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« Structural Imaging modalities
— T1 and T2 weighted MRI, CT, dMRI (DTI)

* Functional Imaging modalities
— fMRI, PET, MEG & EEG
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Scans
« Each fMRI image consists of ~100K voxels

» During the course of the experiment, hundred of images are
acquired (~ one every 2 sec)

« Multiband (simultaneous multislice) decreases to 0.5-1 sec (see
end of slides)

* One voxel 2 one BOLD time series
BIOS 516 4




EMORY CBIS

Statistical AnaIySiS for fMRI ROLLINS | Centerfor Biomedical

CHOO
PUBLIC Imaging Statistics
HEALTH

There are multiple goals in the statistical analysis

of neuroimaging data:
— ACTIVATION: Localizing brain areas activated by the
experimental task (Brain Mapping)

— BRAIN CONNECTIVITY and NETWORK ANALYSIS

— PREDICTION: making predictions about
psychological or disease states
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* The statistical analysis of fMRI data is
challenging.
— It is a massive data problem
— The signal of interest is relatively weak (only 0.5-3%
change in intensity)

— The data exhibits complex temporal and spatial
structure
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Preprocessing Data Analysis
1 Slice-time Localizing
. Correction Brain Activity
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Credits: Martin Lindquist, Johns Hopkins University
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« Block Designs: stimuli of the same condition are
grouped together in blocks

nte ign:
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BOLD Signal

Time (sec)

 PRO: Repeating the stimulus in a block causes a
large total signal change — increases statistical power

to detect activation
« CON: Can't directly estimate features of the HRF
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« Event-related Designs: Allow different stimuli to be
presented in arbitrary sequences, allows randomization

of conditions.

(NN AN NN NN NS

Figures: from Amaro and Barker, 2006 and Icni.uoregon.edu/~ray/

 PRO: Can precisely observe the actual HRF — thus
allowing for the estimation of features of the HRF

 CON: Reduced statistical power to detect BOLD
differences between different conditions. Lower
signal change, may be <1%. For block design, 3-5%.
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Facial recognition task

View
famous
faces

Task B: View
non-famous
faces
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BOLD response in
block v. event related (slow)
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* Repetitions can get predictable, reducing activation

« Timing Issues:
— ldeally 15-20 sec on, then 15-20 sec off
— Long enough for HRF to relax in between presentations
— Short enough for many comparison blocks within short time
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« Slow: Waiting 12+ seconds in between each event to
allow HRF to relax is inefficient

« Gap spacing >4 seconds to avoid HRF blurring

« Jitter spacing to record different parts of the HRF and
avoid correlation with other functions like heart rate and
breathing

I O S I I O
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« How to capture task-related activity in a noisy brain? Use
cognitive subtraction/contrasts (task vs. control)

Image Image I.p;g eA(?_f
of task of task Image of

A B task B

\ /
\_/
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* Resting-state fMRI studies:
— No task/stimulus
— Acquire scans while subjects are left to think for themselves

— May reflect a natural or more common mode of neural
processing

Brain is
not silent
at rest!

Default Mode Network
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Noisy brain:
— Random neural activity
— signal of interest is relatively weak
* Noisy scanner:
— Unstructured noise, i.e., measurement error = thermal noise
— Scanner Drift — the magnetic field can slowly rise and fall
— Non-uniformities in magnetic field
* Physiological noise:
— Fluctuations in BOLD due to breathing and heart beat
* Motion

— head/brain movement due to heartbeat, breathing, subject
fidgeting, etc.

« Solutions:
— Limit subject movement in the scanner

— Preprocessing steps to minimize artifacts and standardize before
conducting further analysis
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Structural (T1)

Coregister Warp to T1
to func atlas Warping in atlas

] template parameters | gpace

Apply

Functional image
time series 04

* Preprocessing is performed both on the fMRI data
and structural (MRI) scans, collected prior to the
experiment.
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* Brain Extraction

 Slice timing correction

* Motion correction

« Co-registration

* Normalization

« Spatial Filtering/Smoothing
 Temporal Filtering
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 Remove non-brain tissue and skull from the image, so
that we only use voxels located in the brain.

