
Dimension reduction

October 13, 2022

Dimension reduction — 1/36 —

• Modern technologies often produce “high-dimensional data” with large
number of variables.

• In high-dimensional data, most of the variables (features) are irrelevant,
redundant, or noisy.

• In “dimension reduction”, we want to use a small number of features to
capture most information in data. Major approaches include:

– Feature selection: select a subset of the original variables.

– Feature projection: transforms the data from high to low-dimensional
space. The features are not among the original variables, but are
transformation of the original variables.

Dimension reduction (cont.) — 2/36 —

• Examples of Common Feature projection methods:

– xCA: principal component analysis (PCA), independent component
analysis (ICA).

– Embedding methods: Locally-linear embedding (LLE), t-distributed
stochastic neighbor embedding (tSNE), Uniform Manifold Approximation
and Projection (UMAP), etc.

– Non-negative Matrix Factorization (NMF).

– Local Dirichlet Allocation (LDA).

Non-negative Matrix Factorization — 3/36 —

Problem setup:
Given a non-negative matrix V, find non-negative matrices W and H such that:

V ≈ WH

History:

1. Originally proposed in chemometrics to extract information from chemical
systems in the 1970s.

2. Later became well-known after Lee & Seung (Nature, 1999; NIPS, 2001)
proposed algorithms to conduct NMF and studied their statistical properties.

3. Gained popularity recently among computer vision, audio signal processing,
bioinformatics, etc.

Factorization details — 4/36 —

Factorization:

• Factorize m × n matrix V into an m × r matrix W and r × n matrix H.

• Usually r is chosen to be smaller than n, so that W and H have lower
dimension than original matrix V.

Interpretation:

• NMF can be rewritten by column as:

v ≈ Wh

where v and h are the corresponding columns of V and H.

• Each v (one observed data point) is approximated by a linear combination of
the columns of W, weighted by the elements of h.

– W: Basis vectors – columns of W spans the low dimensional space.

– H: The coordinates of the projection of the original data to the low
dimensional space.

Cost functions — 5/36 —

• To find an approximate factorization V ≈ WH, one need to define the cost
function to quantify the quality of approximation.

• Commonly, the square of the Euclidean distance between A and B is
adopted:

||A − B||2 =
∑

i j

(Ai j − Bi j)2

Therefore, we can formulate NMF as the following optimization problem:

Problem:

• Minimize ||V −WH||2 with respect to W and H, subject to the constraints that
W, H ≥ 0

Properties — 6/36 —

• Although ||V −WH||2 is convex in W only or H only, it is not convex in both
variables together.

• Therefore, one can not expect an algorithm finding the global minima.

• Gradient descent is the simple technique to find at least the local minima.

General NMF algorithm — 7/36 —

Input: Non-negative matrix V ∈ �m×n
+ and factorization rank r.

Outputs: W, H ≥ 0 s.t. V ≈ WH

Algorithm:

1. (Starting point) Generate some initial matrices W (0) ≥ 0 and H(0) ≥ 0;

2. (Iteration) For t = 1, 2, ... do

W (t)
ik = W (t−1)

ik
(VH(t−1)T)ik

(W (t−1)H(t−1)H(t−1)T)ik

H(t)
k j = H(t−1)

k j

(W (t−1)T V)k j

(W (t−1)T W (t−1)H(t−1))k j

for all i ∈ {1, 2, ...,m}, j ∈ {1, 2, ..., n}, k ∈ {1, 2, ..., r}.

3. (Stop criteria) Stop iteration if W and H are at a stationary point.

Algorithm (continued) — 8/36 —

Note

• Initialization

– K-means can help to generate initial matrices W (0).

– Can use Quadratic Programmming (QP) to get the initial matrices H(0), by
solving V = W (0)H.

– Can use existing knowledge or cross-validation to find r.

• Iterations

– The Euclidean distance ||V −WH|| is non-increasing under the update
rules.

