF problems.

R Documentation
nmf {NMF}
Running NMF algorithms

Description

The function nmf 1s a S4 generic defines the main interface to run
NMF algorithms within the framework defined in package NMF.

It has many methods that facilitates applying, developing and testing

NMF algorithms.

The package vignette vignette (’NMF’) contains an introduction to the

interface, through a sample data analysis.
Usage

nmf (x, rank, method, ...)
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> library (NMF)

# random data
X <— rmatrix (20,10)

# run default algorithm with rank 2

res <-— nmf(x, 2)

# The result is an object of classNMFfit
> fit (res)

<Object of class:NMFstd>

features: 20

basis/rank: 2

samples: 10
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# get matrix W using basis () function

w <— basis(res)

dim (w)
[1] 20 2
# get matrix H using coef () function

h <- coef (res)
dim (h)
[1] 2 10

# Additionally, several build-in algorithms are available
# to choose from. Use (method) argument to specify algorithm
> nmfAlgorithm ()
[1] "brunet" "KL" "lee" "Frobenius" "offset" "nsNME

[7] "ls—nmf" "pe—nmt" "s1NME" "snmf/r" "snmf/1"

# for example

res <- nmf(x, 2, method = "lee")
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Guillamet et al. (Artificial Intelligence, 2002) conducted facial feature extraction.
Each column of data matrix X € R is a vectorized gray-level image of a face,
with (i, j)-th entry of X being the intensity of the ith pixel in the jth face.
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e Columns in W: Basis images (mouth, nose, mustache etc.), after converting
back to matrix of the same size as face pictures.

e H: Weights of basis images.
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Brunet et al. (PNAS, 2004) Metagenes and molecular pattern discovery using
matrix factorization.

Deconvolute gene expression data (A) into metagene profiles (W) and
proportions (H).
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NMF Application 3: DNA methylation — 15/36 —

Houseman et al. (BMC Bioinformatics, 2016): deconvolutes DNA methylation
data (Y) into cell-type specific profile (M) and cell-type proportions (Q7).
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Latent Dirichlet Allocation (LDA) — 17/36 —

Modeling text corpora:
e What are the topics in a document?
e Given a document, how to find other documents with similar topics?

e How to classify the documents?
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Latent Dirichlet Allocation (LDA):
e A generative probabilistic model for text corpora.
e Proposed by Blei et al. (IMLR, 2003), highly cited.
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Following terms are introduced in modeling text corpora data:

e A word is the basic unit of discrete data. In a vocabulary indexed by
{1,...,V}, aword w in the v index location of a vocabulary is an unit-basis
vector of length Vst. wy=1andw* =0foru # v

e A document is a sequence of N words denoted by w = (wy, wa, ..., wy),
where w, is the n™ word in the sequence.

e A corpus is a collection of M documents denoted by D = {wy,w», ..., was}
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Basic idea:
e Documents are represented as random mixtures over latent topics.

e Each topic has its own word usage.

Model: for each document w in a corpus D:

1. Choose document length N ~ Poisson(¢)
2. Choose topic allocation 8 ~ Dir(a)
3. For each of the N words w,,:

(a) Choose a topic z, ~ Multinomial(6)

(b) Choose a word w,, from p(w,|z,,8), @ multinomial probability based on the
selected topic z, and the corresponding word usage frequency .
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1. The observed data are the words in all documents.

2. N: the number of words in a document.
V: the vocabulary size (total number of different words).
K: the number of topics.

3. N is an ancillary variable — independent of all other data generating
variables (6 and z)

4. Dimensionality K of Dirichlet distribution is assumed known and fixed.
5. a (a K-vector) is the hyper-prior for the proportion of topics.

6. 8 (a K x V matrix) is the word usage probabilities for the K topics.
Bij = p(w’/ = 1|7 = 1). Each row of g sum up to 1.

