
Introduction to Large-Scale 
Biomedical Data Analysis 



A grand overview of the course

• Introductory course created for the BIG 
(Bioinformatics, Imaging and Genetics) 
concentration.

• Purpose of the course: introduce modern high-
dimensional biomedical data analysis from:
– Bioinformatics and computational biology.
– Biomedical imaging.
– Statistical genetic.
– Microbiome.



• Focus on:
– Scientific background: questions and motivations.
– Technologies.
– Data and their characteristics.
– Brief overview of some statistical methods, opportunities 

and challenges for statisticians. 
There will be a lot of materials and new terminologies! 

• Not covered in this course: detailed statistical theories and 
methods for data analyses. 

• This is a knowledge-centric class, big picture and concepts are 
more important.

Contents of the course



Format of the course

• Co-taught by multiple instructors. 
• Students are evaluated by 2 reading 

assignments: you need to write reading 
reports!



Introduction to high-
throughput omics data 

analysis



Outline
• Biological Backgrounds: DNA and DNA sequencing.
• High-throughput technologies and application.
• Feature selection from high-throughput data. 



Background: DNA and sequencing



DNA (DeoxyriboNucleic Acid)

• A molecule contains the genetic 
instruction of all known living organisms 
and some viruses.

• Resides in the cell nucleus, where DNA is 
organized into long structures called 
chromosomes. 

• Most DNA molecule consists of two long 
polymers (strands), where two strands 
entwine in the shape of a double helix.

• Each strand is a chain of simple units 
(bases) called nucleotides: A, C, G, T. 

• The bases from two strands are 
complementary by base pairing: A-T, C-G.



DNA sequence
• The order of occurrence of the bases in a DNA molecule is 

called the sequence of the DNA. The DNA sequence is usually 
store in a big text file:

ACAGGTTTGCTGGTGACCAGTTCTTCATGAGGGACCATCTATCACAACAG
AGAAAGCACTTGGATCCACCAGGGGCTGCCAGGGGAAGCAGCATGGGAGC
CTGAACCATGAAGCAGGAAGCACCTGTCTGTAGGGGGAAGTGATGGAAGG
ACATGGGCACAGAAGGGTGTAGGTTTTGTGTCTGGAGGACACTGGGAGTG
GCTCCTGGCATTGAAACAGGTGTGTAGAAGGATGTGGTGGGACCTACAGA
CAGACTGGAATCTAAGGGACACTTGAATCCCAGTGTGACCATGGTCTTTA
AGGACAGGTTGGggccaggcacagtggctcatgcctgtaatcccagcact

• Some interesting facts:
– Total length of the human DNA is 3 billion bases. 
– Difference in DNA sequence between two individuals is less than 1%.
– Human and chimpanzee have 96% of the sequences identical. Human 

and mouse: 70%. 



Genome size (total length of DNA)

Organism Genome size (bp) # genes

E. coli 4.6M 4,300

S. cerevisiae (yeast) 12.5M 5,800

C. elegans (worm) 100M 20,000

A. thaliana (plant) 115M 28,000

D. melanogaster (fly) 123M 13,000

M. musculus (mouse) 3G 23,800

H. sapiens (human) 3.3G 25,000



DNA sequencing

• Technologies to determine the nucleotide bases of a 
DNA molecule. 

• Motivation: decipher the genetic codes hidden in 
DNA sequences for different biological processes. 

• Genome projects: determine DNA sequences for 
different species, e.g., human genome project.

• Genomic research (in a nutshell): study the functions 
of DNA sequences and related components.



Sequencing technologies
• Traditional technology: Sanger sequencing.
– Slow (low throughput) and expensive: it took Human 

Genome Project (HGP) 13 years and $3 billion to sequence 
the entire human genome.

– Relatively accurate. 
• New technology: different types of high-throughput 

sequencing. 



Next generation sequencing (NGS)

• Aka: high-throughput sequencing, second-generation 
sequencing. 

• Able to sequence large amount of short sequence 
segments in a short period:
– Quick: hundreds of millions sequences in a run.
– Cheap: sequence entire human genome costs one 

thousand dollars now. 



Next generation sequencing  technologies



Applications of NGS

• NGS has a wide range of applications. 
– DNA-seq: sequence genomic DNA.
– RNA-seq: sequence RNA products.
– ChIP-seq: detect protein-DNA interaction sites.
– Bisulfite sequencing (BS-seq): measure DNA methylation 

strengths. 
– A lot of others.





DNA-seq
• Sequence the untreated genomic DNA. 
– Obtain DNA from cells, cut into small pieces then sequence 

the segments.

• Goals: 
– Genome re-sequencing: compare to the reference 

genome and look for genetic variants: 
• Single nucleotide polymorphisms (SNPs)

• Insertions/deletions (indels), 

• Copy number variations (CNVs) 

• Other structural variations (gene fusion, etc.).