– The proof for non-increasing was provided in Lee & Seung, NIPS 2001,
using an auxiliary function similar to that used in the EM algorithm.

Alternative algorithm — 9/36 —

One can also use Quadratic Programming (QP) in the updating steps:

• For t = 1, 2, ... do

W (t) ← solve{V = W (t)H(t−1); W (t) ≥ 0}

H(t) ← solve{V = W (t)H(t); H(t) ≥ 0}

Each step is a QP problem.

The QP updates are easier to implement and modify if there are additional
restrictions you want to put on W and/or H.

NMF in R — 10/36 —

The NMF package provide functions (nmf) to solve NMF problems.

R Documentation

nmf {NMF}

Running NMF algorithms

Description

The function nmf is a S4 generic defines the main interface to run

NMF algorithms within the framework defined in package NMF.

It has many methods that facilitates applying, developing and testing

NMF algorithms.

The package vignette vignette(’NMF’) contains an introduction to the

interface, through a sample data analysis.

Usage

nmf(x, rank, method, ...)

Example: NMF in R — 11/36 —

> library(NMF)

random data

x <- rmatrix(20,10)

run default algorithm with rank 2

res <- nmf(x, 2)

The result is an object of classNMFfit

> fit(res)

<Object of class:NMFstd>

features: 20

basis/rank: 2

samples: 10

Example: NMF in R (continued) — 12/36 —

get matrix W using basis() function

w <- basis(res)

dim(w)

[1] 20 2

get matrix H using coef() function

h <- coef(res)

dim(h)

[1] 2 10

Additionally, several build-in algorithms are available

to choose from. Use (method) argument to specify algorithm

> nmfAlgorithm()

[1] "brunet" "KL" "lee" "Frobenius" "offset" "nsNMF"

[7] "ls-nmf" "pe-nmf" "siNMF" "snmf/r" "snmf/l"

for example

res <- nmf(x, 2, method = "lee")

NMF Application 1: Image processing — 13/36 —

Guillamet et al. (Artificial Intelligence, 2002) conducted facial feature extraction.
Each column of data matrix X ∈ �p×n

+ is a vectorized gray-level image of a face,
with (i, j)-th entry of X being the intensity of the ith pixel in the jth face.

• Columns in W: Basis images (mouth, nose, mustache etc.), after converting
back to matrix of the same size as face pictures.

• H: Weights of basis images.

NMF Application 2: Gene expression — 14/36 —

Brunet et al. (PNAS, 2004) Metagenes and molecular pattern discovery using
matrix factorization.

Deconvolute gene expression data (A) into metagene profiles (W) and
proportions (H).

the genes (rather than the samples) according to the entries of
W. We do not focus on this view here, but it is clearly of great
interest.

NMF provides a natural way to cluster genes and samples,
because it involves factorization into matrices with nonnegative
entries. By contrast, principal component analysis provides a
simple way to reduce dimensionality but requires that the
matrices be orthogonal, which typically requires linear combi-
nation of components with arbitrary signs. NMF is more difficult
algorithmically because of the nonnegativity requirement but
provides a more intuitive decomposition of the data.

NMF Algorithm. Given a positive matrix A of size N ! M and a
desired rank k, the NMF algorithm iteratively computes an
approximation A " WH, where W and H are nonnegative
matrices with respective sizes N ! k and k ! M. The method
starts by randomly initializing matrices W and H, which are
iteratively updated to minimize a divergence functional. The
functional is related to the Poisson likelihood of generating A
from W and H, D # $i,j Ai,jlog(Ai,j!(WH)i,j) % Ai,j & (WH)i,j. At
each step, W and H are updated by using the coupled divergence
equations (10):

Hau 4 Hau

"
i

WiaAiu!'WH(iu

"
k

Wka

Wia 4 Wia

"
u

HauAiu!'WH(iu

"
v

Hav

A simpler version of the NMF update equations that minimizes
the norm of the residual ##A-WH##2 has also been derived in ref.
10. When applying the method to a medulloblastoma dataset

(see Results), where we knew the underlying substructure, we
observed that the divergence-based update equations were able
to capture a subclass that the norm-based update equations did
not. This is why our implementation of NMF uses the divergence
form (see Data Sets and software).

