
Introduction to Deep Learning

October 17, 2022



Introduction to artificial neural network (ANN or NN) — 1/33 —

• A machine learning algorithm for classification, clustering, function
approximation, etc.

• Motivated by how biological neural network learn and process information.

– Cerebral cortex contains 1011 neurons that are deeply connected into a
massive network.

– Each neuron is connected to 103 − 104 other neurons.

– A neuron can receive information from other neurons, process the
information, and then pass it to other neurons.



Simple perceptron model — 2/33 —

• A perceptron model is the simplest, single-nueron model for supervised
learning.

• Training data contains: inputs xi, i = 1, . . . , l. Each xi is a n-vector; and output d,
a n-vector. The output can be continuous (regression) or binary (classification).

• An activation function f is specified by user for binary outcome.



Learn the perceptron model — 3/33 —

The learning algorithm is based on gradient search to minimize the squared loss:∑n
j=1(d j − y j)2, where y j = f (w0 +

∑l
i=1 wixi j).

1. Initialize w’s to random numbers. Then at iteration r:

2. Compute yr
j = f (wr

0 +
∑l

i=1 wr
i xi j).

3. Update weights by:

• w(r+1)
0 = wr

0 + γ
r
1
∑n

j=1(d j − yr
j) f ′(zr

j).

• w(r+1)
i = wr

i + γ
r
2
∑n

j=1(d j − yr
j) f ′(zr

j)xi j,

Here zr
j = wr

0 +
∑l

i=1 wr
i xi j. γr

1 and γr
2 are the learning rate (step size).

Compare with regression model:

• For continuous outcome, when f is identity function, the perceptron model is
similar to a linear regression.

• For binary outcome, when f is expit function, the perceptron model is similar to
a logistic regression.



Artificial neural network — 4/33 —

ANN is a glorified perceptron model with multiple neurons and (optionally) multiple
layers (has at least one hidden layer of neurons).

11.3 Neural Networks 393

 Y Y Y 21 K

 Z Z Z1  Z2 3 m

 X X

 Z Z1  Z2 3

1  Xp X p-1 X2  X3

M

 X p-13 X2 X1 p

 Z

 Y Y Y

 X

K1 2

                                                                                                                                                

FIGURE 11.2. Schematic of a single hidden layer, feed-forward neural network.

Thinking of the constant “1” as an additional input feature, this bias unit
captures the intercepts α0m and β0k in model (11.5).

The output function gk(T ) allows a final transformation of the vector of
outputs T . For regression we typically choose the identity function gk(T ) =
Tk. Early work in K-class classification also used the identity function, but
this was later abandoned in favor of the softmax function

gk(T ) =
eTk

∑K
ℓ=1 eTℓ

. (11.6)

This is of course exactly the transformation used in the multilogit model
(Section 4.4), and produces positive estimates that sum to one. In Sec-
tion 4.2 we discuss other problems with linear activation functions, in par-
ticular potentially severe masking effects.

The units in the middle of the network, computing the derived features
Zm, are called hidden units because the values Zm are not directly ob-
served. In general there can be more than one hidden layer, as illustrated
in the example at the end of this chapter. We can think of the Zm as a
basis expansion of the original inputs X; the neural network is then a stan-
dard linear model, or linear multilogit model, using these transformations
as inputs. There is, however, an important enhancement over the basis-
expansion techniques discussed in Chapter 5; here the parameters of the
basis functions are learned from the data.

Figure is from ”elements of statistical learning” chapter 11, figure 11.2



• The neural network has input (X), output (Y), and hidden variable Z.

• It works for continuous or categorial outcomes.

• In an ANN, a mathematical neuron works the same as a perceptron. It receives
a number of inputs, computes the weighted sum and then generate outputs
through activation functions.

• The mathematical model for an ANN for K-class classification (Y is categorial
with K classes):

zm = σ(α0m + α
T
mX), m = 1, . . . ,M.

