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Tension is emerging in everyday data analysis in the biomedi-
cal sciences. Around the turn of the century, deployment of 
new measurement techniques, especially microarray-like 

techniques in genomics and brain scanning in neuroscience, have 
ignited data accumulation on a massive scale1. As one consequence, 
the amount of health-related data is expected to double several 
times per year starting from 20202. Data-analytical methodology 
in turn has expanded more in the past two decades than any other 
point in history3,4. However, emerging opportunities to generate 
quantitative insight from accumulating data are adopted with hesi-
tation in many empirical domains. Here, we portray the growing 
stack of algorithmic tools, illustrated with examples from the area 
of human neuroscience.

In many empirical sciences, classical statistics is still the domi-
nant arsenal for deriving rigorous conclusions from data. A form 
of linear regression was already used by Gauss around 1795, and 
null-hypothesis testing emerged in the early twentieth century 
to formally assess the significance of tail-area statistics3 (for an 
explanation of key terms used in this Review, see Tables 1 and 2). 
Closed-form textbook formulae were a necessity to avoid labori-
ous paper-and-pencil calculations5. Electronic computations only 
became slowly available after the Second World War3. Hence, a new 
modelling approach was routinely validated by virtue of mathemati-
cal theory. Specifically, consistency theorems formally characterize 
how a particular analysis method behaves if the sample size increases 
indefinitely6,7. Much emphasis was put on straightforward linear 
models due to key advantages for understanding the relationships 
between carefully selected input variables. Simpler, less data-hungry 
models were also generally preferred because data acquisition was 
financially and logistically expensive for most of the past century. 
This is why experimental laboratory studies needed to be carefully 
planned in advance and research hypotheses had to be precisely 
defined beforehand8,9. From this traditional perspective of empirical 
investigation, re-analysing general-purpose data repositories would 
have been of little appeal. Moreover, it was only in the 1990s that 
desktop computer software for many machine-learning algorithms 
or Bayesian modelling approaches became widely available3.

Impressive data aggregation in the early twenty-first century has 
given rise to a new kind of empirical research10,11. In many scientific 
domains, information has become cheaper and considerably more 
fine-grained and multifaceted, as well as freely available. This shift 
of context opens the door to the principled exploration of already 
acquired ‘found’ observational data. Increasingly, quantitative analy-
sis tools are designed, evaluated and deployed ad hoc before complete 
formal analysis of their mathematical properties. Instead, empirical 
justifications are obtained from successful prediction performance 
in separate reference datasets5,12. More broadly, modern data analy-
sis needs to negotiate trade-offs between statistical notions, such as 
effect uncertainty (for example, ‘How sure are we about a detected 
effect?’), and computer-science notions, such as computational load 
and memory resources (for example, ‘How expensive does the analy-
sis become with an increasing number of input variables?’)10,13.

In this Review, we consider global trends in modern data analyt-
ics on large-scale datasets, including the presence of more variables, 
larger sample sizes, open data sources for analysis and assessment, 
and ‘black box’ prediction methods.

Global trends in empirical data analysis
As a looming culture clash, university education in various empiri-
cal fields is still focused on classical methods from a time of scarce 
data and limited computation. Blossoming data resources, however, 
entail a need for exploiting analytical techniques suited for today’s 
data-rich setting. Getting back to our guiding example, imaging 
neuroscience has spawned increasingly wide and deep datasets over 
recent years. However, the adoption of analytical tools tailored for 
modern data is accelerating only recently14,15. The most commonly 
used methods from statistics and computing were not designed 
to solve the types of problems that data-rich scientists, including 
neuroscientists, are facing today. The present overview retraces 
this emerging transition from formally inspired modelling of a few 
hand-selected variables to learning complicated patterns from data 
with increasingly adaptive algorithms.

First, many empirical sciences are now generating detailed phe-
notypical descriptions of organisms and phenomena, such as the 
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brain. Investigators confronted with hundreds or thousands of 
quantitative measurements are also confronted with how to estimate 
statistical models with potentially hundreds or thousands of param-
eters. This new context questions the long-standing dogma that 
statistical analysis should strive to be maximally impartial. Instead, 
the unfolding analysis paradigm appears to ask, ‘What is the most 
useful a priori knowledge that can inform and shape my quantitative 

analysis?’. The consequence is growing importance of bias-inducing 
regularization strategies and data transformations for dimensional-
ity reduction, such as clustering and matrix decomposition.

