Introduction to Large-Scale
Biomedical Data Analysis



A grand overview of the course

* Introductory course created for the BIG
(Bioinformatics, Imaging and Genetics)
concentration.

* Purpose of the course: introduce modern high-
dimensional biomedical data analysis from:
— Bioinformatics and computational biology.
— Biomedical imaging.
— Statistical genetic.
— Microbiome.



Contents of the course

* Focus on:
— Scientific background: questions and motivations.
— Technologies.
— Data and their characteristics.

— Brief overview of some statistical methods, opportunities
and challenges for statisticians.

There will be a lot of materials and new terminologies!

* Not covered in this course: detailed statistical theories and
methods for data analyses.

* Thisis a knowledge-centric class, big picture and concepts are
more important.



Format of the course

* Co-taught by multiple instructors.

e Students are evaluated by 2 reading
assignments: you need to write reading
reports!



Introduction to high-
throughput omics data
analysis



Outline

* Biological Backgrounds: DNA and DNA sequencing.
* High-throughput technologies and application.
* Feature selection from high-throughput data.



Background: DNA and sequencing



DNA (DeoxyriboNucleic Acid)

A molecule contains the genetic
instruction of all known living organisms
and some viruses.

Resides in the cell nucleus, where DNA is
organized into long structures called
chromosomes.

Most DNA molecule consists of two long
polymers (strands), where two strands
entwine in the shape of a double helix.

Each strand is a chain of simple units
(bases) called nucleotides: A, C, G, T.

The bases from two strands are
complementary by base pairing: A-T, C-G.



DNA sequence

e The order of occurrence of the bases in a DNA molecule is

called the sequence of the DNA. The DNA sequence is usually
store in a big text file:

ACAGGTTTGCTGGTGACCAGTTCTTCATGAGGGACCATCTATCACAACAG
AGAAAGCACTTGGATCCACCAGGGGCTGCCAGGGGAAGCAGCATGGGAGC
CTGAACCATGAAGCAGGAAGCACCTGTCTGTAGGGGGAAGTGATGGAAGG
ACATGGGCACAGAAGGGTGTAGGTTTTGTGTCTGGAGGACACTGGGAGTG
GCTCCTGGCATTGAAACAGGTGTGTAGAAGGATGTGGTGGGACCTACAGA
CAGACTGGAATCTAAGGGACACTTGAATCCCAGTGTGACCATGGTCTTTA

AGGACAGGTTGGggccaggcacagtggctcatgectgtaatcccagecact
* Some interesting facts:
— Total length of the human DNA is 3 billion bases.
— Difference in DNA sequence between two individuals is less than 1%.

— Human and chimpanzee have 96% of the sequences identical. Human
and mouse: 70%.



Genome size (total length of DNA)

E. coli 4.6M 4,300
S. cerevisiae (yeast) 12.5M 5,800
C. elegans (worm) 100M 20,000
A. thaliana (plant) 115M 28,000
D. melanogaster (fly) 123M 13,000
M. musculus (mouse) 3G 23,800

H. sapiens (human) 3.3G 25,000



DNA sequencing

Technologies to determine the nucleotide bases of a
DNA molecule.

Motivation: decipher the genetic codes hidden in
DNA sequences for different biological processes.

Genome projects: determine DNA sequences for
different species, e.g., human genome project.

Genomic research (in a nutshell): study the functions
of DNA sequences and related components.



Sequencing technologies

* Traditional technology: Sanger sequencing.

— Slow (low throughput) and expensive: it took Human
Genome Project (HGP) 13 years and S3 billion to sequence
the entire human genome.

— Relatively accurate.

 New technology: different types of high-throughput
sequencing.



Next generation sequencing (NGS)

* Aka: high-throughput sequencing, second-generation
sequencing.

* Able to sequence large amount of short sequence
segments in a short period:

— Quick: hundreds of millions sequences in a run.

— Cheap: sequence entire human genome costs one
thousand dollars now.



Next generation sequencing technologies




Applications of NGS

* NGS has a wide range of applications.
— DNA-seq: sequence genomic DNA.
— RNA-seq: sequence RNA products.
— ChlP-seq: detect protein-DNA interaction sites.