Tk = β0k + β
T
k Z, k = 1, . . . ,K.

fk(X) = gk(T), k = 1, . . . ,K.

Here, σ is “activation function”.

• In K-class classification, usually use softmax function for g:

gk(T) =
eTk∑
l eTl

• K = 1 for continuous outcome.



A little bit on the activation function — 6/33 —

• Determines the output of a neuron.

• Nonlinear activation functions can turn the linear model to a non-linear one,
which can better capture the nonlinearity in the data.

• Some activation functions (such as the sigmoid functions) can help normalize
the output of each neuron to a range between 1 and 0 or between -1 and 1.

• Needs to be computationally easy.

Often used activation functions:

• Linear activation functions: linear function or step function.

• Nonlinear activation functions:

– Sigmoid functions: S-shaped. Examples: logistic, tanh.

– ReLU (Rectified Linear Unit): similar to a linear spline.



Activation functions — 7/33 —

Sigmoid functions

ReLU



ANN model fitting — 8/33 —

Numbers of parameters in an ANN are

• α0m, αm: M × (P + 1)

• β0m, βk: K × (M + 1)

Objective function of an ANN:

• For continuous outcome, residual sum of squares:

R(θ) =
K∑

k=1

N∑
i=1

(yik − fk(xi))2

• For categorical outcome, cross-entropy (or NLL, negative log likelihood):

R(θ) = −
K∑

k=1

N∑
i=1

yik log fk(xi)

Model fitting is done by “back propagation algorithm”.



Back propagation algorithm — 9/33 —

Essentially a gradient descent algorithm.

• Initialization: pick random weights (model parameters).

• Forward: given weights, compute predicted values.

• Backward: update the weights, using first derivatives as direction. The first
derivatives can be obtained using chain rule.

Detailed derivations are skipped. Please refer to ”Elements of Statistical Learning”.

Note:

• Be careful of overfitting: the model is too flexible and has too many parameters.

• Regularization technique (e.g., L1 penalty) can be used to stabilize the model
fitting.

• Number of neurons and the number of layers are set by user.

• Compared with the perceptron model, ANN can capture highly non-linear
relationships. With adequate numbers of neurons and hidden layers, arbitrary
decision boundary can be formed.



Neural network in R — 10/33 —

The neuralnet package in R provides functions to train a neural network.

library(neuralnet)

data(infert, package="datasets")

## fit NN

fit <- neuralnet(case˜parity+induced+spontaneous, infert)

predicted <- fit$net.result[[1]]>0.5

table(infert$case, predicted)

predicted

FALSE TRUE

0 143 22

1 37 46

## compare with SVM

library(e1071)

fit.svm <- svm(case˜parity+induced+spontaneous, infert)

predicted <- predict(fit.svm)>0.5

table(infert$case, predicted)

predicted

FALSE TRUE

0 149 16

1 43 40



Deep learning — 11/33 —

• Appeared quite a while ago (1980’s), but gained tremendous attention in recent
years, mostly due to the increased computational power and availability of
large-scale training data.

• Becomes a social buzz word, and widely applied to many fields.

Google AlphaGo beats the world champion 4-1 in a set of five GO games.



Deep Architecture — 12/33 —

There are different types, but the most common is the feed-forward multilayer
neural network.

be seen as a kind of hilly landscape in the high-dimensional space of 
weight values. The negative gradient vector indicates the direction 
of steepest descent in this landscape, taking it closer to a minimum, 
where the output error is low on average. 

In practice, most practitioners use a procedure called stochastic 
gradient descent (SGD). This consists of showing the input vector 
for a few examples, computing the outputs and the errors, computing 
the average gradient for those examples, and adjusting the weights 
accordingly. The process is repeated for many small sets of examples 
from the training set until the average of the objective function stops 
decreasing. It is called stochastic because each small set of examples 
gives a noisy estimate of the average gradient over all examples. This 
simple procedure usually finds a good set of weights surprisingly 
quickly when compared with far more elaborate optimization tech-
niques18. After training, the performance of the system is measured 
on a different set of examples called a test set. This serves to test the 
generalization ability of the machine — its ability to produce sensible 
answers on new inputs that it has never seen during training. 