« Easy to implement with brain extraction tool (BET) in
FSL, or 3dSkullStrip in AFNI
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« Brain Extraction

 Slice timing correction

* Motion correction

« Co-registration

* Normalization

« Spatial Filtering/Smoothing
 Temporal Filtering
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e “Classical’ fMRI uses 2D EPI in which a brain volume is
acquired in separate slices.

« Each slice is sampled at slightly different time points.
e 2D slices = 3D brain volume

Axial slices
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- Slice timing |

correction shifts ot

each voxel’s time 3t

series so that they  ?f

all appear to have ¢
been sampled Z

simultaneously. ol
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« Brain Extraction

 Slice timing correction

* Motion correction

« Co-registration

* Normalization

« Spatial Filtering/Smoothing
 Temporal Filtering
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« Small head movements during a scan can be a major
source of error if not treated correctly.

 When analyzing a voxel’s time series, we assume that
the voxel represents the same location in the brain at
every time point.
— Head motion may make this assumption incorrect

A B C

507 | 89 | 154 663 | 507 | 89
119 | 171 | 83 520 | 119 | 171
179 | 117 | 83 137 | 179 | 117

Huettel et al. Functional Magnetic Resonancel Imaging
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* Motion can be corrected using a rigid body
transformation

* Rigid = rotation and translation, no shearing or scaling

— Choose a reference volume to register all the other volumes
to. (e.g. first volume, middle volume for FSL)

— Re-aligns to reference volume to minimize variance
— 6 DOF: translation (x, y, z) and rotation (roll, pitch, yaw)

Roll Yaw

Roll Yaw

Pitch
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rotation
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* Brain Extraction

 Slice timing correction

* Motion correction

« Co-registration

* Normalization

« Spatial Filtering/Smoothing
 Temporal Filtering
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* Functional MRI (T2*) image has low spatial resolution

* |tis common to map the results obtained from fMRI
onto a high-res structural MRI (T1) image, collected at
the start of the scanning session.

« The process of aligning the structural and functional

Image is called coregistration

— Rigid body transformation or affine transformation (to correct
for possible distortions)
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* Brain Extraction

 Slice timing correction

* Motion correction

« Co-registration

« Normalization

« Spatial Filtering/Smoothing
 Temporal Filtering
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« Everyone’s brain is different. The brain size of
subjects can differ in size by up to 30%!

* There is also substantial variation in brain shapes

 Normalization attempts to register each subjects
anatomy to a standard coordinate space defined by a

template brain
— Affine transformation (12 DOF) or non-linear transformation
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 Talairach

— Talairach and Tournoux (1988)

— Based on dissection and
photography of a single subject
(cadaver of a 60 y.o. female)
* MNI (Montreal Neurological Institute)

— Based on MRI scans of hundreds of normal controf§ f4fCRIfjnPlate

Original Brain MNI152 Template Registered Brain
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« Brain Extraction

 Slice timing correction

* Motion correction

« Co-registration

* Normalization

« Spatial Filtering/Smoothing
 Temporal Filtering
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« Spatial smoothing of fMRI data: improves inter-subject
registration and overcomes limitations in spatial
normalization by blurring any residual anatomical
differences.

 PROs: can increase SNR by decreasing variance and
remove artifacts

« CONs: may reduce signal if small activations; reduces
spatial resolution

« Spatial smoothing is really a bias-variance trade-off:
more smoothing = less variance, more bias.
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* Average one voxel's values with its neighbors
e Gaussian Full Width Half Maximum (FWHM) kernel

— Each voxel intensity is replaced Weights
by a weighted average of

. . . " 0.4
neighboring intensities
— Gaussian function specifies | .| -
weightings and neighborhood size 0« 0.8 0080 !
- USU 4'12 mm FWHM 0.6 0.8 0.6
0.4
e s
FWHM

original 4 mm FWHM 6 mm FWHNi 8 mm FWHM 36
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« Brain Extraction

 Slice timing correction

* Motion correction

« Co-registration

* Normalization

« Spatial Filtering/Smoothing
» Temporal Filtering
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« Temporal noise due to drift from scanner, subject’s
heartbeat and breathing

« Use a high-pass filter to remove low frequency (i.e.
long, slow) noise

* In rs-fMRI, lo-pass filter for high frequency noise
(temporal smothing)

« Temporal filtering is controversial: introduces
autocorrelation, may remove signal

Raw Signal Highpass Filtered
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 After the images have been preprocessed, we
can begin statistical analysis!