— Bisulfite sequencing (BS-seq): measure DNA methylation
strengths.

— A lot of others.



Technology

Brief description

ChlIP-seq Locate protein-DNA interaction or histone modification sites.
CLIP-seq Map protein-RNA binding sites

RNA-seq Quantify expression

SAGE-seq Quantify expression

RIP-seq capture TF-bound transcripts

GRO-seq evaluate promoter-proximal pausing

BS-seq Profile DNA methylation patterns

MeDIP-seq Profile DNA methylation patterns

TAB-seq Profile DNA hydroxyl-methylation patterns
MIRA-seq Profile DNA methylation patterns

ChiRP-seq Map IncRNA occupancy

DNase-seq |ldentify regulatory regions

FAIRE-seq |ldentify regulatory regions

FRT-seq Quantify expression

Repli-seq Assess DNA replication timing

MNase-seq |ldentify nucleosome position

Hi-C Infer 3D genome organization

ChlA-PET Detect long distance chromosome interactions
4C-seq Detect long distance chromosome interaction
Sono-seq Map open-chromatin sites

NET-seq determine in vivo position of all active RNAP complexes.
NA-seq Map Nuclease-Accessible Sites




DNA-seq

* Sequence the untreated genomic DNA.

— Obtain DNA from cells, cut into small pieces then sequence
the segments.

e Goals:

— Genome re-sequencing: compare to the reference
genome and look for genetic variants:
* Single nucleotide polymorphisms (SNPs)
* Insertions/deletions (indels),
* Copy number variations (CNVs)
e Other structural variations (gene fusion, etc.).

— De novo assembly of a new unknown genome.



RNA-seq

* Sequence the “transcriptome”: the set of RNA
molecules.

* Goals:
— Catalog RNA products.

— Determine transcriptional structures: alternative splicing,
gene fusion, etc.

— Quantify gene expression: the sequencing version of gene
expression microarray.



Raw data from NGS

Large text file (millions of lines) with simple format.

@HWI-EAS165:1:1:50:908:1

<+— read name

CTGCGGTCTCTAAAGTGCCATCTCATTGTGCTTTGTATCAGTCAGTGCTGGA 4— €ad sequence
+ €—— separator

BCCBCBSABBBBBBB:BC=8@BBA: eBBABBBCBB<IBBAC ; A<C?BAAB<#

@HWI-EAS165:1:1:50:0:1
NCAACCCCCACAGTAATATGTAAAACAAAAACTAAAACCAGGAGCTGAAGGG
+
#BABABBBBBB@08<@?A@7 : AGCCBCCCCBBBCCBB=?BBBB@7@B=A>:2
@HWI-EAS165:1:1:50:708:1
GGTCAGCATGTCTTCTGTTAAGTGCTTGCACAAGCTAGCCTCTGCCTATGGG
+
BB@A;B>@AQQ@=BB=BB?A>@@>B?ABBA=A?Q@@>@Q@A:=?>?A@=B8@E@AB
@HWI-EAS165:1:1:50:1494:1
CTGGTGTCACACAAGCAGGTCTCCTGTGTTGACTTCACCAGACACTGTCATT
+
BCBBEAB@1ABBBBBBAAB?BBBBAB<A?AA>BB@?1ABBA@BBBA@;B>>:

S~ quality scores



Sequence Alignment

Sequence Alignment
— Use the known genome (called “reference genome”) as a blue print.
— Determine where each read is located in the reference genome.
Need: sequence reads file and a reference genome.
It is basically a string search problem: where is the short (50-
letter) string located within the reference string of 3 billion
letters.

Brute-force searching is okay for a single read, but
computationally infeasible to alignment millions of reads.

Clever algorithms are needed to preprocess the reference
genome (indexing), which is beyond the scope of this class.



Popular alighment software

Bowtie: fast, but less accurate.

BWA (Burrows-Wheeler Aligner): same algorithm as bowtie, but
allow gaps in alignments.

— about 5-10 times slower than bowtie, but provide better results
especially for paired end data.

Maq (Mapping and Assembly with Qualities): with SNP calling
capabilities.
ELAND: lllumina’s commercial software.