– De novo assembly of a new unknown genome. 



RNA-seq

• Sequence the “transcriptome”: the set of RNA 
molecules. 

• Goals: 
– Catalog RNA products. 
– Determine transcriptional structures: alternative splicing, 

gene fusion, etc.
– Quantify gene expression: the sequencing version of gene 

expression microarray. 



Raw data from NGS 

• Large text file (millions of lines) with simple format. 

Secgen sequencing data: 
fastq format

@HWI-EAS165:1:1:50:908:1
CTGCGGTCTCTAAAGTGCCATCTCATTGTGCTTTGTATCAGTCAGTGCTGGA
+
BCCBCB8ABBBBBBB:BC=8@BBA:@BB@BBBCBB<9BBAC;A<C?BAAB<#
@HWI-EAS165:1:1:50:0:1
NCAACCCCCACAGTAATATGTAAAACAAAAACTAAAACCAGGAGCTGAAGGG
+
#BABABBBBBB@08<@?A@7:A@CCBCCCCBBBCCBB=?BBBB@7@B=A>:2
@HWI-EAS165:1:1:50:708:1
GGTCAGCATGTCTTCTGTTAAGTGCTTGCACAAGCTAGCCTCTGCCTATGGG
+
BB@A;B>@A@@=BB=BB?A>@@>B?ABBA=A?@@>@@A:=?>?A@=B8@@AB
@HWI-EAS165:1:1:50:1494:1
CTGGTGTCACACAAGCAGGTCTCCTGTGTTGACTTCACCAGACACTGTCATT
+
BCBB@AB@1ABBBBBBAAB?BBBBAB<A?AA>BB@?1ABBA@BBBA@;B>>:

read name
read sequence
separator
quality scores



Sequence Alignment
• Sequence Alignment

– Use the known genome (called “reference genome”) as a blue print.
– Determine where each read is located in the reference genome.

• Need: sequence reads file and a reference genome.
• It is basically a string search problem: where is the short (50-

letter) string located within the reference string of 3 billion 
letters.

• Brute-force searching is okay for a single read, but 
computationally infeasible to alignment millions of reads. 

• Clever algorithms are needed to preprocess the reference 
genome (indexing), which is beyond the scope of this class.



Popular alignment software

• Bowtie: fast, but less accurate. 
• BWA (Burrows-Wheeler Aligner): same algorithm as bowtie, but 

allow gaps in alignments. 
– about 5-10 times slower than bowtie, but provide better results 

especially for paired end data.
• Maq (Mapping and Assembly with Qualities): with SNP calling 

capabilities.
• ELAND: Illumina’s commercial software. 
• A lot of others. See

http://en.wikipedia.org/wiki/List_of_sequence_alignment_softwar
e for more details.

http://en.wikipedia.org/wiki/List_of_sequence_alignment_software


Once you have the reads aligned

• Downstream analyses depend on purpose.
• Often one wants to manipulating and visualizing the 

alignment results. There are several useful tools:
– file manipulating (format conversion, counting, etc.):  

samtools/Rsamtools, BEDTools, bamtools, IGV tools.
– Visualizing: IGV (Java GUI).



Feature selection from high-
throughput data



High-throughput data characteristics

• Large size
• Simple structure
• Noisy, low signal to noise ratio
• Prone to technical artifacts
• A lot of high-throughput data analyses are some type 

of “feature selection”. 



Why feature selection?

• There are large number of features in high-
throughput data.

• Most of them are not related to the outcome 
of interest. 

• Using a small number of “informative” 
features provides more precise targets and 
parsimonious model for prediction.  



Features from high-throughput data

• Basic feature:
– DNA sequence: genetic variant
– Gene expression data: genes
– DNA methylation data: CpG sites

• A group of basic features: a set of variants, genes, 
or CpG sites. 

• Higher order features:
– Transformation of a group of features, for example, the 

principal components.



Purpose of feature selection

• Select “biomarkers” to: 
– Understand biology, and/or identify therapeutic 

targets: 
• Basic features are more informative
• A group of features are okay
• Higher order features are not useful (black box)

– Construct prediction models:
• All types of features are useful, higher order features 

might be the most effective.



Types of feature selection
• Supervised:
– With known outcomes: disease status, phenotypical 

values, etc.
– Look for features correlated with the outcome. 
– Examples of supervised feature selection: differential 

expression/methylation, GWAS/EWAS.
• Unsupervised: 
– No outcome. Try to find a small number of features 

representing data well. 
– Useful for clustering. 



Supervised feature selection –
differential expression (DE)

• Applies to GE microarray and RNA-seq. 
• Goal: find genes that are expressed differently 

between (among) conditions.
• Procedure in a nutshell: 
– Properly normalize data.
– Perform statistical test for each gene.
– Correct for multiple testing, and use a threshold to call DE.