» (Goals of statistical analysis of fMRI data:

— ACTIVATION: Localizing brain areas activated by the
experimental task

— FUNCTIONAL CONNECTIVITY: Determining
networks corresponding to brain function

— PREDICTION: making predictions about
psychological or disease states
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Goal: identify regions activated during a specific
task or related to a certain behavioral measure

« Step 1: construct a model for each voxel

— “Massive univariate approach”
— Regression models ("“GLM"=General LM) commonly

used
Stimulus functions HRF BOLD signal Design Matrix
g AL T N\ A N Ty = | _(x)
oB|||||||||I||||||| BAM\MN\;\/ =
50 100 150 200 N A B
Time

Time

Y=XB+e &~N(0,V)
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« Step 2: perform a statistical test to determine
whether task-related activation is present in
each voxel

H,:c'B=0

For contrast c,

task vs. control

Statistical map:
map of t-test
statistics across
all voxels (a.k.a.
t-map)
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« Step 3: Choose an appropriate threshold for
determining statistical significance

Thresholded t-map:
Each significant voxel
Is color-coded
according to the size of
its p-value
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« Which of 100,000 voxels are significant?
— 0a=0.05 - 5,000 false positive voxels

« Bonferroni correction is overly conservative

« Choosing a threshold is a balance between sensitivity
(true positive rate) and specificity (true negative rate)

t>0.5 t>1.5 t>25 t>3.5 t>4.5 t>5.5 t>6.5

1’\ A Y
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Methods for thresholding

The Bonferroni correction

Random Field Theory

Permutation Tests —

use max statistic to account

for spatial correlation and

Family-Wise Error (FWE)

given that the whole family of the test
statistics is from the null distribution, the
probability of there being one or more test
statistic values that exceed a pre-specified
threshold.

dramatically increase power

False Discovery Rate (FDR)
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B. Risk, D. Matteson, N. Spreng, D. Ruppert

SPATIOTEMPORAL MIXED
MODEL
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OUR APPROACH: STMM [RISK ET AL., 2016]

» We model each region independently: € {1, ..., R} index region using
[Gordon et al., 2016] (172 parcels / hemisphere)

> Y = [Virttyeee s Viviz]
Yi =1y,  XiBr. + (Iy,  Xi) Br + 1v. ® Xisir
+ (Iy, ® X;) bir + (Iy, ® Z;) vir + iy

> sir N (0g.S,) with S, = diag(?,.... .02 )

iid 2
> bjl, ~ N(Ovr, JbquI‘q)
V,
> eirVN N(0v,r, @\,zlfzzrv‘I’irv) where
r 2 — 2 2
®‘J:] [']‘le.l"\’ _ dlag(SH"] Qifl’ R S 7€il‘Vr\Ilil’Vr)

» Subject activation is defined

Airvg = Br-q o5 Brvq + Sirg + birvq
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VISUALIZING STMM

Figure : Population regional + vertex effects, 3.4 + Bryg (left)
Subject regional, s;, (middle)

Subject-vertex, bjpq (right)

Figure : Subject activation: ;.

BIOS 516
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MUMM SUBJECT ACTIVATION FOR HCP MOTOR TASK

Figure : MUMM estimates of the contrast between the left-hand finger tap vs other tasks for a randomly selected
subject (123925) (right hemisphere).
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HCP Analysis ROLLINS

STMM SUBJECT ACTIVATION FOR HCP MOTOR TASK

Figure : STMM estimates of the contrast between the left-hand finger tap vs other tasks for a randomly selected
subject (123925) (right hemisphere).
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» (Goals of statistical analysis of fMRI data:

— ACTIVATION: Localizing brain areas activated by the
experimental task

— FUNCTIONAL CONNECTIVITY: Determining
networks corresponding to brain function

— PREDICTION: making predictions about
psychological or disease states
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* A lot of research now focuses on the network view of the
brain rather than the regional-specialization view of the
brain

« Connectivity studies describe how various brain
regions interact.
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BRAIN CONNECTIVITY