Second, classical modelling tools have usually been trusted after 
their formal properties had been mathematically understood in 
detail. Increasing data availability is escalating the pace at which 
new quantitative methods are invented and re-purposed, even 

Table 1 | Glossary (A–G)

Technical term (example(s) 
from neuroscience)

Core intuition

Bagging76 ‘Wisdom of crowds’ strategy to enhance predictive performance by averaging several outcome predictions from models 
that have been fitted to resampled versions of the same dataset.

Bias versus variance77 The bias–variance trade-off calibrates between losing information (bad fit to data at hand) or succumbing to noise (bad 
extrapolation to new data). A model with high bias tends to ignore relevant patterns in the data—underfitting due to low 
effective degrees of freedom. A model with high variance tends to extract arbitrary patterns in the data—overfitting due 
to high effective degrees of freedom.

Bayesian versus frequentist 
modelling78–80

Bayesian modelling assumes the model parameters to be random and the data to be fixed; vice versa for frequentist 
modelling. Consequently, Bayesian analysis provides certainty distributions for each model parameter value, while 
frequentist analysis yields a single best-guess value for each model parameter. Bayesian model posterior distributions 
are conditioned on the data at hand, while frequentist model estimation implicitly averages across other data one could 
have observed.

Canonical correlation 
analysis81

(Multivariate) pattern-discovery approach that extends the idea of PCA to two variable sets or two datasets. Mutual 
dependences are extracted as correlated linear combinations of these two data matrices.

Closed-form solutions A mathematical formula that solves a problem ‘in one shot’ by a circumscribed set of computing operations (that is, 
non-iterative), always yielding the same result in the same amount of time.

Consistency theorems or 
asymptotic guarantees

A widely used class of mathematical proofs that study the properties of a given modelling approach by taking the 
number of data points to infinity. It is without asymptotic consistency guarantees that finite-sample theorems describe 
properties of modelling approaches as a function of the number of available data points.

Cross-validation82,83 A (non-parametric) sequential resampling procedure used as the gold standard to practically quantify the performance 
of predictive models to extrapolate discovered patterns to future data. First, model estimation is carried out by fitting 
the parameter values to the training data (in-sample). Second, if model hyperparameters need to be set, model selection 
can be carried out on another independent data split—validation data—to automatically tune towards a winning 
hyperparameter combination. Third, model evaluation then quantifies the pattern generalization based on predictive 
performance in independent hold-out data (out-of-sample). The overall process is repeated for different splits of the 
available data (usually five or ten times). Underfitting yields bad in- and bad out-of-sample generalization performance. 
Overfitting yields excellent in- and bad out-of-sample prediction accuracy.

Curse of dimensionality (’high 
dimensions’)84

If data have abundant input variables, relative to the available number of data points, each such input dimension is 
populated with and represented by less data points. Hence, even classical (unregularized) linear regression can be over-
parameterized. In this setting, common models have trouble finding patterns existing in the data and goodness-of-fit 
metrics (computed in-sample) may become impotent. Variance in model parameter estimation escalates and thus data 
overfitting becomes a core challenge.

Data augmentation A heterogeneous group of ad hoc engineering tricks to repeatedly duplicate and modify the original data points while 
trying to keep their characteristics realistic. The increased effective sample size can allow for estimating more robust 
model parameters.

Deep neural-network 
algorithms (’deep 
learning’)85–87

A growing class of pattern-learning algorithms that perform prediction based on a nonlinear, hierarchical, multilayer 
neural-network model. Deep neural-network algorithms are able to fit parameters of a particularly high number of 
nested nonlinear processing layers and have extreme freedom in fitting patterns in data.

Degrees of freedom The number of separate pieces of information to be estimated from data. In the setting of classical linear regression, 
the degrees of freedom typically refer to the number of independent data points n minus the number of fitted model 
parameters p to estimate residual errors. This conception is starting to struggle or is difficult to compute for many 
modern adaptive modelling approaches.

Dimensionality reduction88,89 Breaking down the number of input variables to a (much) smaller number of quintessential summary variables. 
Examples include clustering approaches, such as k-means, to partition an array of input variables into typically few non-
overlapping variable groups, and matrix decomposition approaches, such as PCA and independent component analysis, 
to extract new continuous representations spanning across input variables that may have partial overlap with each other.