A lot of others. See
http://en.wikipedia.org/wiki/List of sequence alignment softwar

e for more details.



http://en.wikipedia.org/wiki/List_of_sequence_alignment_software

Once you have the reads aligned

 Downstream analyses depend on purpose.

e Often one wants to manipulating and visualizing the
alignment results. There are several useful tools:

— file manipulating (format conversion, counting, etc.):
samtools/Rsamtools, BEDTools, bamtools, IGV tools.

— Visualizing: IGV (Java GUI).



Feature selection from high-
throughput data



High-throughput data characteristics

Large size

Simple structure

Noisy, low signal to noise ratio
Prone to technical artifacts

A lot of high-throughput data analyses are some type
of “feature selection”.



Why feature selection?

 There are large number of features in high-
throughput data.

e Most of them are not related to the outcome
of interest.

* Using a small number of “informative”
features provides more precise targets and
parsimonious model for prediction.



Features from high-throughput data

* Basic feature:
— DNA sequence: genetic variant
— Gene expression data: genes
— DNA methylation data: CpG sites

* A group of basic features: a set of variants, genes,
or CpG sites.
* Higher order features:

— Transformation of a group of features, for example, the
principal components.



Purpose of feature selection

e Select “biomarkers” to:

— Understand biology, and/or identify therapeutic
targets:
* Basic features are more informative
* A group of features are okay

* Higher order features are not useful (black box)

— Construct prediction models:

* All types of features are useful, higher order features
might be the most effective.



Types of feature selection

* Supervised:

— With known outcomes: disease status, phenotypical
values, etc.

— Look for features correlated with the outcome.
— Examples of supervised feature selection: differential
expression/methylation, GWAS/EWAS.
 Unsupervised:

— No outcome. Try to find a small number of features
representing data well.

— Useful for clustering.



Supervised feature selection —
differential expression (DE)

* Applies to GE microarray and RNA-seq.

* Goal: find genes that are expressed differently
between (among) conditions.

* Procedure in a nutshell:
— Properly normalize data.
— Perform statistical test for each gene.

— Correct for multiple testing, and use a threshold to call DE.



Gene expression data
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DE in microarray/RNA-seq

* Large body of works, many are highly cited:

— SAM/limma: for microarray
— DESeq/edgeR/cufflink: for RNA-seq

* The focus is to overcome the problem of small
sample size, which leads to unstable variance
estimation.

— Gene-by-gene t-test is not good.



Volcano plot for DE

log p-value

Fold-change



Supervised feature selection —
differential methylation (DM)

Goal: compare methylation levels between/among
groups.

Typical approach: perform hypothesis test on each CpG
sites.

Popular DM Methods:
— Microarray: minfi.
* Essentially t-test/linear regression on beta values.

— Bisufite sequencing: bsseq, DSS
* Smoothing on methylation levels.

 Use beta-binomial model for counts.
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Supervised feature selection —
GWAS

* GWAS (Genome-wide association study):
identify genetic variants associated with
outcome of interest.

— Genetic variants: mostly SNPs.

— Outcome: can be continuous (weight, height,
blood pressure) or categorical (disease status).

— Typical approach: regression at each SNP, i.e.,
outcome~SNP+covariates



Cases:
AGAGCAGTCGACAGGTATAGCCTACATGAGATCGACATGAGAT(
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Controls:
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An example of disease-associated SNP

bTAGAGCCGTGAGATCGACATGATAGCC
bTAGAGCAGTGAGATCGACATGATAGTC

bTAGAGCCGTGAGATCGACATGATAGCC
bTAGAGCAGTGAGATCGACATGATAGCC
bTAGAGCCGTGAGATCAACATGATAGCC
bTAGAGCAGTGAGATCAACATGATAGCC
b TAGAGCAGTGAGATCAACATGATAGTC
bTAGAGCCGTGAGATCGACATGATAGCC

- .
p= Associated SNP

LTAGAGCAGTGAGATCAACATGATAGCC
ETAGAGCCGTGAGATCGACATGATAGCC
ETAGAGCCGTGAGATCAACATGATAGCC
LTAGAGCCGTGAGATCGACATGATAGTC
ETAGAGCCGTGAGATCAACATGATAGCC
ETAGAGCAGTGAGATCGACATGATAGCC
ETAGAGCCGTGAGATCGACATGATAGCC
ETAGAGCAGTGAGATCGACATGATAGTC




“Manhattan plot” for GWAS results
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Sparse learning

 For methods we discussed so far, features are
selected one-by-one.