Structural connectivity
- Diffusion MRI tractography

*Functional connectivity
- seed-based analysis,
correlations between regions of
interest, graphical models, ICA

-Effective connectivity
-Granger causality, Dynamic
Causal Modeling (DCM)

*Dynamic connectivity
-sliding window, hidden Markov
model, change-point method

SCHOOL OF
P U B i@
HEALTH

Center for Biomedical
Imaging Statistics

Wager et al. 2015

Wang et al. 2016 graphical model

Bxpected
probebiny of
woidance

Nariows ispst

Roy et al. 2014 DCM
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Functional Connectivity
« Correlation between time courses of brain regions
« Usually undirected association

" BOLD signal

==QOcciptal L
-=Occiptal R

r=087

-=PCC
=—mPFC

r=048

-—pRCC
-=Occiptal R

r=003

Time
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* Functional Connectivity Analysis is usually
performed using data-driven methods which make no

assumptions about the underlying biology

 Methods include:
— Seed analysis

— Network analysis
— Partitioning methods: Clustering, PCA, ICA
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« Calculates the correlation between the temporal brain
activity profile in a selected (“seed”) voxel/region and
the profiles from other voxels/regions in the brain.

« Simple and easy to implement

 BUT... requires careful
selection of seed voxel/region

* Provides a limited view of the
brain, since it is restricted to
connectivity involving the seed
voxel.
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« Example from

mm mm

Risk et al 2021 (Neuroimage):

mm

Correlation

(a]
u
=
)
£
o
o
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Whole-Brain region-to-region :
approach:
1.Parcellate the brain and extract

the “average” fMRI time course
for each region e
2.Calculate correlation between By
regions - correlation matrix

3.Threshold - binary adjacency
matrix

4.Graph theory analysis
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 Network/Graph Theory analysis tries to
characterize networks using a small number of
meaningful summary measures

« Comparing network topological measures (ex: node
degree, clustering coefficient, etc.) between groups of
subjects may reveal connectivity abnormalities
related to brain disorders

N

\ A network is a system of
nodes (regions) and
edges (connections
between regions)
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 Network Visualization tools
— BrainNet MATLAB toolbox

— igraph R package

« Brain connectivity toolbox (MATLAB) for calculating
graph theory metrics to characterize networks.
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« Partitioning algorithms identify spatially distinct
components or clusters in the brain

« Each of these components represents a functionally
connected network

* Methods:
— Clustering
— PCA
— ICA

BIOS 516 61
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« Cluster analysis: identifies “clusters” of voxels with
similar brain activity patterns.

« Clusters may consist of noncontiguous voxels,
offering the potential of identifying associations
between anatomically distant voxels

« Several algorithms: K-means approach, fuzzy
clustering, hierarchical clustering, etc.

3 clusters (red, orange, yellow)
based on mean brain activity of
cocaine addicts in inhibitory control
study.

Each cluster contains voxels with
similar patterns of brain activity
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* Principal components analysis (PCA) involves
finding spatial modes, or eigenimages, in the data

— These are the patterns that account for most of the variance-
covariance structure in the data, ranked in order

« The eigenimages can be obtained using singular
value decomposition (SVD) applied to centered and
scale data

» Decomposes the data into two sets of orthogonal
vectors that correspond to patterns in space and
time.
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Time courses Eigenimages
Voxels—
Q
E
- =
!
Data
TxV

X = USV’

T T T
X =85WV, +5,U,V, +...+5,U,Vy
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Temporal components (sd, % variance explained)
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* Definition of ICA

Independent component analysis (ICA) is a computational method for separating a
multivariate signal into additive subcomponents assuming the mutual statistical
independence of the non-Gaussian source signals. It is a special case of blind
source separation.

* Classic Example: Cocktail Party Problem

IW\/V\ -

di E\}W / CA e

228

0

Ads

‘ a22

« Key assumptions of ICA
> signals are statistically independent
» signals are non-Gaussian
> # of mixture of signals = # of sources
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Observed fMRI data Temporal
responses
1
Spatial map
: z + + oo o
T
Component 1 Component 2

Goal: Decompose observed fMRI data as a linear combination of spatio-temporal
processes of underlying source signals.