Exchangeability50 A characteristic of the data that is a more general form of the independent-and-identically-distributed (i.i.d.) 
assumption. For example, null-hypothesis testing may be used to try to reject the hypothesis that males and females 
have the same average height. Here, exchangeability may be imposed by shuffling which height measurement belongs to 
male or female participants to assess whether the summary statistics differ given otherwise identical joint distributions 
among the input variables.

Ground truth90 The true pattern in nature to be approximated by using quantitative modelling of empirical measurements.
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before studying their theoretical properties. As such, the modern 
quantitative investigator has special interest in asking, ‘How well 
does my obtained modelling solution hold up when directly evalu-
ated in other sampled observations?’. Hence, extracted candidate 
models are more often grounded in empirical cross-validation or 
posterior predictive checks to judge the model’s quality and practi-
cal usefulness.

Third, many empirical sciences have centred on careful plan-
ning and conducting of experiments in the laboratory. This pre-
dominance of acquiring expensive in-house datasets is re-balanced 
to ever-wider usage of openly accessible observational datasets. 

Investigators can increasingly ask ‘How does my research question 
play out in existing consortium data?’ or ‘How does my newly devel-
oped method scale to open population datasets?’. These opportu-
nities can improve the reproducibility of scientific claims and the 
comparability of quantitative approaches.

Fourth, empirical sciences, such as imaging neuroscience, capi-
talize on always more complex, sometimes untransparent, model-
ling approaches. These investigators may want to ask, ‘How well 
can a powerful pattern-learning algorithm forecast outcomes from 
the natural phenomenon under study?’. On the one hand, by maxi-
mizing prediction accuracy on new data or settings, much harder 

Table 2 | Glossary (H–Z)

Technical term 
(example(s) from 
neuroscience)

Core intuition

Hierarchical multilevel 
regression28,91

Extension of classical linear regression, where the model parameters are also themselves modelled. Linear interactions 
are introduced by data-level regression parameters being regularized in groups towards upper-level model parameters 
to ‘borrow statistical strength’, such as between study sites. Can be carried out in the frequentist regime, but lends itself 
particularly well to Bayesian modelling. Linear hierarchical regression can more readily fit models with more parameters p 
than observations n.

Identifiability35 Whether the parameter values of a given model can be unambiguously estimated and thus meaningfully interpreted. The 
combination of data scenario and model properties may result in identifiability (highly valued in classical statistics) or non-
identifiability (often a smaller concern in predictive machine-learning applications). Non-identifiable model parameters 
can result in very different fitted values despite identical prediction performance of the overall model.

k-means clustering92 A popular clustering algorithm that partitions the p input variables into k non-overlapping groups.

Markov chain Monte Carlo 
sampling93

An iterative sampling procedure for numerical approximation of challenging posterior integrals, such as those often arising 
in Bayesian statistics. Each random ‘draw’ yields one candidate set of model parameters that are jointly plausible as to how 
the data could have come about.

Maximum likelihood 
estimation36

Formal (parametric) framework on how to find one good set of model parameter values (assumed to be fixed) that 
maximize the plausibility of how the data may have come about given a pre-specified model. Ordinary linear regression 
and other classical approaches are special cases. MLE enjoys strong asymptotic guarantees, but can incur problems as the 
number of input variables p increase.

Multivariate versus 
univariate modelling35,74,94,95

Technically, univariate methods consider one variable at a time, whereas multivariate methods consider several, possibly 
many, variables at a time. In neuroscience applications, ‘univariate’ analysis has often been taken to refer to estimating 
effects for a single brain location, particular brain connection or specific gene at a time. Instead, ‘multivariate’ analysis 
would jointly assess patterns in many such biological measurements.

Parametric versus non-
parametric48

A parametric approach explicitly assumes structure or a particular form of how the input variables relate to the output. A 
non-parametric approach tries to fully model the data themselves, for instance, by avoiding assuming Gaussian normality 
in the data.

Partial least squares18,19 (Multivariate) pattern-discovery approach aimed at decomposition of co-variation, similar to CCA. While partial least 
squares operates on the un-normalized co-variation, CCA acts on the data in a scale/unit-invariant fashion.

Permutation procedures48,50 A computation-intensive group of typically non-parametric resampling procedures, which can control error rates 
(including correction for multiple comparisons), while making few theoretical assumptions. For instance, such procedures 
enable computation of empirical distributions under some null hypothesis for significance testing in a much wider range of 
analysis scenarios.

