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Outline — 1/66 —

1. Genetic variants and GWAS

2. Linkage disequilibrium

3. Statistical methods for single variant GWAS

4. Population stratification

5. Meta-analysis methods



Genetic terms — 2/66 —

• Genetic markers, variants, e.g., SNPs, Indel (Insertion, Deletion), Copy number
variation (CNV), Structure variation (SV, ¿1KB)

• Minor allele frequency (MAF)

• Common Variants: Genetic variants (e.g., SNPs) with MAF> 5%.

• Genes

• Phenotypes or traits

• Genotype, quantified as values in [0, 2] or 0, 1, 2

• Linkage disequilibrium (LD)

See videos about introductions to the basic principles of genetics, e.g., genes,
SNPs, phenotypes, as provided by 23&me: https://www.23andme.com/gen101/



Studies of Human Genetics — 3/66 —

• Human genetic variants and sample sizes over past 20 years



DNA Microarrays (CHIP) — 4/66 —

• Microarrays (Illumina and Affymetrix) are used to genotype 0.5M − 1M SNPs
across the whole genome

• LD-information of the HapMap project has been incorporated so that the chips
provide adequate coverage of the entire human genome for most ethnicities.

• Customize chips with densely spaced SNPs within known genes regions



Whole Genome Sequencing — 5/66 —

Introduction video of Illumina Sequencing technology
https://www.youtube.com/watch?v=fCd6B5HRaZ8

https://www.cdc.gov/pulsenet/pathogens/wgs.html



21st Century Sequencing Costs — 6/66 —

http://genome.gov/sequencingcostsdata



WGS Analysis Workflow — 7/66 —

DOI:10.5213/inj.1632742.371



1000 Genome Project 2008 - 2015 — 8/66 —

GOAL: Find most genetic variants with MAF ≥ 1% in populations across the world.

• First project to sequence the genomes of a large number of people (2,504
samples)

• Largest public catalogue of human variation and genotype data,
http://www.internationalgenome.org/

• 26 Different populations under 5 super populations

– AFR: African

– AMR: Admixed American

– EAS: East Asian

– EUR: European

– SAS: South Asian



TOPMed WGS Project 2015 - Present — 9/66 —

• NIH National Heart, Lung, and Blood Institute (NHLBI) sponsored the
Trans-Omics for Precision Medicine (TOPMed) program
https://topmed.nhlbi.nih.gov/

• Deep (30x coverage) whole genome sequencing for all of the collected samples
from ongoing disease-specific research projects

• WGS data are generated by seven sequencing centers

• University of Washington group is designated as the Data Coordinating Center
(DCC) and will coordinate phenotype information

• University of Michigan group is designated as the Informatics Research Center
(IRC) with responsibility for creating a unified variant call set

• The sequence and genotype data will be deposited to dbGaP
https://www.ncbi.nlm.nih.gov/gap



Samples that have completed QC: 178,156 (as of 6/23/2021).
> 1016 sequenced bases, > 100× more data than the 1000 Genome Project.

http://nhlbi.sph.umich.edu



Image: Patrick Porter @ Smug Mug



How Much Variation is There? — 12/66 —

Taliun D. et. al., Nature, 2021.



TopMed variant distribution — 13/66 —

Taliun D. et. al., Nature, 2021.



Genome-Wide Association Study (GWAS) — 14/66 —

• Key Goals of GWAS

– Test associations between each genetic variant or gene across the whole
genome and the phenotype of interest

– Understand the biological function of these associated loci (Challenging)

– Germ line risk prediction for diseases

• Rationale

– Most traits and diseases have complex genetic etiology: Many genetic
variants make small contributions (Polygenic)

– Significant genetic variants could be just correlated (in LD) with the true
causal ones

– Large sample size and whole genome sequencing data might be needed to
ensure enough power for identifying risk variants or genes

Types of Association Studies

– Quantitative and Dichotomous (i.e., Case-control studies) traits

– Family-based association study

– Population-based association study (our main focus in this lecture)



GWAS Procedure — 15/66 —

• Quality control (QC) of the study dataset: missing rate, HWE p-value, ancestry

• Choose a model/test for the phenotype of interest (e.g., linear regression model
for quantitative traits, logistic regression model for dichotomous traits)

• Significance level α = 5 × 10−8

• Annotate biological functions and nearby genes of the significant SNPs

• Investigate the biological functions of significant SNPs or genes



MAF Spectrum and Genetic Effect Sizes — 16/66 —



Sources of Association — 17/66 —



Linkage Disequilibrium (LD) — 18/66 —

• Linkage Disequilibrium (LD) is the non-random association of alleles at
different loci in a given population..

