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Review from last 
time…

• Structural Imaging modalities
– T1 and T2 weighted MRI, CT, dMRI (DTI)

• Functional Imaging modalities
– fMRI, PET, MEG & EEG

BIOS 516 3



fMRI data

• Each fMRI image consists of ~100K voxels
• During the course of the experiment, hundred of images are 

acquired (~ one every 2 sec)
• Multiband (simultaneous multislice) decreases to 0.5-1 sec (see 

end of slides)
• One voxel à one BOLD time series
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Statistical Analysis for fMRI 

There are multiple goals in the statistical analysis 
of neuroimaging data:

– ACTIVATION: Localizing brain areas activated by the 
experimental task (Brain Mapping)

– BRAIN CONNECTIVITY and NETWORK ANALYSIS

– PREDICTION: making predictions about 
psychological or disease states
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Challenges

• The statistical analysis of fMRI data is 
challenging.
– It is a massive data problem
– The signal of interest is relatively weak (only 0.5-3% 

change in intensity)
– The data exhibits complex temporal and spatial 

structure
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Analysis Procedure

Preprocessing Data AnalysisData Acquisition 

Slice-time 
Correction

Motion Correction,
Co-registration &
Normalization

Spatial
Smoothing

Localizing 
Brain Activity

Connectivity

Prediction

Reconstruction

Experimental Design 

Credits: Martin Lindquist, Johns Hopkins University
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fMRI study designs
• Block Designs: stimuli of the same condition are 

grouped together in blocks

• PRO: Repeating the stimulus in a block causes a 
large total signal change – increases statistical power 
to detect activation 

• CON: Can’t directly estimate features of the HRF

Time (sec)
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fMRI study designs
• Event-related Designs: Allow different stimuli to be 

presented in arbitrary sequences, allows randomization 
of conditions. 

• PRO: Can precisely observe the actual HRF – thus 
allowing for the estimation of features of the HRF

• CON: Reduced statistical power to detect BOLD 
differences between different conditions.  Lower 
signal change, may be <1%. For block design, 3-5%.

Figures: from Amaro and Barker, 2006 and lcni.uoregon.edu/~ray/
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Simple task example

Facial recognition task

Task A:
View 
famous 
faces

Task B: View
non-famous 
faces
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Simple task example
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Simple task example
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Block vs event-related design
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Block Design Issues

• Repetitions can get predictable, reducing activation

• Timing Issues:
– Ideally 15-20 sec on, then 15-20 sec off
– Long enough for HRF to relax in between presentations
– Short enough for many comparison blocks within short time
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Event-Related Design Issues

• Slow: Waiting 12+ seconds in between each event to 
allow HRF to relax is inefficient

• Gap spacing >4 seconds to avoid HRF blurring
• Jitter spacing to record different parts of the HRF and 

avoid correlation with other functions like heart rate and 
breathing

BIOS 516 15



Task-related activity

• How to capture task-related activity in a noisy brain? Use 
cognitive subtraction/contrasts (task vs. control)
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Resting-state fMRI

• Resting-state fMRI studies:
– No task/stimulus
– Acquire scans while subjects are left to think for themselves
– May reflect a natural or more common mode of neural 

processing

Default Mode Network

Brain is 
not silent 

at rest!
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Sources of Noise

• Noisy brain:
– Random neural activity
– signal of interest is relatively weak 

• Noisy scanner:
– Unstructured noise, i.e., measurement error = thermal noise
– Scanner Drift – the magnetic field can slowly rise and fall
– Non-uniformities in magnetic field

• Physiological noise: 
– Fluctuations in BOLD due to breathing and heart beat

• Motion
– head/brain movement due to heartbeat, breathing, subject 

fidgeting, etc.
• Solutions:

– Limit subject movement in the scanner
– Preprocessing steps to minimize artifacts and standardize before

conducting further analysis
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Preprocessing 
Pipeline

• Preprocessing is performed both on the fMRI data 
and structural (MRI) scans, collected prior to the 
experiment.
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Preprocessing 
Steps

• Brain Extraction
• Slice timing correction
• Motion correction
• Co-registration
• Normalization
• Spatial Filtering/Smoothing
• Temporal Filtering
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Brain Extraction

• Remove non-brain tissue and skull from the image, so 
that we only use voxels located in the brain.