Posterior predictive checks In Bayesian modelling, generating new data (typically outcome predictions) from model parameter sets sampled from 
Markov chain Monte Carlo chains to assess discrepancies between an obtained probabilistic model and the actual data at 
hand.

Regularization/
penalization/shrinkage/ 
sparsification96,97

Bias is introduced on purpose in model estimation, for instance, to address the curse of dimensionality. As one widespread 
example, sparse modelling via L1 terms characteristically drives towards variable selection by encouraging exactly zero 
model parameter values (compare with LASSO regression). As another widely used example, L2 terms intentionally skew 
model parameter values to be closer to zero (compare with ridge regression).

Tail-area statistics98 Instead of some aggregate statistic (for example, mean, median, mode), interest lies in the shape of a data distribution, 
especially its extremes with low probability. Special interest was placed outside of the 95% interval assessing whether or 
not an observation exceeds two standard deviations as in null-hypothesis significance testing.

Variability99 A property of the data. For example, how does the volume of the amygdala really differ between individuals? The variability 
of a parameter estimate does not go to zero as the sample size approaches infinity, in contrast to uncertainty.

Uncertainty99 A property of the modelling approach. For example, how sure are we about the modelling estimate of amygdala volumes? 
The uncertainty of an estimated parameter value goes to zero as the number of data points n increases indefinitely, in 
contrast to variability. Frequentist standard deviations or error bars may mix aspects of variability and uncertainty, in 
contrast to Bayesian posterior density intervals.
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problems can be tackled than before. On the other hand, uncom-
promising prediction studies may lose some interpretational grip 
on understanding the isolated role of each model parameter. The 
resulting interpretability trade-offs incur ethical and policy-related 
consequences for science, business and government.

Deeper phenotyping always yields more variables
The brain sciences have recently been highlighted as the poten-
tially most data-rich medical specialty2. In genomics and imaging 
genetics, jointly considering more than 1,000,000 single nucleotide 
polymorphisms typically exceeds the thousands of participants in 
the currently biggest human cohorts, for example, ref. 16. In imag-
ing neuroscience, a brain scan with commonly available resolu-
tion offers measurements from about 100,000–500,000 locations 
(‘high-p’ scenario with many variables). Yet, sample sizes have 
reached hundreds or thousands of participants (‘low-n’ scenario 
with few observations) only over recent years. In this context, too 
few sample observations from the participants may be available to 
allow for rigorous statements about each separate input dimension, 
such as a specific gene or a particular brain location. At the extreme, 
detailed neuroanatomical studies with measurements at microme-
tre resolution may be available in only one or a few participants17. 
Consequently, application of dimensionality-reduction techniques 
is becoming hard to avoid in various empirical sciences. The theme 
of reducing abundant multivariate information to the relevant 
essence is reflected in matrix decomposition techniques such as 
principal component analysis (PCA), canonical correlation analysis 
(CCA), partial least squares, independent component analysis and 
expanding tensor-decomposition techniques, as well as clustering 
techniques such as k-means18,19. In many workflows, it becomes an 
important pre-processing step to re-express the data in a simpler 
underlying form before applying the final data analysis model, such 
as linear regression20.

In traditionally small datasets with few variables, computing 
ordinary linear regression analysis, as a special instance of maxi-
mum likelihood estimation (MLE), readily provides parameter esti-
mates, with almost optimal precision6. Standard linear regression 
corresponds well to the traditional goals of statistics that valued 
impartiality to what may be expected in the data—unbiasedness. 
Indeed, even datasets with about 30–40 variables were still consid-
ered high-dimensional in the 1980s and 1990s1. Already in this set-
ting, the formal theory backing up linear regression models starts to 
lose some of its optimality, although MLE successfully legitimized a 
series of classical statistics approaches still in pervasive use today1. 
Introducing an increasing number of input variables into a linear 
model usually leads to an increasing number of parameters to be 
fitted. Such larger models incur higher variance in estimating their 
model parameter values, for example, due to ambiguities in the fit-
ting of partially redundant variables that carry similar information 
about the target outcome20.