Model Selection. For any rank k, the NMF algorithm groups the
samples into clusters. The key issue is to tell whether a given rank
k decomposes the samples into ‘‘meaningful’’ clusters. For this
purpose, we developed an approach to model selection that
exploits the stochastic nature of the NMF algorithm. It is
based on our group’s previous work on consensus clustering
(11) but adds a quantitative evaluation for robustness of the
decomposition.

The NMF algorithm may or may not converge to the same
solution on each run, depending on the random initial condi-
tions. If a clustering into k classes is strong, we would expect that
sample assignment to clusters would vary little from run to run.
(Note that sample assignment depends only on the relative
values in each column of H.)

For each run, the sample assignment can be defined by a
connectivity matrix C of size M ! M, with entry cij # 1 if samples
i and j belong to the same cluster, and cij # 0 if they belong to
different clusters. We can then compute the consensus matrix, C! ,
defined as the average connectivity matrix over many clustering
runs. (We select the number of runs by continuing until C!
appears to stabilize; we typically find that 20–100 runs suffice in
the applications below.) The entries of C! range from 0 to 1 and
reflect the probability that samples i and j cluster together. If a
clustering is stable, we would expect that C will tend not to vary
among runs, and that the entries of C! will be close to 0 or 1. The
dispersion between 0 and 1 thus measures the reproducibility of
the class assignments with respect to random initial conditions.
By using the off-diagonal entries of C! as a measure of similarity
among samples, we can use average linkage HC to reorder the
samples and thus the rows and columns of C! .

We then evaluate the stability of clustering associated with a
given rank k. Although visual inspection of the reordered matrix
C! can provide substantial insight (see Fig. 3), it is important to
have quantitative measure of stability for each value of k. We
propose a measure based on the cophenetic correlation coeffi-
cient, !k(C!), which indicates the dispersion of the consensus
matrix C! . !k is computed as the Pearson correlation of two
distance matrices: the first, I-C! , is the distance between samples
induced by the consensus matrix, and the second is the distance
between samples induced by the linkage used in the reordering
of C! . In a perfect consensus matrix (all entries # 0 or 1), the
cophenetic correlation coefficient equals 1. When the entries are
scattered between 0 and 1, the cophenetic correlation coefficient
is) 1. We observe how !k changes as k increases. We select
values of k where the magnitude of the cophenetic correlation
coefficient begins to fall (see below).

Results
We illustrate the use of NMF and our model selection criteria
with three problems in elucidating cancer subtypes. The first
involves acute leukemia, the second medulloblastoma, and the
third a collection of central nervous system tumors.

Leukemia Data Set. The distinction between acute myelogenous
leukemia (AML) and acute lymphoblastic leukemia (ALL), as
well as the division of ALL into T and B cell subtypes, is well
known. In an early gene expression analysis of cancer (5), we
explored how SOM could rediscover these distinctions in a data
set of 38 bone marrow samples (12). Here, we reuse this data set
to compare various clustering methods with respect to their
efficacy and stability in recovering these three subtypes and their
hierarchy. We note that this data set has become a benchmark

Fig. 1. A rank-2 reduction of a DNA microarray of Ngenes and M samples is
obtained by NMF, A " WH. For better visibility, H and W are shown with
exaggerated width compared with original data in A, and a white line
separates the two columns of W. Metagene expression levels (rows of H) are
color coded by using a heat color map, from dark blue (minimum) to dark red
(maximum). The same data are shown as continuous profiles below. The
relative amplitudes of the two metagenes determine two classes of samples,
class 1 and class 2. Here, samples have been ordered to better expose the class
distinction.