• Nearby markers are likely to be correlated, why?

• Origin of LD?



Linkage Disequilibrium (LD) — 19/66 —



Linkage Disequilibrium (LD) — 20/66 —



Linkage Disequilibrium (LD) — 21/66 —



Linkage Disequilibrium (LD) — 22/66 —



Linkage Disequilibrium (LD) — 23/66 —

With observed frequency pA and pB for two alleles A and B at two markers and
frequency pAB for alleles A and B appear together:

DAB = pAB − pApB

• Define a random variable XA to be the number of allele A present at the first
marker, 0, 1, 2

• Define a random variable XB to be the number of allele B present at the second
marker, 0, 1, 2

• Correlation between these two random variables is given by

rAB =
Cov(XA, XB)

√
Var(XA)Var(XB)

=
DAB√

pA(1 − pA)pB(1 − pb)

• r2 between these two random variables is given by

r2
AB =

D2
AB

pA(1 − pA)pB(1 − pb)



Linkage Disequilibrium (LD) — 24/66 —



Linkage Disequilibrium (LD) — 25/66 —



Linkage Disequilibrium (LD) — 26/66 —



Linkage Disequilibrium (LD) — 27/66 —



Statistical Methods for Single Variant Association Test — 28/66 —

1. Contingency table based tests (only for dichotomous traits)

(a) Genotypic Association test (2-df test)

(b) Genotypic Association test with dominant/recessive disease models

(c) Allelic Association test

2. Regression based tests

(a) Logistic regression based tests for dichotomous traits

(b) Linear regression based tests for quantitative traits



Genotypic Association Test — 29/66 —

• Compare genotype frequencies in cases and controls in a 2 × 3 table

• Not assuming any specific disease model

AA Aa aa Total
Case n10 n11 n12 n1.

Control n00 n01 n02 n0.

Total n.0 n.1 n.2 n

The genotype/codominant test: D – disease status; G – genotype

H0 : Pr(D = 1|Geno = AA) = Pr(D = 1|Geno = Aa) = Pr(D = 1|Geno = aa)
H1 : At least one inequality holds

The standard 2 d f Pearson χ2 test of independence for a 2 × 3 table is:

X2
G =
∑
i=0,1

∑
j=0,1,2

(Oi j − Ei j)2/Ei j ∼ χ2, d f = 2

– Oi j = ni j: observed count in the cell
– Ei j = ni.n. j/n: expected count under independence: npD=ipG= j = n(ni./n)(n. j/n)



Dominant or Recessive Disease Models — 30/66 —

• Compare frequencies of AA or Aa with aa in cases and controls in a 2 × 2 table

• Assume dominant or recessive Mendelian disease model

• More powerful than genotype test if the disease model is true

With dominant disease model:

AA or Aa aa Total
Case n10 + n11 n12 n1.

Control n00 + n01 n02 n0.

Total n.0 + n.1 n.2 n

H0 : Pr(D = 1|AA) = Pr(D = 1|Aa) = Pr(D = 1|aa)
H1 : Pr(D = 1|AA or Aa) , Pr(D = 1|aa)

The standard 1 d f Pearson χ2 test of independence for a 2 × 2 table is:

X2
D =
∑
i=0,1

∑
j=0,1

(Oi j − Ei j)2/Ei j ∼ χ2, d f = 1

How to obtain Ei j?



Allelic Association Test — 31/66 —

• Compare frequencies of alleles A and a in cases and controls in a 2 × 2 table

• Assume additive disease model: the risk associated with the heterozygote
genotype is intermediate between the two homozygotes. (mostly used model)

• Assume HWE: allele frequencies in a population will remain constant from
generation to generation, with random mating and in the absence of other
evolutionary influences (selection, mutation, genetic drift)

• The allele test is the most powerful test for additive model.

A a Total
Case n1A = 2n10 + n11 n1a = n11 + 2n12 2n1.

Control n0A = 2n00 + n01 n0a = n01 + 2n02 2n0.