Many of the current practical applications of machine learning use 
linear classifiers on top of hand-engineered features. A two-class linear 
classifier computes a weighted sum of the feature vector components. 
If the weighted sum is above a threshold, the input is classified as 
belonging to a particular category. 

Since the 1960s we have known that linear classifiers can only carve 
their input space into very simple regions, namely half-spaces sepa-
rated by a hyperplane19. But problems such as image and speech recog-
nition require the input–output function to be insensitive to irrelevant 
variations of the input, such as variations in position, orientation or 
illumination of an object, or variations in the pitch or accent of speech, 
while being very sensitive to particular minute variations (for example, 
the difference between a white wolf and a breed of wolf-like white 
dog called a Samoyed). At the pixel level, images of two Samoyeds in 
different poses and in different environments may be very different 
from each other, whereas two images of a Samoyed and a wolf in the 
same position and on similar backgrounds may be very similar to each 
other. A linear classifier, or any other ‘shallow’ classifier operating on 

Figure 1 | Multilayer neural networks and backpropagation. a, A multi-
layer neural network (shown by the connected dots) can distort the input 
space to make the classes of data (examples of which are on the red and 
blue lines) linearly separable. Note how a regular grid (shown on the left) 
in input space is also transformed (shown in the middle panel) by hidden 
units. This is an illustrative example with only two input units, two hidden 
units and one output unit, but the networks used for object recognition 
or natural language processing contain tens or hundreds of thousands of 
units. Reproduced with permission from C. Olah (http://colah.github.io/). 
b, The chain rule of derivatives tells us how two small effects (that of a small 
change of x on y, and that of y on z) are composed. A small change Δx in 
x gets transformed first into a small change Δy in y by getting multiplied 
by ∂y/∂x (that is, the definition of partial derivative). Similarly, the change 
Δy creates a change Δz in z. Substituting one equation into the other 
gives the chain rule of derivatives — how Δx gets turned into Δz through 
multiplication by the product of ∂y/∂x and ∂z/∂x. It also works when x, 
y and z are vectors (and the derivatives are Jacobian matrices). c, The 
equations used for computing the forward pass in a neural net with two 
hidden layers and one output layer, each constituting a module through 

which one can backpropagate gradients. At each layer, we first compute 
the total input z to each unit, which is a weighted sum of the outputs of 
the units in the layer below. Then a non-linear function f(.) is applied to 
z to get the output of the unit. For simplicity, we have omitted bias terms. 
The non-linear functions used in neural networks include the rectified 
linear unit (ReLU) f(z) = max(0,z), commonly used in recent years, as 
well as the more conventional sigmoids, such as the hyberbolic tangent, 
f(z) = (exp(z) − exp(−z))/(exp(z) + exp(−z)) and logistic function logistic, 
f(z) = 1/(1 + exp(−z)). d, The equations used for computing the backward 
pass. At each hidden layer we compute the error derivative with respect to 
the output of each unit, which is a weighted sum of the error derivatives 
with respect to the total inputs to the units in the layer above. We then 
convert the error derivative with respect to the output into the error 
derivative with respect to the input by multiplying it by the gradient of f(z). 
At the output layer, the error derivative with respect to the output of a unit 
is computed by differentiating the cost function. This gives yl − tl if the cost 
function for unit l is 0.5(yl − tl)2, where tl is the target value. Once the ∂E/∂zk 
is known, the error-derivative for the weight wjk on the connection from 
unit j in the layer below is just yj ∂E/∂zk.