Gene expression data

Normal Normal    Cancer   Cancer
1007_s_at  8.575758  8.915618  9.150667 8.967870
1053_at    6.959002  7.039825  6.898245 7.136316
117_at     7.738714  7.618013  7.499127 7.610726
121_at    10.114529 10.018231 10.003332 9.809068
1255_g_at  5.056204  4.759066  4.629297 4.673458
1294_at    8.009337  7.980694  8.343183 8.025335
1316_at    6.899290  7.045843  6.976185 7.063050
1320_at    7.218898  7.600437  7.433031 7.201984
1405_i_at  6.861933  6.042179  6.165090 6.200671
1431_at    5.073265  5.114023  5.159933 5.063821
...



DE in microarray/RNA-seq

• Large body of works, many are highly cited:
– SAM/limma: for microarray
– DESeq/edgeR/cufflink: for RNA-seq 

• The focus is to overcome the problem of small 
sample size, which leads to unstable variance 
estimation. 
– Gene-by-gene t-test is not good. 



Volcano plot for DE 



Supervised feature selection –
differential methylation (DM)

• Goal: compare methylation levels between/among 
groups.

• Typical approach: perform hypothesis test on each CpG 
sites. 

• Popular DM Methods:
– Microarray: minfi. 

• Essentially t-test/linear regression on beta values. 

– Bisufite sequencing: bsseq, DSS
• Smoothing on methylation levels.
• Use beta-binomial model for counts.



An example DMR



Supervised feature selection –
GWAS

• GWAS (Genome-wide association study): 
identify genetic variants associated with 
outcome of interest. 
– Genetic variants: mostly SNPs.
– Outcome: can be continuous (weight, height, 

blood pressure) or categorical (disease status).
– Typical approach: regression at each SNP, i.e., 

outcome~SNP+covariates



AGAGCAGTCGACAGGTATAGCCTACATGAGATCGACATGAGATCGGTAGAGCCGTGAGATCGACATGATAGCC
AGAGCCGTCGACATGTATAGTCTACATGAGATCGACATGAGATCGGTAGAGCAGTGAGATCGACATGATAGTC
AGAGCAGTCGACAGGTATAGTCTACATGAGATCGACATGAGATCGGTAGAGCCGTGAGATCGACATGATAGCC
AGAGCAGTCGACAGGTATAGCCTACATGAGATCAACATGAGATCGGTAGAGCAGTGAGATCGACATGATAGCC
AGAGCCGTCGACATGTATAGCCTACATGAGATCGACATGAGATCGGTAGAGCCGTGAGATCAACATGATAGCC
AGAGCCGTCGACATGTATAGCCTACATGAGATCGACATGAGATCGGTAGAGCAGTGAGATCAACATGATAGCC
AGAGCCGTCGACAGGTATAGCCTACATGAGATCGACATGAGATCGGTAGAGCAGTGAGATCAACATGATAGTC
AGAGCAGTCGACAGGTATAGCCTACATGAGATCGACATGAGATCTGTAGAGCCGTGAGATCGACATGATAGCC

AGAGCAGTCGACATGTATAGTCTACATGAGATCGACATGAGATCGGTAGAGCAGTGAGATCAACATGATAGCC
AGAGCAGTCGACATGTATAGTCTACATGAGATCAACATGAGATCTGTAGAGCCGTGAGATCGACATGATAGCC
AGAGCAGTCGACATGTATAGCCTACATGAGATCGACATGAGATCTGTAGAGCCGTGAGATCAACATGATAGCC
AGAGCCGTCGACAGGTATAGCCTACATGAGATCGACATGAGATCTGTAGAGCCGTGAGATCGACATGATAGTC
AGAGCCGTCGACAGGTATAGTCTACATGAGATCGACATGAGATCTGTAGAGCCGTGAGATCAACATGATAGCC
AGAGCAGTCGACAGGTATAGTCTACATGAGATCGACATGAGATCTGTAGAGCAGTGAGATCGACATGATAGCC
AGAGCCGTCGACAGGTATAGCCTACATGAGATCGACATGAGATCTGTAGAGCCGTGAGATCGACATGATAGCC
AGAGCCGTCGACAGGTATAGTCTACATGAGATCAACATGAGATCTGTAGAGCAGTGAGATCGACATGATAGTC

Cases:

Controls: Associated SNP

An example of disease-associated SNP 



“Manhattan plot” for GWAS results



Sparse learning

• For methods we discussed so far, features are 
selected one-by-one. 

• Another type of approach is to feed large number 
of features in a model to select.
– This will consider co-linearity among features. 
– Better for prediction.