Total n.A = 2n.0 + n.1 n.a = n.1 + 2n.2 2n

The allele test:

H0 : Pr(A|D = 1) = Pr(A|D = 0)

The standard 1 d f Pearson χ2 test of independence for a 2 × 2 table is:

X2
L =
∑
i=0,1

∑
j=0,1

(Oi j − Ei j)2/Ei j ∼ χ2, d f = 1



Measure of Association Strength: Odds Ratio — 32/66 —

Exposed (E) Not Exposed (Ē)
Case (D) a b
Control (D̄) c d

Odds ratio:

OR =
P(D|E)/P(D̄|E)
P(D|Ē)/P(D̄|Ē)

=
P(E|D)/P(Ē|D)
P(E|D̄)/P(Ē|D̄)

= ad/bc

– Exposed = carry certain genotype
– Counts pertain to individuals, not alleles.



Measure of Association Strength: Odds Ratio (continued) — 33/66 —

Genotype Model (Ē=aa)
AA Aa aa

Case n10 n11 n12

Control n00 n01 n02

ORhet = (n11n02)/(n01n12)
ORhom = (n10n02)/(n00n12)

Dominant Model (Ē=aa)
AA or Aa aa

Case n10 + n11 n12

Control n00 + n01 n02

ORD = [(n10 + n11)n02]/[(n00 + n01)n12]

Allele Model (Ē=a)
A a

Case 2n10 + n11 n11 + 2n12

Control 2n00 + n01 n01 + 2n02

ORL = [(2n10 + n11)(n01 + 2n02)]/[(2n00 +

n01)(n11 + 2n12)]

Trend Model
estimate OR by maximum likelihood ORT : logistic regression



Calculating Confidence Interval for Odds Ratio — 34/66 —

In large samples and when OR is estimated from the contingent table, log(ÔR) is
approximately normally distributed, with estimated variance

V̂ar[log(OR)] ≈
1
a

+
1
b

+
1
c

+
1
d
,

where a, b, c, d are the cells contributing to the estimation of OR.

A (1 − α)100th confidence interval for the population OR :

explog(ÔR)±z(1−α/2)

√
V̂ar[log(OR)]

where z(1−α/2) is the (1 − α/2)100th percentile of the standard normal.



Logistic Regression — 35/66 —

– Y = dichotomous phenotype
– X = a coding for the genotype

Genotype Codominant Dominant Recessive Additive
AA X = (0, 1)T X = 1 X = 1 X = 2
Aa X = (1, 0)T X = 1 X = 0 X = 1
aa X = (0, 0)T X = 0 X = 0 X = 0

Assume a logistic regression model:

log
[
Pr(Y = 1|X)
Pr(Y = 0|X)

]
= β0 + αC + β1X

where β0 is the intercept, α is the coefficient for covariates C, and β1 is the genetic
effect-size (i.e., log(Odds-Ratio) ).

H0 : β1 = 0

Ha : β1 , 0



Logistic Regression vs. Contingency Table — 36/66 —

• Likelihood ratio test of logistic regression ≈ chi-square tests for appropriate
contingency tables.

• The estimated coefficients = log of the corresponding odds ratios.

• For the additive model, the trend test ≈ likelihood ratio test from logistic
regression with additive coding for X.

• Because the logistic regression operate on variables defined for individuals, not
chromosomes, there is no underlying assumption about HWE.



General Linear Regression — 37/66 —

Extension to other phenotypes:

• The phenotype Y can be a count or a continuous outcome.

• The generalized linear model is given by

g[E(Y |X)] = β0 + αC + β1X

where g(.) is a link function.

•

H0 : β1 = 0

Ha : β1 , 0



QC — 38/66 —

Additional Factors Important for GWAS: batch effects, population stratification

DOI:10.1002/0471142905.hg0119s68



Quantile-Quantile (QQ) Plot — 39/66 —

– Obtained − log 10(p-values) from GWAS
– Sort all − log 10(p-values) from most significant to least
– Pair these with the expected values of order statistics of a Uniform(0, 1)
distribution
– Under NULL hypothesis (no association), p-values follow a Uniform(0, 1)
distribution

With inflated type I error Without inflated type I error



Visualize GWAS Results: Manhattan Plot — 40/66 —

– Scatter plot of − log 10(p-values) across all genome-wide variants
– Visualize signal peaks



GWAS	  Results	  

18	  known	  AMD	  loci	  	  and	  16	  novel	  AMD	  loci	  



Visualize GWAS Results: Locus Zoom Plot — 42/66 —

– Zoom into the peak region with gene annotations
– Visualize r2 between the specified significant (purple diamond) signal and its
neighbor SNPs
– Visualize recombination rate



NHGRI-EBI GWAS Catalog — 43/66 —

>157K Associations 
from 4220 Publications

https://www.ebi.ac.uk/gwas/



Population Stratification — 44/66 —

Population stratification (or population structure) is the presence of a systematic
difference in allele frequencies between subpopulations, possibly due to different
ancestry.