Even when adding more parameters to simple linear models, the 
expanded model capacity—with higher degrees of freedom—adds 
challenges to interpretation. With increasing number of model 
parameters, it becomes more difficult to clearly attribute the variance 
explained by each individual input variable1. Larger linear models 
are also more susceptible to picking up on idiosyncrasies and noise 
in data. In the high-dimensional scenario, hundreds or thousands 
of input variables (for example, brain region volumes, functional 
connectivity strengths or gene expression levels) can be submitted 
to model fitting. It becomes harder to tell, using classical goodness-
of-fit tests, how well an obtained linear model actually encapsulates 
the data at hand. At the extreme, the number of measured variables 
exceeds the number of available samples or observations in many 
modern datasets21. Such data-rich settings hinder the reproducible 
identification of unique model parameter solutions. Such contexts 
render common linear-regression models non-identifiable, which 

makes the parameter value estimates difficult to interpret and can 
make model performance on new data poor22.

The amount of information that can be gleaned from emerg-
ing high-dimensional datasets may sometimes remain low even  
if the sample size is increasing23,24. Probably no statistical approach 
performs well if thousands of input variables are truly individu-
ally informative about the outcome to be predicted22. Specially,  
with high dimensions, pre-assuming a more parsimonious under-
lying representation in the relevant variables (for example, iden-
tifying a smaller number of latent factors of variation) may be a  
pragmatic way to obtain useful and interpretable modelling solu-
tions. Consequently, modern data often make it necessary to 
introduce some intentional bias into the data-analysis process. In 
addition to dimensionality-reduction techniques, a plethora of  
regularization strategies have flourished in response22. Often very 
simple extensions of traditional tools like linear regression can be 
effective in datasets with high-dimensional measurements. Such 
penalized linear models dedicated to many variables p are epito-
mized by the increasing adoptions of the ridge regression, least 
absolute shrinkage and selection operator (LASSO) and elastic  
net methods22.

In particular, several classical analysis tools underwent a sparsifi-
cation over the past 15–20 years: the introduced biasing assumption 
is that most input variables in the data are expected to be uninfor-
mative about the outcome. Sparsified model extensions were enthu-
siastically embraced by the machine-learning community22. Those 
often-frequentist modelling approaches try to learn from data 
which input variables can be ignored by encouraging a maximum 
of model parameters with exactly zero values. This penalized mod-
elling regime assumes that effective model estimation should be 
skewed towards finding only a subset of the input variables to be rel-
evant to the research question22. Besides sparsity-inducing regres-
sion via the LASSO and elastic net methods, these highly effective 
parsimony constraints recently motivated, for instance, sparse PCA, 
sparse CCA or sparse k-means.

Instead, more Bayesian-minded analysts may prefer to estimate 
the uncertainty of possible model parameter values and correspond-
ing variable influence to be close to zero or not25–27. The investigator 
embracing Bayesian statistics intentionally biases model estimation 
by skewing parameter values towards existing knowledge expressed 
in prior distributions28. For instance, such approaches can capitalize 
on hierarchical dependence structure in the data that exists between 
the quantitative measurements, such as to share statistical strengths 
between individual outcomes pooled from different time points of a 
longitudinal study. In high dimensions, many Bayesian approaches 
may however suffer, as the prior probability distribution can take 
unexpected shapes, which may preclude the ‘true’ parameter values 
from being recovered. As a manifestation of this so-called curse of 
dimensionality, imposing prior knowledge by guiding model esti-
mation to expect certain ranges of model parameter values more 
than others may become ineffective29. Even if probabilistic param-
eter distributions could be obtained on each input dimension, it 
would be challenging for a domain expert to interpret every single 
parameter13. Algorithmically, even modern approximate meth-
ods for Markov chain Monte Carlo sampling widely used to infer 
Bayesian models are susceptible to the consequences of the curse of 
dimensionality30.

These side effects of rich multivariable phenotyping need to be 
tackled in an increasing number of modern neuroscience studies. 
Linear but flexible pattern-learning models have repeatedly yielded 
useful dimensionality reductions of high-dimensional subject 
descriptions and integration of different modalities of detailed mea-
surements. In this spirit, CCA was used by Smith and colleagues 
to uncover population co-variation that links coupling measures 
of various brain networks and extensive phenotyping by a diver-
sity of behavioural indicators31. Standard CCA can be viewed as 
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reminiscent of classical statistics because this model is fitted based 
on MLE without deliberately imposing prior knowledge or bias 
that would guide parameter estimation. However, the same CCA 
method can be viewed to represent a prototypical approach suited 
for modern datasets because of in-built dimensionality reduction, 
avoidance of strong (parametric) assumptions about the distribu-
tions to be encountered in the data, the native ability to fuse two 
heterogeneous data modalities and acting in the high-variance 
regime due to the considerable degrees of freedom. CCA models 
have recently seen extensions and applications for sparse penaliza-
tion32, Bayesian modelling33 and deep learning34. This multivariate 
method is complementary to so-called mass univariate approaches, 
which have been pervasively used in imaging neuroscience to study 
effects separately for each part of the brain35,36.