Brunet et al. PNAS # March 23, 2004 # vol. 101 # no. 12 # 4165

G
EN

ET
IC

S

NMF Application 3: DNA methylation — 15/36 —

Houseman et al. (BMC Bioinformatics, 2016): deconvolutes DNA methylation
data (Y) into cell-type specific profile (M) and cell-type proportions (ΩT).

NMF readings — 16/36 —

• Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by
non-negative matrix factorization. Nature, 401(6755), 788.

• Lee, D. D., & Seung, H. S. (2001). Algorithms for non-negative matrix
factorization. Advances in neural information processing systems (pp.
556-562).

• Brunet et al. (2004) Metagenes and molecular pattern discovery using
matrix factorization. PNAS, 101 (12) 4164-4169; .

• Houseman, E. A. et al. (2016). Reference-free deconvolution of DNA
methylation data and mediation by cell composition effects. BMC
bioinformatics, 17(1), 259.

• Stein-O’Brien G. L. et al. (2018). Enter the matrix: factorization uncovers
knowledge from omics. Trends in Genetics.

Latent Dirichlet Allocation (LDA) — 17/36 —

Modeling text corpora:

• What are the topics in a document?

• Given a document, how to find other documents with similar topics?

• How to classify the documents?

Latent Dirichlet Allocation (LDA):

• A generative probabilistic model for text corpora.

• Proposed by Blei et al. (JMLR, 2003), highly cited.

Notation — 18/36 —

Following terms are introduced in modeling text corpora data:

• A word is the basic unit of discrete data. In a vocabulary indexed by
{1, ...,V}, a word w in the vth index location of a vocabulary is an unit-basis
vector of length V s.t. wv = 1 and wµ = 0 for µ , v

• A document is a sequence of N words denoted by w = (w1,w2, ...,wN),
where wn is the nth word in the sequence.

• A corpus is a collection of M documents denoted by D = {w1,w2, ...,wM}

Data generative process — 19/36 —

Basic idea:

• Documents are represented as random mixtures over latent topics.

• Each topic has its own word usage.

Model: for each document w in a corpus D:

1. Choose document length N ∼ Poisson(ξ)

2. Choose topic allocation θ ∼ Dir(α)

3. For each of the N words wn:

(a) Choose a topic zn ∼ Multinomial(θ)

(b) Choose a word wn from p(wn|zn, β), a multinomial probability based on the
selected topic zn and the corresponding word usage frequency β.

Notes — 20/36 —

1. The observed data are the words in all documents.

2. N: the number of words in a document.
V: the vocabulary size (total number of different words).
K: the number of topics.

3. N is an ancillary variable — independent of all other data generating
variables (θ and z)

4. Dimensionality K of Dirichlet distribution is assumed known and fixed.

5. α (a K-vector) is the hyper-prior for the proportion of topics.

6. β (a K × V matrix) is the word usage probabilities for the K topics.
βi j = p(w j = 1|zi = 1). Each row of β sum up to 1.

7. θ (a K-vector) is the proportion of topics for a document. For example, a
document can be “70% politics and 30% economy”.

Distributions — 21/36 —

The probability density function of θ from Dirichlet distribution:

p(θ|α) =
Γ(
∑K

i=1 αi))∏K
i=1 Γ(αi)

θ
α1−1
1 . . . θαK−1

K

where Γ() is the Gamma function.

Given parameters α, β, for one document, the joint distribution of a topic mixture
θ, a set of N topics z, and a set of N words w is as follow:

p(θ, z,w|α, β) = p(θ|α)
N∏

n=1

p(zn|θ)p(wn|zn, β)

Distributions (continued) — 22/36 —

To get the marginal distribution of a document, we integrate over θ and sum
over all possible z. The marginal document distribution of w is:

p(w|α, β) =

∫
p(θ|α)

 N∏
n=1

∑
zn

p(zn|θ)p(wn|zn, β)

 dθ

Taking the product of marginal probabilities of single documents, we obtain the
probability of a corpus:

p(D|α, β) =

M∏
d=1

∫
p(θd|α)

 Nd∏
n=1

∑
zdn

p(zdn|θd)p(wdn|zdn, β)

 dθd

M: Number of documents.
θd: Topic frequencies for document d.