• Easy to implement with brain extraction tool (BET) in 
FSL, or 3dSkullStrip in AFNI
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Preprocessing Steps

• Brain Extraction
• Slice timing correction
• Motion correction
• Co-registration
• Normalization
• Spatial Filtering/Smoothing
• Temporal Filtering
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Slice Timing Correction

• “Classical” fMRI uses 2D EPI in which a brain volume is 
acquired in separate slices.

• Each slice is sampled at slightly different time points.
• 2D slices à 3D brain volume

Axial slices
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Slice Timing Correction

• Slice timing 
correction shifts 
each voxel’s time 
series so that they 
all appear to have 
been sampled 
simultaneously. 
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Preprocessing Steps

• Brain Extraction
• Slice timing correction
• Motion correction
• Co-registration
• Normalization
• Spatial Filtering/Smoothing
• Temporal Filtering
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Head Motion
• Small head movements during a scan can be a major 

source of error if not treated correctly. 
• When analyzing a voxel’s time series, we assume that 

the voxel represents the same location in the brain at 
every time point. 
– Head motion may make this assumption incorrect
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Motion Correction

• Motion can be corrected using a rigid body 
transformation

• Rigid = rotation and translation, no shearing or scaling
– Choose a reference volume to register all the other volumes 

to.  (e.g. first volume, middle volume for FSL)
– Re-aligns to reference volume to minimize variance
– 6 DOF: translation (x, y, z) and rotation (roll, pitch, yaw)
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Motion Correction
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Preprocessing Steps

• Brain Extraction
• Slice timing correction
• Motion correction
• Co-registration
• Normalization
• Spatial Filtering/Smoothing
• Temporal Filtering
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Coregistration

• Functional MRI (T2*) image has low spatial resolution
• It is common to map the results obtained from fMRI 

onto a high-res structural MRI (T1) image, collected at 
the start of the scanning session. 

• The process of aligning the structural and functional 
image is called coregistration
– Rigid body transformation or affine transformation (to correct 

for possible distortions)
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Preprocessing 
Steps

• Brain Extraction
• Slice timing correction
• Motion correction
• Co-registration
• Normalization
• Spatial Filtering/Smoothing
• Temporal Filtering
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Normalization

• Everyone’s brain is different. The brain size of 
subjects can differ in size by up to 30%!

• There is also substantial variation in brain shapes
• Normalization attempts to register each subjects 

anatomy to a standard coordinate space defined by a 
template brain
– Affine transformation (12 DOF) or non-linear transformation
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Standard Brain Templates

• Talairach
– Talairach and Tournoux (1988)
– Based on dissection and 

photography of a single subject 
(cadaver of a 60 y.o. female)

• MNI (Montreal Neurological Institute)
– Based on MRI scans of hundreds of normal controls (all RH)Talairach Template
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Preprocessing Steps

• Brain Extraction
• Slice timing correction
• Motion correction
• Co-registration
• Normalization
• Spatial Filtering/Smoothing
• Temporal Filtering
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Spatial Smoothing

• Spatial smoothing of fMRI data: improves inter-subject 
registration and overcomes limitations in spatial 
normalization by blurring any residual anatomical 
differences.

• PROs: can increase SNR by decreasing variance and 
remove artifacts

• CONs: may reduce signal if small activations; reduces 
spatial resolution

• Spatial smoothing is really a bias-variance trade-off: 
more smoothing = less variance, more bias. 
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Spatial Smoothing

• Average one voxel’s values with its neighbors
• Gaussian Full Width Half Maximum (FWHM) kernel

– Each voxel intensity is replaced
by a weighted average of
neighboring intensities

– Gaussian function specifies
weightings and neighborhood size

– Usu. 4-12 mm FWHM
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Preprocessing Steps

• Brain Extraction
• Slice timing correction
• Motion correction
• Co-registration
• Normalization
• Spatial Filtering/Smoothing
• Temporal Filtering
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Temporal Filtering

• Temporal noise due to drift from scanner, subject’s 
heartbeat and breathing

• Use a high-pass filter to remove low frequency (i.e. 
long, slow) noise

• In rs-fMRI, lo-pass filter for high frequency noise 
(temporal smothing)

• Temporal filtering is controversial: introduces 
autocorrelation, may remove signal 
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Statistical Analysis

• After the images have been preprocessed, we 
can begin statistical analysis!