• Sparse learning: a class of methods for finding a 
sparse representation of the input data as a linear 
combination of predictors. 



LASSO
• One type of sparse learning: regularized regression 

by LASSO (least absolute shrinkage and selection 
operator)
– Put a large number of predictors in a regression model, 

penalize the regression coefficients with L1 penalty.
– Depending on the penalty strength, some coefficients 

will be shrunk to 0, thus deselected. 



Unsupervised feature selection 

• Without outcome, or outcome information 
are not used. 

• Often used for unsupervised sample 
clustering, e.g., identify cancer subtypes.

• Goal is to find a low dimension representation 
of high dimension data. 



Approaches for unsupervised feature 
selection 

• Most common: Select N features with largest 
“variation”.
– Features behave similarly among samples are not 

informative.  

• Definition of variation can vary: 
– Sample variance (normal distribution)
– Coefficient of variation (when there’s mean-variance 

dependence, like count data in RNA-seq)
– Gini index: select ones with outliers. This was used in 

detecting rare cell type in scRNA-seq (Jiang et al 2016 GB).



Problems in variation-based feature 
selection 

• One wants to select features having
– Large between-group variation
– Small within-group variation

• Large marginal variation can be caused by 
large within-group variation.



Approaches (cont.)
• Another approach:

1. Select features based on variation
2. Generate cluster labels via clustering 
3. Transform unsupervised feature selection into supervised 

feature selection with these generated cluster labels
• Problem: 
– This can artificially makes cluster tighter.
– If the initial clustering is wrong, this will make it more 

wrong.



From basic to high-order features

• Now we have basic features (genes, CpG sites) 
selected. 

• We can further process the features to 
produce better representation of the data
– Grouping the features to improve power.
– Transform the features to further reduce 

dimension.
– Combine features from different data modalities. 



Feature groups
• Sometimes the statistical power is low in 

supervised feature selection, due to
– Small sample size.
– Sparse effect: rare event (small proportion of cases 

have aberrant SNP, GE, or methylation). 
• Group features and aggregate data can boost 

power. Examples: 
– Expression: gene set enrichment analysis (GESA).
– GWAS: burden test or SKAT. 
– DNA methylation: CpG clusters.



Feature group in gene expression – GSEA 
Subramanian et. al. (2005) PNAS

• Motivation: 
– DE analysis has low power, no or few DE genes detected.
– Combine cumulative effects from many slightly altered genes.
– “An increase of 20% across all genes encoding members of a 

metabolic pathway...may be more important than a 20-fold 
increase in a single gene”

• Approach: 
– Given a set of genes S and the whole gene list L ranked by 

significance from DE test.
– Question: is S randomly distributed in L.
– Solution: Kolmogorov-Smirnov test.
– Software can do GSEA: DAVID, Enrichr, MSigDB, etc.
– Gene set can be defined by pathways or functional groups. 



GSEA



Feature group in GWAS
• Mainly used to deal with rare variant problem.
• Burden test: Li and Leal (2008) AJHG, Madsen and Browning 

(2009) Plos Genetics 
– Group variants to improve power.
– Variant group is pre-determined, for example, on the same gene
– Collapsing data using weighted sums.

• SKAT (Sequence Kernel Association Test): Wu et al. (2011) 
AJHG
– Aggregates individual score test statistics of SNPs in a SNP set to get 

SNP-set level p-values.
– Based on a linear mixed model. 



High-order features

• We can transform a set of basic features to get 
“high-order” features. 
– High-order features are functions (can be nonlinear) of 

the basic features. 
– Popular methods for such transformation: PCA, ICA, 

tSNE, etc.
• Pros and cons
– Further reduce data dimension.
– Can be more robust in prediction.
– Lost biological meaning. 



Combining different types of features -
Multimodal feature fusion

• Different data type has different number of features, 
e.g., 25k genes, 28 million CpG sites. 

• It’s not easy to construct correspondence between 
different types of features. 

• Method for feature fusion:
– Simplest one: stack up the features. 

– Based on factor analysis: CCA (canonical correlation 
analysis). 

– Based on machine learning methods, e.g., support vectors.



Artifacts in high-throughput data
• High-throughput data are noisy
• Data need to be carefully preprocessed and 

normalized before feature selection. 
• Sometimes data transformation (i.e., log) is helpful.
• There are many data normalization methods (we 

didn’t touch that in this lecture):
– QN, RMA, and GCRMA for GE microarray.
– TMM, CQN for RNA-seq.
– scran, scNorm, etc. for scRNA-seq. 



Technical artifact – batch effect
• HT experiments are very sensitive to experimental 

conditions:
– Equipment, agents, technicians, etc.

• Data generated from different “batches” (lab, time, 
etc.) can be quite different, but data from the same 
batch tend to be more similar. 