7. 6 (a K-vector) is the proportion of topics for a document. For example, a
document can be “70% politics and 30% economy”.
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The probability density function of 6 from Dirichlet distribution:

F(leil a/i))ga’l_l o HCL’K—I
15, T(a) :
where I'() is the Gamma function.

pOla) =

Given parameters «a, 3, for one document, the joint distribution of a topic mixture
0, a set of N topics z, and a set of N words w is as follow:

N
. z.wl, ) = p(6la) | | pzl®)pwalzn. B)
n=1



Distributions (continued) — 22/36 —

To get the marginal distribution of a document, we integrate over 8 and sum
over all possible z. The marginal document distribution of w is:

N
pwla,B) = f p(é'la)(l_[ Zp(zn|e>p<wn|zn,ﬁ>) d

n=1 Zn

Taking the product of marginal probabilities of single documents, we obtain the
probability of a corpus:

M N4
pDla.p) = | | f p(edm)[ﬂZp(zdn|9d>p<wdn|zdn,ﬁ>] dbq
d=1

n=1 zgn

M: Number of documents.
6,: Topic frequencies for document d.



Graphical model representation — 23/36 —
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The boxes are “plates” representing replicates.

e Corpus-level parameters: « and 8 are sampled once per corpus.
e Document-level variables: 6, are sampled once per document.

e Word-level variables: z;, and w,, are sampled once per word.
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Key problem: the posterior distribution of the hidden variables 6, z, given a
document.

By Bayes theorem, we have:

pO,z,wla, B)
pwla,B)

p0,zlw, e, B) =

Challenge: p(6, zlw, @, B) is intractable because of the coupling between 6 and s
in p(wla, B):

V

Wl = ~Zm 2 ]_[e“l ]ﬁ[i]—k 0,8,)" | de
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n=1 i=1 j=I

Solution: using approximate inference algorithms (variational inference).
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Given a distribution p(z|x):
e The main idea is to pick a (variational) distribution ¢(z) that is “similar” to p.
e A popular method to handle difficult distributions.
e A faster alternative to MCMC.

The choice of g:
e The most important characteristic of ¢ is simplicity: it's easy to work on.

e A popular choice of g: g(z1,22,...,zx) = [1;9(z)). This is know as the mean
field approximation.

e The variational distribution is estimated by (kind of) minimizing the KL
divergence between p and g.
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We have:

log p(w|a, B) = log JFZ p, z,w|a,5)do

a Z p(0, z,wla, B)q(0, zly, §)
; q(0,zly, )

= f > 46, 2ly, ¢) log p(6, 2, wla, B)d6 - f > 46, 2ly, ¢)log q(6, zly, $)d6

= E4llog p(0, z,wla, B)] — E4llog q(6, zly, ¢)]

= logJ do

The inequality is from Jensen’s inequality with expectation on ¢(6, z|y, ¢).

This equation holds for any choice of ¢(6, z|y, ¢).



Inference (continued) — 27/36 —

Let RHS
Ly, ¢;,B) = Eyllog p(6, z, wler, B)] — E4llog q(6, zly, ¢)]
Let 2(.]|.) be the KL divergence
We have (after some derivation):
log p(Wla, B) = L(y, ¢; @, B) + Z(q(6, zly, §)lIp(6, zlw, @, B))
This suggests that minimizing the KL divergence (between the variational

posterior ¢(0, z|y, ¢) and true posterior p(0, zlw, @, B)) is equivalent to maximizing
L(v, ¢; a, B), which is known as the evidence lower bound (ELBO).
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Using L(v, ¢; a, 8), approximate empirical Bayes estimates for & and g can be
found via an alternating variational EM algorithm by iteratively maximizing L
w.r.t. y and ¢ for fixed & and 3, and vice versa.

1. (E-step) Find optimal variational parameters {y, ¢’ : d € D} for each
document.
(v", ¢") = argming, 5 2(q(0, zly, P)lIp(0, zlw, @, B))

which is equivalent to maximizing L(y, ¢; «, 8) with fixed «, .

2. (M-step) Maximize the document marginal log likelihood lower bound
L(vy, ¢; a, B) with respect to a, 8 given the optimal y, ¢ found in E-step.