Allele frequencies at three microsatellite loci (Rosenberg N.A., Hum Biol. 2011).
Each of the three loci has exactly eight alleles. In most of the pie charts, one or
more alleles is rare or absent.



Population Stratification Causes — 45/66 —

Basic cause of population stratification is non-random mating, often due to human
migration and physical separation.



Population Stratification Consequences — 46/66 —

1. Population stratification is a major con-founder in genetic association studies,
which can lead to false significant association that are not due to a disease
locus;

2. Often lead to inflated false positive findings for studies including a mixture of
different subpopulations;

3. Often seen when case-control ratio (or disease prevalence) is different across
subpopulations, or when phenotypes differ among subpopulations.



How to Address Population Stratification — 47/66 —

Straightforward approach:

• Carefully select samples such that cases and controls are ethnically matched

• Stratify analyses by ethnicity and then combine results by meta-analysis

Potential problems:

• Self-report is not always reliable

• Considerable variability exists even within race

Widely used approach:

• Account for inflated false-positive rate (genomic control factor)

• Adjust for ancestry quantified by genetic markers (Principal Components
Analysis)

Alternative approach:

• Family-based association analysis



Genomic Control Factor — 48/66 —

Genomic Control Factor is used to control for systematic inflation of type I error.

The idea is that the statistic T is inflated by an inflation factor λ (i.e., genomic
control factor) so that

T ∼ λχ2
1

where λ can be estimated by

λ̂ = median(T1,T2, . . . ,TM)/0.456

• M is the number of independent tests, though in practice all tests are included.

• The denominator is the median of χ2
1 distribution.

• λ̂ should be 1 under H0.



Genomic Control Factor — 49/66 —

λ̂ = 1.08

Divide all chi-square test statistics T by the estimated inflation (GC) factor to get
corrected test statistics

T/λ̂ ∼ χ2
1

under H0 of no association.



Genomic Control Factor — 50/66 —

Limitation:

• Genomic control corrects for stratification by adjusting association statistics at
each marker by a uniform overall inflation factor.

• However, some markers differ in their allele frequencies across ancestral
populations more than others.

• Thus, the uniform adjustment applied by genomic control may be insufficient at
markers having unusually strong differentiation across ancestral populations
and may be superfluous at markers devoid of such differentiation, leading to a
loss in power



Principal Component Analysis (PCA) — 51/66 —

The principal component analysis (PCA) has become one of the standard ways to
adjust for population stratification in population-based GWAS (Price et. al., Nature
Genetics, 2006).

• Apply PCA to genotype data to obtain top principal components (PCs) that
explain most genotype data variation

• GWAS tool PLINK (Purcel at. al., 2007) can be used to generate top PCs,
https://www.cog-genomics.org/plink/

• Top PCs will reflect sample ancestry

• Include top PCs as covariates in GWAS



PCA — 52/66 —

Top PCs often reflect geographic distribution (e.g, PC1 - PC4 as follows)



PCA — 53/66 —

PC1 vs. PC2 among European samples

Heath et al. 2008.



PCA Algorithm — 54/66 —

Notation:
– M : Number of SNPs
– N : Number of subjects
– Z = (zi j) : an M × N matrix of standardized genotyped coded for the additive model for

the ith SNP in the jthe subject, i.e.,

zi j = (Xi j − X̄i.)/
√

2 p̂i(1 − p̂i)

where p̂i denotes the MAF of the ith SNP.

Algorithm:
– Compute the N × N variance-covariance matrix as Σ = ZTZ/(N − 1).
– Compute the eigenvalue decomposition of Σ: e.g., using R function eigen
– Select the top K eigenvalues that are significantly large (K = 5 or 10) by a scree plot.
– Include the K eigenvectors (PCs) as additional covariates in the generalized linear

regression models that are used for GWAS.



Family-Based Association Methods — 55/66 —

• Intuition: Under the null hypothesis of no association, an affected child is
equally likely to inherit either allele at the tested marker locus; allele not
inherited by the affected child serves as a matched control.