Figure: MELODIC at http://www.fmrib.ox.ac.uk/analysis/research/melodic/
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A ; S | Statistically

independent

f(Sl, ...,Sq) —
f(s1) X = f(sq)

Time
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« Does not require any a priori assumptions about the
spatiotemporal structure underlying the observed brain
activity

« Can be used for fMRI data with any paradigm; esp. useful
for resting-state data where no clear task-related
activations exist

« Simultaneously separates neuronal and non-neuronal
sources (e.g. respiration) into different components

« |CA is more effective than PCA at identifying functional
networks (Beckmann et al, 2005). Uses high-order
statistics from the data

« Easy to extend to multi-subject case for group inference —
GIFT, FSL Melodic toolboxes, HINT (by CBIS, upcoming)

BIOS 516 70



2% (@) 284

ROLLINS

PUBLIG
HEALTH

* Network+ICA
parcellation:
example from
Nebel et al in

prep:
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A partial correlation method forgaavwmet

Center for Biomedical
Imaging Statistics

SCHOOL OF

whole brain network modeling HEALTH
DensParcorr developed by CBIS (Wang et al., 2016, available from CRANS)

Dens-based Partial Correlation Estimation Approach

Step 1. Initial: Calculate the sample covariance matrix £ based on the observed
fMRI time series from M nodes in the brain. If one would like to impose sparsity
regularization on the precision matrix estimate, specify a percentage p,where

p € (0,1), for selecting the tuning parameter based on the desired dense level
of the precision matrix estimate.

Step 2. choose sparsity tuning parameter

Ay = argmin}\n{|Dens(?\n) —p X Dens |}
Step 3: Estimate the precision matrix using CLIME Q*(A)
Step 4: Derive estimate for the partial correlation matrix

Pcorr = —diag(Q*) /20" diag(Q*)~V? + 21y
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Dens-based tuning parameter ROLLINS
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To measure how dense an estimated precision matrix is, we propose the following Dens
criterion function,

Dens(ﬂ) o Zij |(Dij| , where Q = {(‘)i]'}

Essentially, Dens is the matrix-wise L1 norm of €.

* Specify a monotonically decreasing sequence {A,,n =

Dens on Precision 0,1, ..., } within the range (0,1) with 4, - 1 and 4,, = 0
e > > > as n increases
ch B * Obtain CLIME Q estimate for {A,,} starting from A,. Keep
E - / decreasing A, until Dens(4,,) reaches the plateau and
. remains stable afterwards. Denote the maximum Dens(4,,)
gl - 2 / in its profile as Densy,.x -
frer |Dens(A,)—Denspaxl
g - o/ *  Aplary =the largest 4, s. t. T <eg
;{ . the point where Dens(A,) becomes stabilized and Q is close to
R B 8 B DenSpax
- Iog10(1=mos3)

. }\;‘) = argmin;\nﬂDenSO\n) — p X Densp, x|}

: the point where Q corresponds to p percent of Dens,, .«
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Marginal vs. Direct connectivity

Full Correlation connectivity

HEALTH

Partial Correlation connectivity

(Aplatu)
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Connectivit

« Directed influence of one brain region on the activity
recorded in another brain region.

functional connectivity effective connectivity
v1 "{ S 2
>
s N
Undirected Directed
associations associations

* Methods: SEM, DCM, Granger Causality
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« Structural Equation Models comprise a set of regions
and a set of directed connections

* Focuses on the covariance structure that reflects
associations between variables
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Dynamic Causal Modeling estimates effective
connectivity in a Bayesian framework.

DCM regards the brain as a deterministic nonlinear
dynamic system that receives inputs and that
produces outputs.

This dynamic system is modelled using neural state
equation based on hemodynamic time series

Effective Connectivity is parameterized in terms of
the coupling among unobserved neuronal activity in
different regions.
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« Dynamic FC attempts to model changes in FC over
time
« Sliding Window approach

(B)

TRENDS in Neurosciences
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» (Goals of statistical analysis of fMRI data:

— ACTIVATION: Localizing brain areas activated by the
experimental task

— FUNCTIONAL CONNECTIVITY: Determining
networks corresponding to brain function

— PREDICTION: making predictions about
psychological or disease states
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Prediction/Classification ROLLINS | Centerfor Biomedica
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« Predicting future neural activity based on baseline
functional brain images.