In a recent CCA application in imaging neuroscience31, one sig-
nificant population mode of multimodal co-variation was obtained 
based on one robust set of canonical correlations. This multivariate 
brain–behaviour pattern extracted from rich phenotyping demon-
strated a positive–negative axis: intelligence, memory and cognition 
tests and indices of life satisfaction on the positive end, and negative 
life-factor measures at the other end (Fig. 1). In addition, the func-
tional connectivity weights emphasized prominent modulation of 
the brain’s ‘default mode network’ (DMN). The doubly multivariate 
CCA technique was recently re-purposed to revisit the idea that the 
DMN subserves some of the most human-defining cognitive pro-
cesses by pooling neural information across the cortical landscape37. 
Profiting from multimodal imaging data of 10,000 UK Biobank par-
ticipants (Fig. 2), major nodes of the DMN were shown to explain 
variance in how canonical brain networks communicate with each 
other. This population neuroscience study37 thus provided robust 
indicators that the biological role of the DMN may emerge from 
propagating brain-wide information flow to orchestrate the cortical 

network repertoire, potentially mediated by the right and left tem-
poroparietal junction of the DMN (compare with ref. 38). Sparsity 
to intentionally bias CCA estimation was recently used to provide 
a more complete understanding of the functional connectivity pat-
terns of this major brain network during mind-wandering experi-
ence in humans39. Thus, imposing exactly zero relevance weights, 
certain random-thought behaviours among richly phenotyped 
experiences could be isolated to underlie functional connectivity 
signatures in the DMN.

Empirical model checks enabled by more samples
Classical statistics was conceived when datasets had modest sam-
ple size3,8. In the early twentieth century, a primary concern was to 
gather information from scarce data points to achieve reasonable 
confidence in the model estimates for meaningful parameter inter-
pretation. In this data-scarce context, a key theoretical property to 
judge the usefulness of a given modelling approach was asymptotic 
consistency. This formal guarantee of model performance has cer-
tified a host of long-standing statistical approaches. This criterion 
quantifies whether model estimation converges to the true variable 
relationships as the number of observation samples increases, mim-
icking, for instance, availability of brain scans from an infinite num-
ber of participants.

However, increasingly flexible algorithmic approaches, with 
data-hungry deep neural-network algorithms as an extreme case, 
can simply memorize much of the provided observation samples in 
certain settings. That is, modern complex models may enjoy consis-
tency guarantees, but be highly prone to seriously overfit the pro-
vided data40. This adaptiveness of flexible modelling approaches can 
lead to spuriously high performance when evaluated on the obser-
vations used for model fitting (in-sample performance). This sce-
nario may change the role of consistency theorems if the goal is to 

Fig. 1 | Significant population mode that relates patterns of inter-network connectivity to patterns within deep behavioural phenotyping. In the 
approximately 500 participant release of the Human Connectome Project, CCA lends itself particularly well to uncovering multimodal correspondences 
between brain and behaviour. Intrinsic network coupling fluctuations between 200 nodes were demonstrated to bear rich relationships with more than 
100 cognitive assessments, demographic profiles and life-factor indicators. A functional connectivity fingerprint emerged with rich profiling of behavioural 
associations that varied along a global positive–negative axis with high intelligence, memory and cognition performances on the one end, and negative 
lifestyle measures and events on the other end. The brain regions exhibiting the strongest contributions to coherent connectivity changes were reminiscent 
of the default mode network, which is implicated in episodic memory and semantic capacity, mental scene construction and complex social reasoning, 
such as taking other people’s perspective. Figure reproduced from ref. 31, Springer Nature Ltd.
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build models that perform well on observations to be sampled in the 
future, rather than the data sample at hand. Hence, in mathemati-
cal theory describing the convergence behaviour of many machine-
learning models, finite-sample theorems are common where model 
performance is assessed as a function of the amount of observations 
available for model fitting, with its formal relation to the complexity 

of the chosen model and the ground-truth information density of 
the data rather than the raw number of input variables23,24.