Graphical model representation — 23/36 —

The boxes are “plates” representing replicates.

• Corpus-level parameters: α and β are sampled once per corpus.

• Document-level variables: θd are sampled once per document.

• Word-level variables: zdn and wdn are sampled once per word.

Inference — 24/36 —

Key problem: the posterior distribution of the hidden variables θ, z, given a
document.

By Bayes theorem, we have:

p(θ, z|w, α, β) =
p(θ, z,w|α, β)

p(w|α, β)

Challenge: p(θ, z|w, α, β) is intractable because of the coupling between θ and β
in p(w|α, β):

p(w|α, β) =
Γ(
∑K

i=1 αi))∏K
i=1 Γ(αi)

∫  K∏
i=1

θ
αi−1
i


 N∏

n=1

K∑
i=1

V∏
j=1

(θiβi j)w j
n

 dθ

Solution: using approximate inference algorithms (variational inference).

Variational inference (VI) — 25/36 —

Given a distribution p(z|x):

• The main idea is to pick a (variational) distribution q(z) that is “similar” to p.

• A popular method to handle difficult distributions.

• A faster alternative to MCMC.

The choice of q:

• The most important characteristic of q is simplicity: it’s easy to work on.

• A popular choice of q: q(z1, z2, . . . , zm) =
∏

j q(z j). This is know as the mean
field approximation.

• The variational distribution is estimated by (kind of) minimizing the KL
divergence between p and q.

Inference (continued) — 26/36 —

We have:

log p(w|α, β) = log
∫ ∑

z
p(θ, z,w|α, β)dθ

= log
∫ ∑

z

p(θ, z,w|α, β)q(θ, z|γ, φ)
q(θ, z|γ, φ)

dθ

≥

∫ ∑
z

q(θ, z|γ, φ) log p(θ, z,w|α, β)dθ −
∫ ∑

z
q(θ, z|γ, φ) log q(θ, z|γ, φ)dθ

= Eq[log p(θ, z,w|α, β)] − Eq[log q(θ, z|γ, φ)]

The inequality is from Jensen’s inequality with expectation on q(θ, z|γ, φ).

This equation holds for any choice of q(θ, z|γ, φ).

Inference (continued) — 27/36 —

Let RHS

L(γ, φ;α, β) = Eq[log p(θ, z,w|α, β)] − Eq[log q(θ, z|γ, φ)]

Let D(.||.) be the KL divergence

We have (after some derivation):

log p(w|α, β) = L(γ, φ;α, β) + D(q(θ, z|γ, φ)||p(θ, z|w, α, β))

This suggests that minimizing the KL divergence (between the variational
posterior q(θ, z|γ, φ) and true posterior p(θ, z|w, α, β)) is equivalent to maximizing
L(γ, φ;α, β), which is known as the evidence lower bound (ELBO).

Variational EM — 28/36 —

Using L(γ, φ;α, β), approximate empirical Bayes estimates for α and β can be
found via an alternating variational EM algorithm by iteratively maximizing L
w.r.t. γ and φ for fixed α and β, and vice versa.

1. (E-step) Find optimal variational parameters {γ∗d, φ
∗
d : d ∈ D} for each

document.
(γ∗, φ∗) = argmin(γ,φ)D(q(θ, z|γ, φ)||p(θ, z|w, α, β))

which is equivalent to maximizing L(γ, φ;α, β) with fixed α, β.

2. (M-step) Maximize the document marginal log likelihood lower bound
L(γ, φ;α, β) with respect to α, β given the optimal γ, φ found in E-step.