• Goals of statistical analysis of fMRI data:

– ACTIVATION: Localizing brain areas activated by the 
experimental task

– FUNCTIONAL CONNECTIVITY: Determining 
networks corresponding to brain function 

– PREDICTION: making predictions about 
psychological or disease states
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Activation

• Goal: identify regions activated during a specific 
task or related to a certain behavioral measure

• Step 1: construct a model for each voxel
– “Massive univariate approach”
– Regression models (“GLM”=General LM) commonly 

used

(x)
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Activation

• Step 2: perform a statistical test to determine 
whether task-related activation is present in 
each voxel 

For contrast c, 
task vs. control

Statistical map: 
map of t-test 
statistics across 
all voxels (a.k.a. 
t-map)
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Activation

• Step 3: Choose an appropriate threshold for 
determining statistical significance

Thresholded t-map: 
Each significant voxel 
is color-coded 
according to the size of 
its p-value
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Multiple Comparison Problem

• Which of 100,000 voxels are significant?
– α=0.05 à 5,000 false positive voxels

• Bonferroni correction is overly conservative
• Choosing a threshold is a balance between sensitivity 

(true positive rate) and specificity (true negative rate)
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Methods for thresholding 
• The Bonferroni correction

• Random Field Theory             

• Permutation Tests –
use max statistic to account
for spatial correlation and 
dramatically increase power

• False Discovery Rate (FDR) 

44

Family-Wise Error (FWE)

given that the whole family of the test 
statistics is from the null distribution, the 
probability of there being one or more test 
statistic values that exceed a pre-specified 
threshold.  
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SPATIOTEMPORAL MIXED 
MODEL

B. Risk, D. Matteson, N. Spreng, D. Ruppert
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STMM
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STMM
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HCP Analysis
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HCP Analysis
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Statistical Analysis

• Goals of statistical analysis of fMRI data:

– ACTIVATION: Localizing brain areas activated by the 
experimental task

– FUNCTIONAL CONNECTIVITY: Determining 
networks corresponding to brain function 

– PREDICTION: making predictions about 
psychological or disease states
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Connectivity

• A lot of research now focuses on the network view of the 
brain rather than the regional-specialization view of the 
brain

• Connectivity studies describe how various brain 
regions interact.
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Connectivity
BRAIN CONNECTIVITY 
•Structural connectivity

- Diffusion MRI tractography

•Functional connectivity  
- seed-based analysis, 

correlations between regions of 
interest, graphical models, ICA

•Effective connectivity 
-Granger causality, Dynamic 
Causal Modeling (DCM)

•Dynamic connectivity 
-sliding window, hidden Markov 
model, change-point method  

Wang et al. 2016

BIOS 516 52



Functional Connectivity
Functional Connectivity
• Correlation between time courses of brain regions
• Usually undirected association
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Functional Connectivity

• Functional Connectivity Analysis is usually 
performed using data-driven methods which make no 
assumptions about the underlying biology

• Methods include:
– Seed analysis
– Network analysis
– Partitioning methods: Clustering, PCA, ICA
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Seed Analysis

• Calculates the correlation between the temporal brain 
activity profile in a selected (“seed”) voxel/region and 
the profiles from other voxels/regions in the brain. 

• Simple and easy to implement
• BUT… requires careful 

selection of seed voxel/region
• Provides a limited view of the 

brain, since it is restricted to 
connectivity involving the seed
voxel.
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Seed Analysis

• Example from Risk et al 2021 (Neuroimage): 
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Network Analysis

Whole-Brain region-to-region 
approach:
1.Parcellate the brain and extract
the “average” fMRI time course
for each region
2.Calculate correlation between
regions à correlation matrix
3.Threshold à binary adjacency
matrix
4.Graph theory analysis
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Network Analysis
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Network Analysis

• Network/Graph Theory analysis tries to 
characterize networks using a small number of 
meaningful summary measures

• Comparing network topological measures (ex: node 
degree, clustering coefficient, etc.) between groups of 
subjects may reveal connectivity abnormalities 
related to brain disorders

A network is a system of 
nodes (regions) and 
edges (connections 
between regions)
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Network Analysis

• Network Visualization tools
– BrainNet MATLAB toolbox

– igraph R package

• Brain connectivity toolbox (MATLAB) for calculating 
graph theory metrics to characterize networks. 
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Partitioning Algorithms

• Partitioning algorithms identify spatially distinct 
components or clusters in the brain

• Each of these components represents a functionally 
connected network

• Methods: 
– Clustering
– PCA
– ICA
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Clustering

• Cluster analysis: identifies “clusters” of voxels with 
similar brain activity patterns. 