* Predicting experimental conditions, cognitive states and
group membership (psychiatric conditions, treatment
response) based on functional brain images.

Experimental condition, cognitive states

& (s | %
\ L/ J}—‘(x‘_w > ’(”‘ =
[

Pittsburgh Bralj)n Activity Interpretation Competition

Clinical outcomes:
*Diseased (e.g. ADHD) vs. normal

*Treatment Response vs. non-response
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* There is a growing interest in using fMRI data for
classification of mental disorders and prediction
of neural activity.

 This application of machine learning techniques
Is often referred to as multi-voxel pattern
analysis (MVPA)

— A classifier is trained to discriminate between different
brain states and used to predict the states in a new
set of data
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 When applied to fMRI data, the result is often a
pattern of weights across brain regions that
quantify the degree to which the pattern of brain

activity responds to a particular type of event.
(Ex: SVM)
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* The process of performing MVPA follows a
series of steps:
— Defining features and classes
— Feature selection

— Choosing a classifier
« SVD, LDA, logistic regression

— Training and testing the classifier
» Cross validation

— Examining results
 Prediction accuracy
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Run 1 Run 2 Run 3 Run 4

A BN A BB --- A B A BB---'A B0 A BBE--- A0 B

Activity

maps

| Y

Classifier training Classifier testing

Classifier
performance
map
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[ Develop the prediction algorithm ]

Pre- Post- Characteristics
treatment treatment (treatment group;

. ...IIF_

Prediction Algorithm

Model Building )
Trainin : : " — _ SN -
subjecti ' ) : : v Yf_post—t't f (Yl_pr&m= Xa » H)
N [ ™ '
-
[ Apply the prediction algorithm ]
Predicted Post-
treatment Maps
Pre- AT
treatment  Characteristics 1 L
New 1 1 - input Prediction Algorithm output
subjects : ' Y postm =S (Y _pren 1 X2 0) ' :
, e "B
m [

Source: Guo et al. 2008, Human Brain Mapping.
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Prediction Example S

Prediction of treatment response (Guo et al., 2008)

A Predicted post-treatment maps
Subject 1 Subject 2 Subject 3 Subject 4

|8\ B

B Observed post-treatment maps
Subject 1 Subject 2 Subject 3 Subject 4

50

40

60

50

40
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1maging data

Feature selection

HEALTH

non - imaging outcomes

X.

1

Prediction, training and
testing

Building a predictive model

h(Y))

e.g.
1.Between-region functional
connectivity (Shuo et al.);

2. cluster-specific principal
features extracted using kernel PCA
(Guo, 2010)

> f(h(Y),z,:0)

For categorical outcome: Support vector
classifier

S ((Y,);0) = sign[h'(Y,)B + 5]
For continuous outcome: regression models
such as ridge regression

S ([(Y,):8) = B, +1'(Y,)B
with = argminp{ill X, —[Bo + W' (Y)BI* +A 1B ||2}
i=1
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B. Risk
Collaborators: D. Rowe, M. Kociuba, J. Wu, R. Murden, D. Qiu

MULTIBAND ACQUISITION
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e SMS = multiband

* Multiband RF pulse
with slice-selective
gradient -
simultaneously collect
multiple slices

« Sum slices in packet
 Decrease TR

* Popular in DWI and
fMRI

 Here, focus on fMRI
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Coil sensitivity variation
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32 channels

signal, FOV/2

ge
time series of
summed slices

sb calibration ima
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MR data are not collected at locations
» Spatial frequencies = kspace
* 5D complex-valued data

Real Imaginary

phase encode

0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

0000000000000000
0000000000000000
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 Calibration Data (in k-space):

McékmO E Scék:z()
ze{mm+M,.. m+(A-1)M}

¢ J I
K _ 5 ' 5 ' 5 ' K
Scékzo — p » . nchjith,e+j,k+i,m(z),o T €clkz0

h=1 j=—Ji=—1I

where Real(€ecorz0) ~ N (0,07, ) and Imag(ecoz0) ~ N (0,02, ;).