Input
(2)

Output
(1 sigmoid)

Hidden
(2 sigmoid)

a b

dc

y
y

x
y xx

x=y
z

x
x

x
y

x
x

z y
zz yx

x=Δ Δ

Δ Δ

Δ Δz y
z

x
y xx

x
x
x=

x
z

y
z

xx
y

x
x

x
x

x
x=

Compare outputs with correct 
answer to get error derivatives

j

k

E
yl

=yl tl

E
zl

= E
yl

yl

zl

l

E
yj

= wjk
E
zk

E
zj

= E
yj

yj

zj

E
yk

= wkl
E
zl

E
zk

= E
yk

yk

zk

wkl

wjk

wij

i

j

k

yl = f (zl )

zl = wkl yk
l

yj = f (zj )

zj = wij xi

yk = f (zk )

zk = wjk yj

Output units 

Input units 

Hidden units H2 

Hidden units H1 

wkl

wjk

wij

k H H2

k H H2

I H out

j H H1

i H Input

i

2 8  M A Y  2 0 1 5  |  V O L  5 2 1  |  N A T U R E  |  4 3 7

REVIEW INSIGHT

© 2015 Macmillan Publishers Limited. All rights reserved



Why go deep, since one can approximate any function as close as possible with
shallow architecture?

• Deep machines are more efficient for representing certain classes of functions.

• So deep architecture trades breadth for depth (more layers, but less neurons in
each layer).

• Demo: Tensorflow Playground: http://playground.tensorflow.org/

Advantages:

• Traditional machine learning algorithm requires feature extraction from data:
Data→ Feature→ Model. Finding the correct features is critical in the success
of a ML model.

• In complex pattern recognition/prediction problem (such as audio/image
recognition, natural language processing), the input signals are highly non-linear
and feature extraction is difficult.

• Deep learning can better capture the non-linearity in the data, thus potentially
automate the feature selection step.

http://playground.tensorflow.org/


Example: DL in image recognition — 14/33 —

In image recognition problem, the inputs are color intensity values for all pixels in a
picture. Tradition method that directly link pixels to outcome doesn’t work well,
because the higher order interactions (patterns) are not captured efficiently.

In deep learning (such as convolutional neural network):

• Layer 1: presence/absence of edge at particular location and orientation.

• Layer 2: motifs formed by particular arrangements of edges, allows small
variations in edge locations.

• Layer 3: assemble motifs into larger combinations of familiar objects.

• Layer 4 and beyond: higher order combinations.

Key: the layers are not designed, but learned from data using a general-purpose
learner.



Example: DL in image recognition (cont.) — 15/33 —

5 

Different Levels of Abstraction 

• Hierarchical Learning 
– Natural progression from low 

level to high level structure as 
seen in natural complexity 
 

– Easier to monitor what is being 
learnt and to guide the machine 
to better subspaces 
 

– A good lower level 
representation can be used for 
many distinct tasks 



Train a deep neural network — 16/33 —

Back propagation does not work well if randomly initialized.

It was shown that deep networks trained with back propagation (without
unsupervised pre-training) perform worse than shallow networks.

9 

Deep Neural Networks 
• Simple to construct 

– Sigmoid nonlinearity for hidden layers 
– Softmax for the output layer 

• But, backpropagation does not 
work well (if randomly initialized)  
– Deep networks trained with 

backpropagation (without 
unsupervised pretraining) perform 
worse than shallow networks 

(Bengio et al., NIPS 2007) 

Problems with Back Propagation: gradient is progressively getting more dilute
below top few layers.



Deep Network Training — 17/33 —

Hinton et al., (2006) A fast learning algorithm for deep belief nets proposes
greedy layer-wise training for trainning a deep belief network (DBN).

DBN is a type of deep neural network, which can be viewed as a stack of simple,
unsupervised networks such as restricted Boltzmann machines (RBMs, similar to
factor analysis).



DBN Greedy Training — 18/33 —

Let v be the input data (visible layer).

• First construct an RBM with input layer v and hidden layer h1. The trained RBM
provides p(h1|v).

• Obtain a set of realization of hidden layer h1 (denoted by h̃1) based on the
trained RBM. One can either sample from p(h1|v), or compute E[p(h1|v)].