• Clusters may consist of noncontiguous voxels, 
offering the potential of identifying associations 
between anatomically distant voxels

• Several algorithms: K-means approach, fuzzy 
clustering, hierarchical clustering, etc.

3 clusters (red, orange, yellow) 
based on mean brain activity of 
cocaine addicts in inhibitory control 
study.

Each cluster contains voxels with 
similar patterns of brain activity
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PCA

• Principal components analysis (PCA) involves 
finding spatial modes, or eigenimages, in the data
– These are the patterns that account for most of the variance-

covariance structure in the data, ranked in order
• The eigenimages can be obtained using singular 

value decomposition (SVD) applied to centered and 
scale data

• Decomposes the data into two sets of orthogonal 
vectors that correspond to patterns in space and 
time.
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PCA

Data 
TxV
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PCA
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ICA
• Definition of ICA
Independent component analysis (ICA) is a computational method for separating a 
multivariate signal into additive subcomponents assuming the mutual statistical 
independence of the non-Gaussian source signals. It is a special case of  blind 
source separation. 

• Classic Example: Cocktail Party Problem

• Key assumptions of ICA
Ø signals are statistically independent
Ø signals are non-Gaussian
Ø # of mixture of signals  ≥   # of sources

67

ICA

11a

21a

12a

22a
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Goal: Decompose observed fMRI data as a linear combination of spatio-temporal 
processes of underlying source signals.

Component 1

×≈ ×+

• • •

1

T

+ • • •

Component 2

Figure: MELODIC at http://www.fmrib.ox.ac.uk/analysis/research/melodic/

Temporal 
responses

Spatial map

Observed fMRI data
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ICA
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Standard ICA for fMRI

              JqqTJTY ´´´ = SA
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Advantages of ICA
• Does not require any a priori assumptions about the 

spatiotemporal structure underlying the observed brain 
activity

• Can be used for fMRI data with any paradigm; esp. useful 
for resting-state data where no clear task-related 
activations exist

• Simultaneously separates neuronal and non-neuronal 
sources (e.g. respiration) into different components

• ICA is more effective than PCA at identifying functional 
networks (Beckmann et al, 2005). Uses high-order 
statistics from the data

• Easy to extend to multi-subject case for group inference –
GIFT, FSL Melodic toolboxes, HINT (by CBIS, upcoming)
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ICA

• Network+ICA
parcellation: 
example from 
Nebel et al in 
prep:
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A partial correlation method for 
whole brain network modeling 
DensParcorr developed by CBIS (Wang et al., 2016, available from CRANS) 
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Dens-based tuning parameter 
selection method
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Effective 
Connectivity

• Directed influence of one brain region on the activity 
recorded in another brain region. 

• Methods: SEM, DCM, Granger Causality

Undirected 
associations

Directed 
associations
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SEM

• Structural Equation Models comprise a set of regions 
and a set of directed connections

• Focuses on the covariance structure that reflects 
associations between variables
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DCM

• Dynamic Causal Modeling estimates effective 
connectivity in a Bayesian framework. 

• DCM regards the brain as a deterministic nonlinear 
dynamic system that receives inputs and that 
produces outputs. 

• This dynamic system is modelled using neural state 
equation based on hemodynamic time series

• Effective Connectivity is parameterized in terms of 
the coupling among unobserved neuronal activity in 
different regions. 
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Dynamic FC

• Dynamic FC attempts to model changes in FC over 
time

• Sliding Window approach
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Statistical Analysis

• Goals of statistical analysis of fMRI data:

– ACTIVATION: Localizing brain areas activated by the 
experimental task

– FUNCTIONAL CONNECTIVITY: Determining 
networks corresponding to brain function 

– PREDICTION: making predictions about 
psychological or disease states
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Prediction/Classification

• Predicting future neural activity based on baseline 
functional brain images.

• Predicting experimental conditions, cognitive states and 
group membership (psychiatric conditions, treatment 
response) based on functional brain images. 