* Another type of approach is to feed large number
of features in a model to select.
— This will consider co-linearity among features.
— Better for prediction.

e Sparse learning: a class of methods for finding a
sparse representation of the input data as a linear
combination of predictors.



LASSO

* One type of sparse learning: regularized regression
by LASSO (least absolute shrinkage and selection
operator)

— Put a large number of predictors in a regression model,
penalize the regression coefficients with L1 penalty.

— Depending on the penalty strength, some coefficients
will be shrunk to 0O, thus deselected.

N
min {% Z(yz — Bo — :1:?5)2} subject to i 1B;| < t.

ﬁO&B i—=1 J:]-



Unsupervised feature selection

 Without outcome, or outcome information
are not used.

* Often used for unsupervised sample
clustering, e.g., identify cancer subtypes.

* Goalis to find a low dimension representation
of high dimension data.



Approaches for unsupervised feature
selection

* Most common: Select N features with largest
“variation”.

— Features behave similarly among samples are not
informative.

* Definition of variation can vary:
— Sample variance (normal distribution)

— Coefficient of variation (when there’s mean-variance
dependence, like count data in RNA-seq)

— Gini index: select ones with outliers. This was used in
detecting rare cell type in scRNA-seq (Jiang et al 2016 GB).



Problems in variation-based feature
selection

* One wants to select features having
— Large between-group variation

— Small within-group variation

* Large marginal variation can be caused by
large within-group variation.



Approaches (cont.)

* Another approach:
1. Select features based on variation
2. Generate cluster labels via clustering
3. Transform unsupervised feature selection into supervised
feature selection with these generated cluster labels
* Problem:
— This can artificially makes cluster tighter.

— If the initial clustering is wrong, this will make it more
wrong.



From basic to high-order features

* Now we have basic features (genes, CpG sites)
selected.

 We can further process the features to
produce better representation of the data

— Grouping the features to improve power.

— Transform the features to further reduce
dimension.
— Combine features from different data modalities.



Feature groups

* Sometimes the statistical power is low in
supervised feature selection, due to
— Small sample size.

— Sparse effect: rare event (small proportion of cases
have aberrant SNP, GE, or methylation).

* Group features and aggregate data can boost
power. Examples:
— Expression: gene set enrichment analysis (GESA).
— GWAS: burden test or SKAT.
— DNA methylation: CpG clusters.



Feature group in gene expression — GSEA

Subramanian et. al. (2005) PNAS

* Motivation:
— DE analysis has low power, no or few DE genes detected.
— Combine cumulative effects from many slightly altered genes.

— “An increase of 20% across all genes encoding members of a
metabolic pathway...may be more important than a 20-fold
increase in a single gene”

* Approach:

— Given a set of genes S and the whole gene list L ranked by
significance from DE test.

— Question: is S randomly distributed in L.

— Solution: Kolmogorov-Smirnov test.

— Software can do GSEA: DAVID, Enrichr, MSigDB, etc.

— Gene set can be defined by pathways or functional groups.
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Feature group in GWAS

Mainly used to deal with rare variant problem.

Burden test: Li and Leal (2008) AJHG, Madsen and Browning
(2009) Plos Genetics

— G@Group variants to improve power.

— Variant group is pre-determined, for example, on the same gene

— Collapsing data using weighted sums.

SKAT (Sequence Kernel Association Test): Wu et al. (2011)
AJHG

— Aggregates individual score test statistics of SNPs in a SNP set to get
SNP-set level p-values.

— Based on a linear mixed model.



High-order features

* We can transform a set of basic features to get
“high-order” features.

— High-order features are functions (can be nonlinear) of
the basic features.

— Popular methods for such transformation: PCA, ICA,
tSNE, etc.
* Pros and cons
— Further reduce data dimension.
— Can be more robust in prediction.
— Lost biological meaning.



Combining different types of features -
Multimodal feature fusion

* Different data type has different number of features,
e.g., 25k genes, 28 million CpG sites.