With the increasing sample sizes of modern datasets, empirical 
evaluation procedures are becoming attractive to vouch for model 
quality beyond those participants or observations used for model 
estimation, to new, independent data points. In fact, even a simple, 
inflexible model with few parameters can often overfit the avail-
able observations. This is because not every aspect of the measured 
data usually reflects the phenomenon of interest25. For instance, 
magnetoencephalographic brain measurements of neural activity 
responses can be influenced by passing trains hundreds of metres 
away or by other electromagnetic fluctuations that happen to occur 
in the environment. Here, the model used may not have optimally 
fitted to the intended purpose in the participant sample at hand, 
even if the model enjoys the theoretical consistency guarantee to 
approach the true statistical relationship with unlimited amounts of 
data23. Moreover, at a given sample size of, say, 1,000 brain scans, it 
is possible that a purposefully biased model has already converged 
closer to the ground-truth solution based on the limited number of 
available observations than an unbiased model that is theoretically 
ensured to be correct in unlimited observations or participants.

As a consequence of staggering increase in sample size, modern 
quantitative analyses can increasingly be backed up by data-depen-
dent optimality criteria rather than relying mostly on formal opti-
mality guarantees. In the machine-learning community, resampling 
and permutation schemes are popular, typically non-parametric 
tools to glean further information from the data themselves. As an 
important example, cross-validation procedures41,42 repeatedly split 
the available observations to assess the discrepancy between poten-
tially overly optimistic model performance on the training data 
used for model estimation and the previously unseen test data. This 
empirical model check can now be increasingly used to approximate 
the expected model performance in observations or participants 
yet-to-be-observed in the future3,20. An additional validation data 
split (internal to the training data) routinely serves for tuning any 
algorithm hyper-parameters to the data at hand, such as to optimize 
the strength of inducing zero parameters by sparse regularization.

Similarly, empirical permutation procedures allow non-paramet-
ric null-hypothesis testing based on exchangeability assumptions. 
This practical re-implementation of classical statistical inference is 
more general and flexible than what can typically be achieved by the 
common assumptions of ‘independent and identically distributed’29. 
In addition, bagging can improve prediction performance on new 
data based on data resampling and averaging hundreds of model 
solutions43. Moreover, bootstrapping can bestow population uncer-
tainty intervals around almost any frequentist statistical approach, 
derived directly from the available observations themselves44. These 
empirical model checks are based on repeatedly resampling the data 
at hand, which yields more truthful results with more observations.

In a similar data-guided fashion, Bayesian approaches com-
monly re-adjust prior assumptions consecutively to enhance model 
estimation. The practical performance of each candidate model can 
be evaluated using posterior predictive checks that generate new 
data from candidate sets of posterior parameter distributions29. As 
Bayesian estimation conditions are based on the provided partici-
pants or observations, their fully specified probability intervals for 
each model parameter are valid for any sample size. These con-
fidence bounds naturally tend to become always narrower as the 
amount of available observations grows. Moreover, as the influence 
of the imposed prior knowledge gradually wanes with increasing 
sample size, the means of the inferred posterior parameter distribu-
tions ultimately converge with frequentist estimates of a particular 
parameter value (from MLE).

In imaging neuroscience, the recent surge in sample size led to re-
evaluation of some established means to draw rigorous conclusions  
from brain measurements. In a sample of approximately 5,000 

Fig. 2 | Strongest population mode that links intra-network connectivity 
patterns and inter-network connectivity patterns. In approximately 
10,000 UK Biobank participants, CCA was used to identify robust 
correspondences between functional connectivity shifts inside a major 
brain network (top), and the default mode network and functional 
connectivity shifts between a set of major brain networks (bottom). This 
large-scale analysis made apparent that specific subregions inside the 
default mode network, namely, the right and left anterior temporoparietal 
junction, could play a dominant role in the process of global network 
reconfiguration in humans. v/dmPFC, ventro-/dorso-medial prefrontal 
cortex; PMC, posteromedial cortex; HC, hippocampus; MTG, middle 
temporal gyrus; TPJ, temporo-parietal junction; L, left; R, right. Figure 
reproduced from ref. 37, PNAS.
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UK Biobank participants, Pearson correlation analyses between a 
behavioural phenotype and a brain imaging feature with a correla-
tion coefficient r of ~0.1 were found to be statistically significant 
for the most part (Fig. 3). This was even the case after correction 
for multiple comparisons45, which was anticipated long ago46. In this 
univariate-flavoured approach, reporting effect estimates as inter-
esting based on P values alone may become insufficient if many 
observations are included in the analysis. This calls for systematic 
reporting of effect sizes (that is, model parameter values) and other 
importance metrics such as prediction performance computed 
from cross-validation procedures8,47. Further, having larger partici-
pant samples, combined with more complicated multivariate analy-
sis settings, has propelled the use of non-parametric null-hypothesis 
testing schemes based on more flexible exchangeability assumptions 
and data resampling schemes48,49. For instance, also in imaging neu-
roscience, statistical significance is increasingly drawn by generat-
ing a to-be-tested empirical null distribution directly from the data 
themselves. For example, by shuffling which brain scan is labelled 
as male versus female to make statements about statistically distin-
guishable sex differences in the brain50. The more participants’ data 
are available in a neuroscience dataset, the more reliable conclu-
sions from these resampling procedures can become51.