– Transmission disequilibrium test (TDT): Father-Mother-AffectedChild trios.
Spielman et al. 1993. American Journal of Human Genetics

– Discordant alleles tests: Affected-Unaffected siblings

– Family-based association test (FBAT): General tests that can be used for
both dichotomous and quantitative traits

– Quantitative TDT (QTDT): Variance-Components based test of transmission
distortion for quantitative traits



Power for Family-Based & Population-Based Designs — 56/66 —

Common disease (prevalence of 10%)

• Sib-Pair: discordant sib pairs

• 3 sibs: discordant sib trios (one discordant sib pair and one additional sibling)

• Power is estimated for 1500 families or 1500 cases and 1500 controls under an
additive mode of inheritance and an odds-ratio of 1.4.



Meta-Analysis — 57/66 —

• Combine summary statistics (e.g., p-values, odds ratios, effect-sizes) across
multiple studies for the same phenotype

• Improve power for increasing total sample size

• Address between study variances (due to population stratification, study design)

• Avoid the hassle of sharing individual-level genotype/phenotype/covariate data
(e.g., privacy protocols)

• Yang et. al. (2017) showed that meta-analysis with summary results can be
statistically equivalent to joint analysis using individual-level data



Why Meta-Analysis? — 58/66 —

Additive model, N cases, N controls, MAF = .3, α = 5 × 10−8



Why Meta-Analysis? — 59/66 —



Meta-Analysis Methods — 60/66 —

• Fisher’s Method: combining p-values

• Stouffer’s Z-score method

• Fixed Effect Model: combining standardized effect-sizes

• Software: METAL (Willer et. al., 2010, Bioinformatics.)
https://genome.sph.umich.edu/wiki/METAL_Documentation



Fisher’s method — 61/66 —

Given summary statistics from individual studies of the same genetic variant

• pk: p-value from the kth study, k = 1, . . . ,K

The test statistic
−2
∑

k

log(pk) ∼ χ2
(2K)

Derivation:

• Under the null, each pk follows U[0, 1]

• The − log of a uniformly distributed value follows an exponential distribution

• Scaling a value that follows an exponential distribution by a factor of two yields a
quantity that follows a χ2 distribution with 2 df

• The sum of K independent χ2 values follows a χ2 distribution with 2K df



Stouffer’s Z-score method — 62/66 —

Given summary statistics from individual studies of the same genetic variant

• nk: sample size of the kth study

• pk: p-value from the kth study

• βk: effect-size for the kth study

Then, we obtain

• Zk = sign(βk)Φ−1(1 − pk/2), where Φ is standard normal CDF.

• wk =
√

nk: weight

Stouffer’s Z statistic is given by ∑
k wkZk√∑

k w2
k

∼ N(0, 1)



Fixed Effect Model — 63/66 —

Inverse-variance estimator

Given summary statistics from individual studies of the same genetic variant

• β̂k: genetic effect-size from the kth study

• vk: variance of β̂k from the kth study

Then, consider

• βmeta =
∑

k wkβk∑
k wk

, wk = 1/vk

• Vbeta = 1∑
k wk

• Inverse-variance weighting

The Wald test statistic is given by

βmeta
√

Vmeta
∼ N(0, 1)



Post-GWAS Analysis — 64/66 —

• Replication study with independent datasets

• Fine-mapping GWAS loci while accounting for functional annotation (Yang et. al.
2017 AJHG; Schaid et. al., 2018, Nature Reviews Genetics)

• Biological interpretation with gene ontology/pathway analysis

• Biological replication (e.g., CRISPER-CAS9)



GWAS Tools — 65/66 —

• PLINK (Purcel et. al., 2007): https://www.cog-genomics.org/plink/, data
preparation, QC, GWAS, generate top PCs

• EPACTS: https://github.com/statgen/EPACTS, GWAS with genotyped and
imputed doseage data, Manhattan plot, QQ plot

• Locuszoom (Boughton et. al., 2021): https://my.locuszoom.org/,
Manhattan plot, Locus zoom plot, visualize other public GWAS results

• METAL (Willer et. al., 2010, Bioinformatics.):
https://genome.sph.umich.edu/wiki/METAL_Documentation,
meta-analysis with GWAS summary statistics (Z-scores, p-values, effect sizes,
standard deviation of effect sizes)

• DAVID: https://david.ncifcrf.gov/, Gene ontology analysis
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