• Methods for identifying and removing batch effects 
is under continuous developments.



• One major conclusion 
is that tissues are 
more similar within a 
species, compared 
with the same tissue 
across species.

Comparison of the transcriptional landscapes between
human and mouse tissues
Shin Lina,b,1, Yiing Linc,1, Joseph R. Neryd, Mark A. Urichd, Alessandra Breschie,f, Carrie A. Davisg, Alexander Dobing,
Christopher Zaleskig, Michael A. Beerh, William C. Chapmanc, Thomas R. Gingerasg,i, Joseph R. Eckerd,j,2,
and Michael P. Snydera,2

aDepartment of Genetics, Stanford University, Stanford, CA 94305; bDivision of Cardiovascular Medicine, Stanford University, Stanford, CA 94305;
cDepartment of Surgery, Washington University School of Medicine, St. Louis, MO 63110; dGenomic Analysis Laboratory, The Salk Institute for Biological
Studies, La Jolla, CA 92037; eCentre for Genomic Regulation and UPF, Catalonia, 08003 Barcelona, Spain; fDepartament de Ciències Experimentals i de la Salut,
Universitat Pompeu Fabra, 08003 Barcelona, Spain; gFunctional Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11742; hMcKusick-Nathans
Institute of Genetic Medicine and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205; iAffymetrix, Inc., Santa Clara,
CA 95051; and jHoward Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037

Contributed by Joseph R. Ecker, July 23, 2014 (sent for review May 23, 2014)

Although the similarities between humans and mice are typically
highlighted, morphologically and genetically, there are many differ-
ences. To better understand these two species on a molecular level,
we performed a comparison of the expression profiles of 15 tissues
by deep RNA sequencing and examined the similarities and differ-
ences in the transcriptome for both protein-coding and -noncoding
transcripts. Although commonalities are evident in the expression of
tissue-specific genes between the two species, the expression for
many sets of genes was found to be more similar in different tissues
within the same species than between species. These findings were
further corroborated by associated epigenetic histonemark analyses.
We also find that many noncoding transcripts are expressed at a low
level and are not detectable at appreciable levels across individuals.
Moreover, the majority lack obvious sequence homologs between
species, evenwhenwe restrict our attention to those which are most
highly reproducible across biological replicates. Overall, our results
indicate that there is considerable RNA expression diversity between
humans and mice, well beyondwhat was described previously, likely
reflecting the fundamental physiological differences between these
two organisms.

transcriptome | epigenome | species comparison | noncoding transcripts

The mouse has served as a valuable model organism for hu-
man biology and disease. It is widely assumed that bio-

chemical, cellular, and developmental pathways in the mouse are
highly conserved with humans and that many processes are
clearly preserved at a molecular and genetic level. Moreover,
recent detailed studies have examined gene expression in a lim-
ited number of tissues in humans and mice. These studies have
indicated that gene expression is often conserved and is more
similar between the comparable tissues of different organisms
rather than within tissues of the same organism. In contrast, the
transcript isoform repertoire was found to be markedly different
between species (1, 2).

Gene Expression Is More Similar Among Tissues Within
a Species Than Between Corresponding Tissues of the Two
Species
To examine the similarities between humans and mice in much
greater detail, we produced RNA-seq data from 13 human tissues
[as part of the Encyclopedia Of DNA Elements (ENCODE)],
another 11 human tissues [as part of the Roadmap Epigenomics
Mapping Consortium (REMC) (3)], and 13 mouse tissues (for
mouse ENCODE). We also included in our analysis other data
from mouse ENCODE and the Illumina Human BodyMap 2.0
(HBM) (SI Materials and Methods). Sequencing was performed
to a depth of 11,313,824–166,188,101 mappable reads (median
of 68,399,538 with and an interquartile range of 31,557,381–
81,836,199). In total, our analysis used 93 datasets encompassing
the most tissue-diverse RNA-seq dataset to date spanning several

major projects. Thirteen of the mouse and human orthologous
datasets were produced by the same laboratory. For our analysis
regarding noncoding transcripts, we incorporated an additional 294
RNA-seq datasets from the Genotype-Tissue Expression (GTEx)
project (4).
We first explored gene expression similarities and differences by

analyzing the expression of ∼15,106 protein-coding orthologs; this
list was generated by the modENCODE and mouse ENCODE
consortia and represents the most recent mouse–human ortholog
list to date (biorxiv.org/content/biorxiv/early/2014/05/31/005736.full.
pdf). Fragments per kilobase of transcript per million (FPKM)
values were obtained from each dataset, and principal component
analysis (PCA) was used to compare gene expression (Materials and
Methods). In contrast to what was reported previously (1, 2, 5),
surprisingly, we found that themouse and human samples cluster by
species when the data are projected onto the first three principal
components (Fig. 1A). Because the same tissues of the same species
produced by different laboratories did not cluster together, the
possibility of methodologic differences among laboratories con-
founding our results was considered. To address this issue, analysis
of only the 13 paired samples processed under one experimental
protocol yielded the same species-specific clustering (Fig. 1C). The
same species-specific clustering was observed when other combi-
nations of 10 or more tissues were examined, indicating that the
clustering is not due to the particular 13–15 tissues selected. Finally,