• With h̃1 and hidden layer h2, train another RBM, and so on.

• Once all parameters are estimated, perform top-down training (backprop) to
refine the parameters.



Convolutional neural network (CNNs / ConvNet) — 19/33 —

• ConvNet is a type of feed forward neural network.

• Widely applied to data where nearby values are correlated, for example, images
(pixel values are spatially correlated), sound (frequencies are temporally
correlated), etc.

• The network are stacked by convolutional and pooling layers for feature
extraction.

• The final layer of the network is a fully connected layer to connect the extracted
features to the output.



Convolutional layer — 20/33 —

• Each convolutional layer contains a set of filters (kernels). For image, the
convolutional layer is a 2D matrix with weights.

• Number of filters in each convolutional layer is determined by user.

• The convolution step is to scan the input data and compute the local weighted
sum. For image, the step is like a 2D moving sum.

• The weights in the filters are learnable, and will be estimated through model
training.

• The estimated weights capture the “motifs” in the input data. Filters in lower
layers capture more basic features (like the edges). Higher layer filters capture
more complicated features (like the object parts).

• The convolution is based on an important assumption that the same features
can appear in different location of the input data (“shared weights”). This
greatly reduce the number of parameters compared to a fully connected
network.





Pooling layers — 22/33 —

• After the convolution, scan the data and apply a pooling function (usually max).

• Reduce the size of the representation, reduce the amount of parameters and
computation, and alleviate overfitting.

• For example, a pooling layer with filters of size 2x2 downsamples the input by 2
along both width and height, retaining only 25% of the data.

• In backpropagation, one only routes the gradient to the input that had the
highest value in the forward pass for max pooling. So it’s important to keep track
of the index of the max activation during the forward pass of a pooling layer.



ConvNet diagram — 23/33 —

https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html

• The model learning is based on back propagation.

• Pre-training is helpful.

• Large number of parameters (millions or more). Require large training set.

https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html


Transfer learning — 24/33 —

Problems in training a large ConvNet:

• Training data is not large enough.

• Model training requires significant computing resources.

Transfer learning:

• “Transfer” of knowledge: knowledge gained while learning to recognize cars
could apply when trying to recognize trucks.

• Similar to the Bayesian statistics ideas of using prior from historical data.

• Pre-trained networks from large training set (e.g., ImageNet, which contains 1.2
million images with 1000 categories) can be borrowed in different ways.

– Only retrain the last (fully-connected) layer. Previous layers are used as fixed
feature extractor.

– Train some layers while freeze others.

– As the initial values and retrain the whole network.



Transfer learning (cont.) — 25/33 —

• There are a number of pre-trained networks (VGGnet, AlexNet, GoogLeNet,
ResNet) available for transfer learning.

• One needs to download the pre-trained network (can be big, due to large
number of paremters).

• Most deep learning packages provide easy interface for transfer learning.

Our experiences show that transfer learning can significantly improve the
performance, even though the image to be classified are very different from the
training ones.



Autoencoder — 26/33 —

• A neural network trained to learn a low dimensional representation of the data.

• Achieves representation learning and dimensionality reduction.

General structure:

Figure source: https://www.bpesquet.fr/mlhandbook/algorithms/autoencoders.html

• Input data is x.

• An AE has two parts: encoder h = f (x), decoder r = g(h). Both f and g are
represented by neural networks.

• Goal: the output from the decoder r is similar to the input data x.

• The encoder output h is a low-dimensional embedding of the input data.



Autoencoder (cont.) — 27/33 —

• Hidden layer usually has smaller dimension than the input layer.

• Learning process is to minimize a loss function: L(x, g( f (x))), which is often
called the “reconstruction loss”.

– L penalize g( f (x)) for being dissimilar from x.

– One example of L: mean squared error.

• The networks can be trained with the same techniques for a generic NN:
minibatch gradient descent following gradients computed by back-propagation.

• Relation with PCA

– When encoder and decoder are linear and L is the mean squared error, an
AE learns to span the same subspace as PCA.