* It’s not easy to construct correspondence between
different types of features.

 Method for feature fusion:
— Simplest one: stack up the features.
— Based on factor analysis: CCA (canonical correlation
analysis).
— Based on machine learning methods, e.g., support vectors.



Artifacts in high-throughput data

High-throughput data are noisy

Data need to be carefully preprocessed and
normalized before feature selection.

Sometimes data transformation (i.e., log) is helpful.

There are many data normalization methods (we
didn’t touch that in this lecture):

— QN, RMA, and GCRMA for GE microarray.

— TMM, CQN for RNA-seq.

— scran, scNorm, etc. for scRNA-seq.



Technical artifact — batch effect

 HT experiments are very sensitive to experimental
conditions:
— Equipment, agents, technicians, etc.

* Data generated from different “batches” (lab, time,

etc.) can be quite different, but data from the same
batch tend to be more similar.

* Methods for identifying and removing batch effects
is under continuous developments.



Comparison of the transcriptional landscapes between

human and mouse tissues
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RESEARCH ARTICLE N
A reanalysis of mouse ENCODE comparative gene expression

data[version 1; referees: 3 approved, 1 approved with
reservations]
Yoav Gilad, Orna Mizrahi-Man

Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA

* Experimental design: data are from 5
batches.
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After correcting for batch effects

b

e Tissues tend to

cluster together
more.
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Methods to remove batch effects

Based on linear model: batches cause location/scale changes,
e.g., Combat (Johnson et al. 2007 Biostatistics).

Based on dimension reduction technique: SVD, PCA, factor
analysis, etc., e.g., sva (Leek et al. 2007 PloS Genet.).

— The singular vectors/PCs/factors that are correlated with batch are
deemed from batch effects.

— Remove batch effects from data, leftovers are biological signals.

The key is to find a good “baseline” for normalization:

— Feature selection also plays important role: one wants to find features
not correlated with batch: RUV (Gagnon-Bartsch and Speed 2012
Biostatistics, Risso et al. 2014 Nature Biotech)



Biological artifact —
tissue heterogeneity

e Tissue sample is often a mixture of different cell
types.

* Data collected are mixed signals.
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An example: EWAS in aging study

* Cellular composition changes with age.

e Cellular composition is a major source of variability in DNA
methylation datasets in whole blood.
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Existing signal deconvolution methods

* Reference-based methods (some type of regression):
e Require cell type specific signature: Abbas et al. 2009; Clarke et al.

2010; Gong et al. 2011; Lu et al. 2003; Wang et al. 2006; Vallania et
al. 2018; Du et al. 2018;

* Requires mixture proportions: Erkkila et al. 2010; Lahdesmaki et al.
2005; Shen-Orr et al. 2010; Stuart et al. 2004.

* Reference free methods (some type of factor analysis):

 Gaujoux et al. 2011; Kuhn et al. 2011; Repsilber et al. 2010; Roy et
al. 2006; Venet et al. 2001; Houseman et al. 2012, 2014, 2016;
Rahmani et al. 2016, 2018; Lutsik et al. 2017; Xie et al. 2018;



Method to adjust for cell proportion

* In EWAS, add proportion as covariate in the model:

* More rigorous statistical modeling for DE/DM with
sample mixture has been a popular topic recently,
and a number of methods are developed:

— ¢sSAM: Shen-Orr et al. 2010, Nature methods
— CellIDMC: Zheng et al. 2018, Nature Methods
— TOAST: Li et al. 2019, Bioinformatics



Rule of thumbs for genomic feature
selection

 Understand your data:
— Supervised vs unsupervised.
— Data normalization to remove artifacts.

* Understand your goal:

— To understand mechanism or look for drug target — identify
basic features (DE, DM, GWAS, EWAS), or group of features
(GSEA)

— For outcome prediction — group features or high-order
features.

* Choose proper tool(s) to achieve your goal.



Summary

* Goals of feature selection in high-throughput
genomics data
— To identify biomarkers for treatment
— Find predictors for diagnostic model

e Methods

— Feature-by-feature test: find ones correlated with
outcome

— Groups of features
— Higher order features

e Other considerations: artifacts in the data