Significance

To date, various studies have found similarities between humans
and mice on a molecular level, and indeed, the murine model
serves as an important experimental system for biomedical sci-
ence. In this study of a broad number of tissues between humans
and mice, high-throughput sequencing assays on the tran-
scriptome and epigenome reveal that, in general, differences
dominate similarities between the two species. These findings
provide the basis for understanding the differences in pheno-
types and responses to conditions in humans and mice.
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different normalization methods (e.g., quantile normalization) ap-
plied to the data produced similar groupings.
To understand the differences between our results and those

of others (1, 2, 5), we performed extensive additional analyses.
We first varied the ortholog list and similarity measure, but these
changes did not significantly alter our results (Fig. S1A). We next
applied our analytic process to human and mouse data produced
from other studies that reported tissue dominated clustering (1,
5), and we were able to reproduce their findings (Fig. S1 B and
C). Moreover, in our own dataset, we observed a more tissue-
dominated clustering for principal components 4–6 (Fig. 1 B and
D). Thus, gene expression profiles of different organism tissues

do exhibit similarities in gene expression but of lower strength
relative to organismal signals.
To determine whether we could further reconcile these vari-

ous observations, we identified the groups of genes that are tis-
sue specific and those present in all tissues (i.e., housekeeping)
using Shannon entropy (H) (6). H is a parameter commonly used
to assess tissue specificity, with lower values signifying expression
in a smaller fraction of the total set. We calculated H for each
gene using our expression data and considered genes with values
below two to be tissue specific. We found that testes, brain, liver,
muscle (cardiac and/or skeletal), and kidney were among the
tissues that expressed the most tissue-specific genes (Fig. 1E),

Fig. 1. Loading plots from PCA on human and mouse gene expression data. (A) PCA is performed on the combined Stanford (human, mouse), Salk (human),
HBM (human), LICR (mouse), and CSHL (mouse) expression datasets using 15 tissue types, 15,106 orthologs (biorxiv.org/content/biorxiv/early/2014/05/31/
005736.full.pdf), and Pearson’s correlation as the distance measure. The loadings on principal components 1–3 are plotted. (B) Same as in A except loadings
on principal components 4–6 are plotted. (C ) The loadings on principal components 1–3 are plotted from a PCA performed as in A except only 13 human
and mouse tissue sets processed at Stanford. (D) The loadings on principal components 4–6 for the analysis in C are used. (E ) Barplot of number of tissue
specific-genes per tissue. (F ) PCA is performed as in A except the tissue set is restricted to testis, brain, heart, liver, and kidney, which have higher numbers
of tissue-specific genes. The loadings on principal components 1–3 are plotted.
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• Experimental design: data are from 5 
batches. 
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of the number of ortholog pairs analyzed by Lin et al. Nevertheless, 
we believe that a possible explanation for this disparity is a pars-
ing error. The last two columns of the ‘modENCODE ortholog file’ 
represent the number of genes from each species in the ortholog 
group. One of the steps required to obtain the subset of ortholog 
groups for analysis is to select those records where the two last col-
umns have a value of 1 (i.e. one-to-one ortholog pairs). We found 
that if this selection is done through a command line search that 
does not require that the value in the last column be exactly “1”, 
but rather just begins with “1”, then the result is 15,104 putative 
human-mouse ortholog pairs.

Quality assessment of RNA-Seq data
We used the FastQC software v0.10.0 (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) to assess the quality of the individ-
ual FASTQ files (Supplementary Table 2–Supplementary Table 6). 
We were concerned by evidence for GC content bias and over-
represented sequences. To examine the latter in greater detail, we 
mapped the sequences overrepresented in at least one sample to the 
genome of the respective species, using BLAT searches6 against the 
hg19 (human) and mm10 (mouse) assemblies at the UCSC genome 
browser site (http://genome.ucsc.edu/)6. We found that in both spe-
cies many of the overrepresented sequences mapped perfectly to 
the mitochondrial genome (Supplementary Table 3–Supplementary 
Table 6). For the mouse pancreas sample only, we also found many 
overrepresented sequences mapped to regions with rRNA repeats 
from the SSU-rRNA_Hsa and LSU-rRNA_Hsa families.