Pittsburgh Brain Activity Interpretation Competition

Clinical outcomes:
•Diseased (e.g. ADHD) vs. normal
•Treatment Response vs. non-response

Experimental condition, cognitive states
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Prediction/Classification

• There is a growing interest in using fMRI data for 
classification of mental disorders and prediction 
of neural activity. 

• This application of machine learning techniques 
is often referred to as multi-voxel pattern 
analysis (MVPA)
– A classifier is trained to discriminate between different 

brain states and used to predict the states in a new 
set of data
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Machine Learning

• When applied to fMRI data, the result is often a 
pattern of weights across brain regions that 
quantify the degree to which the pattern of brain 
activity responds to a particular type of event. 
(Ex: SVM)
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Performing MVPA

• The process of performing MVPA follows a 
series of steps:
– Defining features and classes
– Feature selection
– Choosing a classifier

• SVD, LDA, logistic regression
– Training and testing the classifier

• Cross validation
– Examining results 

• Prediction accuracy
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Performing MVPA
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Predicting future neural 
activity
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Prediction Example
Prediction of treatment response (Guo et al., 2008)
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Prediction for clinical 
outcomes
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MULTIBAND ACQUISITION

B. Risk
Collaborators: D. Rowe, M. Kociuba, J. Wu, R. Murden, D. Qiu
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SMS Overview

• SMS = multiband 
• Multiband RF pulse 

with slice-selective 
gradient à
simultaneously collect 
multiple slices

• Sum slices in packet
• Decrease TR
• Popular in DWI and 

fMRI
• Here, focus on fMRI
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Adapted from B. Zahneisen OHBM 2017
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Head coil array
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Coil sensitivity variation
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Example SMS = 2
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K-space

• MR data are not collected at locations
• Spatial frequencies = kspace
• 5D complex-valued data
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Slice-GRAPPA

• Calibration Data (in k-space):

• Design matrix:
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Estimate kernel

94

• Estimate kernel:

• Apply to test data (k-space fMRI time series):

• Transform to image space:

• Calculate magnitude images:
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Reconstruction error
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• Xu et al 2013 HCP Consortium:
Note: MB factor = SMS factor
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Noise amplification

• Risk et al 2018:
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Slice-GRAPPA
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SD: ICA-FIX rs-fMRI
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Rotated 20°
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MOTIVATION
• Let 𝒙!,#,$ denote the BOLD signal at location 𝑣, 

time 𝑡, and acceleration (multiband) factor 𝑟.
• For 𝑟% > 𝑟 (higher AF) and 𝑣 in a region of high 

g-factor, we hypothesize 
𝐶𝑜𝑣 𝒙!,#,$ , 𝒙!!,#,$ ≈ 𝐶𝑜𝑣 𝒙!,#,$! , 𝒙!!,#,$! ,

𝑠𝑑 𝒙!,#,$ < 𝑠𝑑 𝒙!,#,$! .
Then,

• 𝐶𝑜𝑟𝑟 𝒙!,#,$ , 𝒙!!,#,$ > 𝐶𝑜𝑟𝑟 𝒙!,#,$! , 𝒙!!,#,$! .

INTRODUCTION
• Subcortical functional connectivity is 

important in neurological disorders.1,2

• Multiband (MB) / Simultaneous Multislice
(SMS) is used in rs-fMRI to increase 
temporal resolution.3

• Benefits of reduced TR may be 
decreased by noise amplification, which 
varies across space and is generally 
higher in subcortical regions.4

Benjamin B. Riska, Junjie Wub, and Deqiang Qiub,c

aDepartment of Biostatistics and Bioinformatics, Emory University;  bDepartment of Radiology and Imaging Sciences, Emory University School of Medicine
cJoint Department of Biomedical Engineering, Emory University and Georgia Institute of Technology

3942. Which multiband factor should you 
choose for your resting-state fMRI study?

Figure 1. Standard deviation of time series for an example 
subject. 

Differences in functional 
connectivity due to noise 
amplification are important: 

1. The magnitudes are 
interpreted as strength of 
functional connectivity, and 
spatially varying g-factors 
may mischaracterize brain 
activity.

2. Smaller correlations 
decrease statistical power 
unless sufficiently offset by 
increases in effective sample 
size.
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Which MB factor?

• Risk et al 2021:
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Network Analysis
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Edge density
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