The discussion so far is for a single document. For a corpus of documents
D = {w1,w2, ...,wM}, the marginal log likelihood is: l(α, β) =

∑M
d=1 log p(wd|α, β).

The expansion is trivial and won’t be discussed here.

Choice of variational distributions — 29/36 —

Up till now q(θ, z|γ, φ) can be any distribution. We choose a simple model for
variational posterior:

q(θ, z|γ, φ) = q(θ|γ)
N∏

n=1

q(zn|φn)

γ: Dirichlet parameter of length K
φ1, ..., φn: multinomial parameters of length V

With q(θ, z|γ, φ), we now proceed with the parameter estimation. Recall that our
goal is to iteratively maximize L(γ, φ;α, β) with fixed α, β (E-step) and fixed γ, φ
(M-step). We start by expanding L(γ, φ;α, β):

L(γ, φ;α, β) = Eq[log p(θ|α)] + Eq[log p(z|θ)] + Eq[log p(w|z, β)]
− Eq[log q(θ)] − Eq[log q(z)]

γ and φ — 30/36 —

By computing the derivatives and setting them to zero, we obtain the following
pair of update equations (details in Append A.3 from Blei, 2003):

φni ∝ βiwnexp{Eq[log(θi)|γ]}

γi = αi +

N∑
n=1

φni

They have intuitive interpretation:

• The Dirichlet update is posterior Dirichlet given expected observations taken
under variational distribution, E[zn|φn]

• The multinomial update is akin to using Bayes’ theorem,
p(zn|wn) ∝ p(wn|zn)p(zn), where p(zn) is approximated by the exponential of
expected value of its log under variational distribution

α and β — 31/36 —

Take L(γ, φ;α, β) w.r.t. αi gives:

∂L
∂αi

= M(Ψ(
K∑

j=1

α j) − Ψ(αi)) +

M∑
d=1

(Ψ(γdi) − Ψ(
K∑

j=1

γd j))

This derivative depends on α j, where j , i. Therefore one can use iterative
method to find the maximal α (e.x. Newton-Raphson).

Take L(γ, φ;α, β) w.r.t. β, the update of β can be written out analytically:

βi j ∝

M∑
d=1

Nd∑
n=1

φ∗dniw
j
dn

Dimensionality reduction — 32/36 —

• Document classification: the choice of feature is challenging.

• Using all words as features in not ideal (noisy).

• From LDA, the estimated topic allocation in each document, i.e., the
posterior Dirichlet parameters γ(w), can be used as feature. This reduces
the dimension from N to K.

• The LDA features can be used as predictors for off-the-shelf machine
learning tools.

Example — 33/36 —

100-topic LDA model on 16,000 documents from TREC AP corpus.

• Top figure: some top-ranked words for a few topics.

• Bottom figure: topic assignment for words in a new testing document.

LDA in R — 34/36 —

The topicmodels package provide function (LDA) to implement LDA in R.

> library(topicmodels)

> data("AssociatedPress")

> AssociatedPress

<<DocumentTermMatrix (documents: 2246, terms: 10473)>>

Non-/sparse entries: 302031/23220327

Sparsity : 99%

Maximal term length: 18

Weighting : term frequency (tf)

set a seed so that the output of the model is predictable

> ap_lda <- LDA(AssociatedPress, k = 2, control = list(seed = 1234))

> ap_lda

A LDA_VEM topic model with 2 topics.

> posterior(ap_lda, AssociatedPress[25:30,])$topics

1 2

[1,] 0.8627618111 0.13723819

[2,] 0.5162086590 0.48379134

[3,] 0.0009150456 0.99908495

[4,] 0.7011852917 0.29881471

[5,] 0.0062583703 0.99374163

[6,] 0.9582044216 0.04179558

LDA reading — 36/36 —

• Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation.
Journal of machine Learning research, 3(Jan), 993-1022.