Mapping RNA-Seq reads to genome sequences
We mapped the RNA-Seq reads to their respective genomes using 
Tophat v2.0.117 with the following options: “--mate-inner-dist 200” 
(i.e. inner mate distance is 200nt, based on paired-end reads with 
length 100nt each and an insert size of 350-450nt ); “--bowtie-n” 
(i.e. the “-n” option will be used in Bowtie8 in the initial read map-
ping stage); “-g 1” (i.e. multi-mapping reads will be excluded from 
alignment); “-m 1” (i.e. one mismatch is allowed in the anchor region 
of a spliced alignment); “--library-type fr-firststrand” (the libraries 
had been constructed using the Illumina TruSeq Stranded mRNA LT 
Sample Prep Kit2). An exception was the mouse pancreas sample, for 
which the mapping process stalled consistently at the same stage. 

For this sample we used Tophat v1.4.18 with the same options as 
above. Tophat requires a Bowtie8 index. For human we used the 
Bowtie index that was packaged with the genome sequence in the 
file downloaded from the Illumina iGenomes page (http://support.
illumina.com/sequencing/sequencing_software/igenome.html). For 
mouse we built an index using the bowtie-build utility from Bowtie 
v2.2.1 (v 0.12.7 for the index used with Tophat v1.4.1).

Calculating gene GC content
For each of the two species we used the appropriate GTF file to 
generate a table, which contains for each gene its ENSEMBL gene 
identifier its common name, and the GC content of the sequence 
covered by the union of the gene’s transcripts. To this end, we first 
generated a GTF file where overlapping exons from different tran-
scripts of the same gene were merged into a single “exon” with the 
same sequence coverage, retaining the association with the gene 
identifier. Next, we computed the nucleotide content of the exons 
in this new GTF file using the ‘nuc’ utility from bedtools v2.17.09. 
Finally, we computed the GC content for each gene identifier by 
summing the number of ‘G’ and ‘C’ nucleotides in its merged exons 
and dividing by the sum of counts of unambiguous nucleotides in 
these exons.

Per-gene FPKM values
We used Cufflinks v2.2.110 to compute fragments per kilo base 
of transcript per million (FPKM) values and aggregate them per 
gene. The only option used was “--library-type fr-firststrand”. For 
the required transcript annotation file (“-G” parameter) we used 
the GTF file for the respective species described in the “Genome 
and gene annotation files” section. We then generated a matrix of 
14,744 by 26 FPKM values for each gene (in the ortholog table) 
and sample. While generating this table we noticed that some 
of the common gene names were associated with more than one 
ENSEMBL gene identifier. In some cases we determined that 
this was due to gene identifiers that have been retired from the 
ENSEMBL database3 but were retained in the GTF file (27 and 64 
retired identifiers for human and mouse, respectively). These retired 
identifiers were ignored when constructing the FPKM matrix. For 
the remaining such cases we incorporated the value from the first 
appearance of the common name.

Figure 1. Study design. Sequencing batches as inferred based on the sequence identifiers of the RNA-Seq reads.
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After correcting for batch effects

• Tissues tend to 
cluster together 
more. 

Analysis of normalized data after accounting for batch 
effects yields clustering by tissue
A previous evaluation of normalization methods for RNA-Seq 
data15 suggested that FPKM values were not optimal for cluster-
ing analysis. Therefore, as a basis for our reanalysis, we used the 
matrix of per-gene raw fragment counts. The entire analysis was 
done within R environment v 3.1.3 GUI 1.65 Snow Leopard build 
(6912)12. See Supplementary Text 2 for detailed commands, and 
a supplement zip file for the R input (available in Zenodo: http://
dx.doi.org/10.5281/zenodo.17606).

Following Li et al.16, we removed the 30% of genes with the lowest 
expression as determined by the sum of fragment counts across all 
samples. Next, due to the presence of mitochondrial genes among 
the overrepresented sequences in the data, we also removed reads 
that map to the 12 mitochondrial genes. This left us with expression 
data from 10,309 genes for analysis. We note that merely limiting 
the analysis to this subset of genes does not have a marked effect on 
the patterns reported by Lin et al. (Figure S3; detailed commands 
in Supplementary Text 3, and a supplement zip file for the R input 
(available in Zenodo: http://dx.doi.org/10.5281/zenodo.17606)). We 
performed within-column normalization to remove the GC bias in 
the data, indicated by the initial quality assessment. To this end, we 
applied the ‘withinLaneNormalization’ function from the EDASeq 
package v2.0.017 to each column in the matrix, using the gene GC 
values for the species associated with the column. Next, we used the 
‘calcNormFactors’ from the edgeR package v3.8.618, with the trimmed 
mean of M-values (TMM) method19, to calculate normalization 

factors for the library sizes for the samples. We used these normali-
zation factors in the depth normalization of the columns (using the 
column sums of the original, unfiltered, counts matrix as a proxy 
for library sizes). The normalized data were log2-transformed (after 
adding ‘1’ to each value in the matrix to avoid undefined values).