– Nonlinear encoder and decoder functions allows learning a more powerful
nonlinear generalization of PCA.



Applications of autoencoders — 28/33 —

• Dimensionality reduction

– Lower-dimensional representations can capture latent attributes of input.

• Information retrieval

– Search can become more efficient in certain kinds of low dimensional
spaces.

– Store database entries in a hash table mapping binary code vectors to
entries (e.g. semantic hashing).

• Anomaly detection

– Model learns to precisely reproduce the most frequently observed
characteristics (from normal instances).

– Anomalies (less frequent) should worsen model’s reconstruction
performance.

• Image compression and Image denoising

• Application in single-cell genomics: scRNA-seq denoising (DCA); trajectory
analysis (VITAE); end-to-end single-cell analysis (scVI).



Generative Adversarial Networks (GAN) — 29/33 —

Goal: given a training dataset, GAN learns to generate new data with the same
statistical property as the training data.

Structure:

Figure source: https://machinelearningmastery.com/what-are-generative-adversarial-networks-gans

https://machinelearningmastery.com/what-are-generative-adversarial-networks-gans


Generative Adversarial Networks (cont.) — 30/33 —

• GANs have two players (typically implemented using neural networks)

– Generator g with model parameters θ(g): produces samples x = g(z; θ(g)). z is
random input, and θ(g) are learnable parameters defining the generator.

– Discriminator d with model parameters θ(d): determines whether the inputs
are drawn from the training data (real) or from the generator (fake), by
emitting probability value d(x, θ(d)).

• GANs formulate learning as a zero-sum game (like competition between
counterfeiters and police):

– Loss functions: for discriminator: L(θ(g), θ(d)); for generator: −L(θ(g), θ(d))

– Default choice for L is the cross-entropy loss:
L(θ(g), θ(d)) = Ex∼pdata log d(x) + Ex∼pmodel log(1 − d(x))

– During learning, each player attempts to minimize its own loss, so that at
convergence: g∗ = argmax

g
min

d
L(θ(g), θ(d))

– Note: g is what we want at the end, and d is ancillary.



GAN training — 31/33 —

Training procedure

• Use SGD-like algorithm of choice (Adam) on two minibatches simultaneously

– A minibatch of training examples

– A minibatch of generated samples

Training issues

• Unstable convergence

• Mode collapse:

– Generators rotate through a small set of output types.

– Each iteration of generator over-optimizes for a particular discriminator, and
the discriminator never manages to learn its way out of the trap.

– Generator learns too fast compared to the discriminator.

• Vanishing gradient:

– An optimal discriminator doesn’t provide enough information for the
generator to make progress.

– Discriminator learns too fast compared to the generator.



GAN applications — 32/33 —

• Generate images, voices, music, etc.

• Text-to-Image Synthesis

– Takes text as input and produce images that are plausible and described by
the text.

• Text-to-Speech

– Produce synthesized speech from text input.

• Image Inpainting

– Repair images and fill the missing part with created content.

• Super-resolution

– Super-resolution GANs increase the resolution of images, adding detail
where necessary to fill in blurry areas

• Genomic data integration

– GAN is applied in single-cell data integration (”Portal”)



Deep learning software package — 33/33 —

Most of the popular deep learning software packages are written in Python, for
example,

• Tensorflow by Google: https://www.tensorflow.org.

• PyTorch by Facebook: https://pytorch.org.

• Theano: http://deeplearning.net/software/theano.

• Keras: https://keras.io.

The R development for deep learning lags behind, but gradually catches up: There
are a few packages:

• MXNetR seems to be a really good one:
http://dmlc.ml/rstats/2015/11/03/training-deep-net-with-R.html.

• Other available ones on CRAN include RNN, LSTM, darch, deepnet.

https://www.tensorflow.org
https://pytorch.org
http://deeplearning.net/software/theano
https://keras.io
http://dmlc.ml/rstats/2015/11/03/training-deep-net-with-R.html