* Design matrix:
Mgkm [ cé Lh=Tm(z),00 " Mc€+Jk+Im(z) O]

Mgcm(z)o — [(Mﬁkm(z)O)T, 5E s (MCEkm(z)O)T] = (C:C(Qf-l‘l)(QJ-+-1)7

c CRI+D(2I+1)

MTKn(z)O = [Mﬁm(z)(), s s ’Mng(z)O]T CYXXC(21+1)(2J+1).
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Estimate kernel:
ﬁcz — (MK:@OMKmO>_1MK:1OSK

cz0

Apply to test data (k-space fMRI time series):

C J I
AK e A K
SBt =Y > Y e ME s

h=1 j=—J i=—I

Transform to image space: . N A

Calculate magnitude images:

C
S:f:-yzt - \l Z Re(sé—a:yzt)z + Im(Sgwyzt)z
c=1
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Reconstruction error sz o

« Xu et al 2013 HCP Consortium:

Note: MB factor = SMS factor
MB1 MB2 MB4 MB6 MBS MB10 MB12

|
achievable TR
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Noise amplification T

* Risk et al 2018:

MB 8

MB 4

Figure 2: Noise amplification due to SMS. Standard deviation of the residuals from the GLM
fit to simulations with scaling factor = 1 and scan duration = 480 s. AF =1 (A); AF =8
with no FOV shifts (B) and FOV/3 shifts (C); AF = 4 with no FOV shifts (D) and FOV/3
shifts (E).
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ROLLINS Benjamin B. Riske, Junjie WuP, and Degiang Qiu®: cesiva ex
PUBLIC

EIEVA T aDepartment of Biostatistics and Bioinformatics, Emory University; *Department of Radiology and Imaging Sciences, Emory University School of Medicine

cJoint Department of Biomedical Engineering, Emory University and Georgia Institute of Technology

|NTRODU CT|0N MOTIVATION Differences in functional

connectivity due to noise
+ Subcortical functional connectivity is Let x;,., denote the BOLD signal at location v, | ampilification are important:

important in neurological disorders.? time t, and acceleration (multiband) factor r.

For r' > r (higher AF) and v in a region of high . The magnitudes are

» Multiband (MB) / Simultaneous Multislice g-factor, we hypothesize interpreted as strength of
(SMS) is used in rs-fMRI to increase Cov(Xypr, Xy ir) = COV(Xyyrr, Xt 1), functional connectivity, and
temporal resolution.? sd(xyer) < sd(xy 1) spatially varying g-factors

Then, h " may mischaracterize brain

Corr(xypr, Xy r) > Corr(Xy, ) Xy 1r). activity.

Benefits of reduced TR may be
decreased by noise amplification, which
varies across space and is generally . Smaller correlations
higher in subcortical region3_4 Figure 1. Standard deviation of time series for an example decrease statistical power

subjegt .
e unless sufficiently offset by
increases in effective sample
size.
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* Risk etal 2021:
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Network Analysis
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Figure 7: Edge density (number of significant correlations) for thirteen communities (auditory, cerebellum,
cingulo-opercular task control, default mode, dorsal attention, fronto-parietal task control, memory, salience,
somatomotor hand, somatomotor mouth, subcortical, ventral attention, and visual) and across all edges (all).
The edge density for a community is defined as the proportion of significant one-sample t-statistics (using
the Bonferroni-corrected a-level) for the Fisher z-transformed correlations for each edge in which at least one
of the nodes is in the community. A) The number of significant correlations with 9p preprocessing tended to
be higher in MB 6, MB 4, and MB 8, with the relative ranking of SB 3.3 mm depending on the community,
and SB 2 mm, MB 2, MB 3, MB 9, and MB 12 tending to perform worse. Permutation tests of significant
differences between MB factors appear in Web Supplement Table S.2. Similar results were obtained with
9p+spatial smoothing, shown in Web Supplement Table S.3. B) The rankings with 9p+bandpass were
similar to 9p, with MB 8, 6 and 4 tending to be higher than others and SB 2 mm, MB 2, MB 9, and MB
12 lower. Permutation tests of significant differences between MB factors appear in Web Supplement Table
S.4. Overall, 9p+bandpass had lower edge density compared to 9p, with significant differences displayed in
Web Supplement Table S.5.
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