We then considered how to account for the fact that the assignment 
of samples to sequencing flowcells and lanes was nearly completely 
confounded with the species annotations of the samples (Figure 1). 
The consideration of ‘batch effect’ was the most important differ-
ence between the analysis that recapitulated the patterns reported 
by the mouse ENCODE papers (the previous ‘Results’ section) 
and the current reanalysis effort. Specifically, we accounted for the 
sequencing study design batch effects using the ‘ComBat’ function 
from the sva package v3.12.020, with a model that includes effects 
for batch, species and tissue. For this purpose the samples were 
classified into five batches, based on the sequencing study design 
(see methods and Figure 1).

To visualize the data, we used the function ‘prcomp’ (with the 
‘scale’ and ‘center’ options set to TRUE) to perform principal com-
ponent analysis (PCA) of the transposed log-transformed matrix of 
‘clean’ values (after removal of invariant columns, i.e. genes), and 
the ggplot2 package13 to generate scatter plots of the PCA results. 
None of the first five principal components (accounting together 
for 56% of the variability in the data) support the clustering of the 
gene expression data by species (Figure 3a and Figure S4–Figure S5). 
However, the sixth principal component, which accounts for 6% of 

Figure 3. Clustering of data once batch effects are accounted for. a. Two-dimensional plots of principal components calculated by 
applying PCA to the transposed matrix of batch-corrected log-transformed normalized fragment counts (from 10,309 orthologous gene pairs 
that remained after the exclusion steps described in the results) for the 26 samples, after removal of invariant columns (genes). b. Heatmap 
based on pairwise Pearson correlation of the expression data used in panel a. We used Euclidean distance and complete linkage as distance 
measure and clustering method, respectively.
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Methods to remove batch effects

• Based on linear model: batches cause location/scale changes, 
e.g., Combat (Johnson et al. 2007 Biostatistics). 

• Based on dimension reduction technique: SVD, PCA, factor 
analysis, etc., e.g., sva (Leek et al. 2007 PloS Genet.). 
– The singular vectors/PCs/factors that are correlated with batch are 

deemed from batch effects. 
– Remove batch effects from data, leftovers are biological signals. 

• The key is to find a good “baseline” for normalization:
– Feature selection also plays important role: one wants to find features 

not correlated with batch: RUV (Gagnon-Bartsch and Speed 2012 
Biostatistics, Risso et al. 2014 Nature Biotech)



Biological artifact –
tissue heterogeneity 

• Tissue sample is often a mixture of different cell 
types. 
• Data collected are mixed signals.

Genetic profile
of each cell type

Mixture 
proportions



An example: EWAS in aging study

Jaffe and Irizarry GB(2014)

• Cellular composition changes with age.
• Cellular composition is a major source of variability in DNA 

methylation datasets in whole blood.



Existing signal deconvolution methods

• Reference-based methods (some type of regression):

• Require cell type specific signature: Abbas et al. 2009; Clarke et al. 

2010; Gong et al. 2011; Lu et al. 2003; Wang et al. 2006; Vallania et 

al. 2018; Du et al. 2018; 

• Requires mixture proportions: Erkkila et al. 2010; Lahdesmaki et al. 

2005; Shen-Orr et al. 2010; Stuart et al. 2004.

• Reference free methods (some type of factor analysis): 

• Gaujoux et al. 2011; Kuhn et al. 2011; Repsilber et al. 2010; Roy et 

al. 2006; Venet et al. 2001; Houseman et al. 2012, 2014, 2016; 

Rahmani  et al. 2016, 2018; Lutsik et al. 2017; Xie et al. 2018;  



Method to adjust for cell proportion

• In EWAS, add proportion as covariate in the model: 
• More rigorous statistical modeling for DE/DM with 

sample mixture has been a popular topic recently, 
and a number of methods are developed: 
– csSAM: Shen-Orr et al. 2010, Nature methods
– CellDMC: Zheng et al. 2018, Nature Methods
– TOAST: Li et al. 2019, Bioinformatics



Rule of thumbs for genomic feature 
selection

• Understand your data:

– Supervised vs unsupervised. 

– Data normalization to remove artifacts.

• Understand your goal: 

– To understand mechanism or look for drug target – identify 

basic features (DE, DM, GWAS, EWAS), or group of features 

(GSEA)

– For outcome prediction – group features or high-order 

features. 

• Choose proper tool(s) to achieve your goal. 



Summary
• Goals of feature selection in high-throughput 

genomics data
– To identify biomarkers for treatment
– Find predictors for diagnostic model

• Methods
– Feature-by-feature test: find ones correlated with 

outcome
– Groups of features
– Higher order features

• Other considerations: artifacts in the data