The discussion so far is for a single document. For a corpus of documents
D = {wy,w,...,wy}, the marginal log likelihood is: (e, 8) = 3 log p(w,la, B).
The expansion is trivial and won'’t be discussed here.
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Up till now ¢(0, zly, ¢) can be any distribution. We choose a simple model for
variational posterior:

N
96, 21y, 9) = q0y) | | azalen)
n=1

v: Dirichlet parameter of length K
b1, ..., o,- Mmultinomial parameters of length vV

With ¢(6, z|y, ¢), we now proceed with the parameter estimation. Recall that our
goal is to iteratively maximize L(v, ¢; a,8) with fixed «, 8 (E-step) and fixed vy, ¢
(M-step). We start by expanding L(y, ¢; a, B):

Ly, ¢;a,p) = E llog p(6la)] + E,[log p(z|6)] + E [log p(w|z, B)]
— E [log g(6)] — E4[log g(z)]
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By computing the derivatives and setting them to zero, we obtain the following
pair of update equations (details in Append A.3 from Blei, 2003):

¢m’ X ﬁlwnexp{Eq[log(el)h/]}

N
vi=q;+ Z Oni
n=1

They have intuitive interpretation:

e The Dirichlet update is posterior Dirichlet given expected observations taken
under variational distribution, E[z,|¢,]

e The multinomial update is akin to using Bayes’ theorem,
p(z.w,) < p(w,lz,) p(z,), Where p(z,) Is approximated by the exponential of
expected value of its log under variational distribution
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Take L(y, ¢; a,B) w.r.t. a; gives:

81; K M K
T M(\P(JZ:; ;) - ¥(ay) + ;c?(m - ‘1’<JZ; Yai)

This derivative depends on «;, where j # i. Therefore one can use iterative
method to find the maximal « (e.x. Newton-Raphson).

Take L(y, ¢; a, B) w.r.t. B, the update of 8 can be written out analytically:

M Ny
x ]
pij « Z Z D aniWan

d=1 n=1
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e Document classification: the choice of feature is challenging.
e Using all words as features in not ideal (noisy).

e From LDA, the estimated topic allocation in each document, i.e., the
posterior Dirichlet parameters y(w), can be used as feature. This reduces
the dimension from N to K.

e The LDA features can be used as predictors for off-the-shelf machine
learning tools.



Example
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100-topic LDA model on 16,000 documents from TREC AP corpus.

“Arts” “Budgets” “Children” “Education”
NEW MILLION CHILDREN SCHOOL

FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL YEAR WORK PUBLIC

BEST SPENDING PARENTS TEACHER
ACTOR NEW SAYS BENNETT
FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE NAMPHY
OPERA MONEY MEN STATE
THEATER PROGRAMS PERCENT PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITI

The William Randolph Hearst Foundation will give 51.25 million to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical research, education
and the social services,” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the grants. Lincoln Center’s share will be $200.000 for its new building. which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400.000 each. The Juilliard School, where music and
the performing arts are taught, will get $250,000. The Hearst Foundation, a leading supporter
of the Lincoln Center Consolidated Corporate I'und, will make its usual annual $100.000
donation, too.

e Top figure: some top-ranked words for a few topics.

e Bottom figure: topic assignment for words in a new testing document.
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The topicmodels package provide function (LDA) to implement LDA in R.

> library (topicmodels)
> data ("AssoclatedPress")

> AssocilatedPress

<<DocumentTermMatrix (documents: 2246, terms: 10473)>>
Non—-/sparse entries: 302031/23220327

Sparsity : 99%

Maximal term length: 18

Weighting : term frequency (tf)

# set a seed so that the output of the model is predictable
> ap_lda <- LDA(AssociatedPress, k = 2, control = list (seed = 1234))

V

ap_lda
A LDA_VEM topic model with 2 topics.



> posterior (ap_lda, AssociatedPress([25:30,]) Stopics

1 2
[1,] 0.8627618111 0.13723819
[2,] 0.5162086590 0.48379134
[3,] 0.0009150456 0.99908495
[(4,] 0.7011852917 0.29881471
[5,] 0.0062583703 0.99374163
[6,] 0.9582044216 0.04179558
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e Blei, D. M., Ng, A. Y., & Jordan, M. |. (2003). Latent dirichlet allocation.
Journal of machine Learning research, 3(Jan), 993-1022.