When will the sample sizes be sufficient for fitting and evaluat-
ing deep-learning approaches in the area of imaging neuroscience? 
Experts recently proposed a general rule of thumb52: in various 
application areas, n = 5,000 samples per category to be distin-
guished were often necessary to achieve relevant model prediction 
performance. However, datasets with n > 10,000,000 samples were 
repeatedly necessary to exceed human-level performance. The low 
sample (n)-to-variables (p) ratio in today’s neuroscience datasets 
may still hamper the potential of deep-learning techniques. Some 

current shortcomings on data availability in imaging neuroscience 
may be alleviated by data augmentation strategies, using deep neu-
ral-network algorithms whose parameters were already estimated 
on independent data and other tricks52.

Open data become a test bed and reference point
The modus operandi in many empirical sciences is still to collect 
and analyse in-house data for publication in one paper. Various 
kinds of questions simply cannot be asked quantitatively using one 
small dataset, such as extracting links between a human’s genetic 
blueprint and her vast diversity of behaviours53. Often, genetics 
amasses data from participant samples collaboratively to chase small 
effects in multisite consortia as a confederated research endeavour 
(for example, Psychiatric Genomics Consortium). There are always 
more incentives and maturing practices to accumulate, curate and 
distribute data for exploration, knowledge generation and interven-
tion54. This trend reverberates in various empirical research com-
munities and is reinforced by data-sharing mandates increasingly 
specified by funding agencies55.

Availability of rich open datasets enables using and intersecting 
data in unexpected ways, fuels continuous development of novel 
multivariate pattern-learning techniques and renders new research 
questions actionable. A trusted community dataset can provide a 
common test bed for those analysis methods as well as benchmarks 
to compare against a set of state-of-the-art methods in different 
processing pipelines. As an early tradition in machine learning, the 
Modified National Institute of Standards and Technology (MNIST) 
database established itself as a community-wide dataset with 70,000 
images of scanned handwritten digits ‘0’ to ‘9’. New approaches are 
expected to beat the globally recorded status quo and to compare 
against human performance in the task of number detection52. 

Fig. 3 | Relevance of population associations between six brain-imaging modalities and thousands of behavioural phenotypes. For approximately 
21,000 UK Biobank participants, this Manhatten plot depicts results from approximately 15 million cross-subject association tests (each colour indicates 
a different neuroimaging modality). The horizontal dashed lines indicate significance after correction for multiple statistical comparisons based on 
Bonferroni’s more stringent method (Bonf, top line) or more modern false discovery rate (FDR, bottom line). Even after accounting for family-wise error, 
approximately 28,000 (Bonferroni) or approximately 180,000 (FDR) brain–behaviour associations remained statistically significant at the population 
level. These results demonstrate the rich relationships between different brain tissue measurements and extensive phenotyping of many thousands of 
individuals. Figure computed analogous to previous study on the UK Biobank44; see there for details.
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Kaggle-like competitions are also gaining momentum, where a data-
analysis challenge is announced and a larger portion of an existing 
dataset is provided for model development (www.kaggle.com). At the 
end of the competition, the modelling solutions from each team are 
evaluated and ranked on the hidden part of the dataset (see refs. 56,57  
for examples from neuroimaging). Such a prime example of healthy 
competition starts to show high efficacy to crowd-source novel 
analysis strategies to solve global challenges in biomedicine, as well 
as in business and government. Open data sharing is also an oppor-
tunity to dramatically reduce research costs. More broadly, in the 
future, new data-analysis methods will perhaps be validated empiri-
cally based on statistical performance on shared datasets across 
diverse existing studies and across various workflows5,12.

In imaging neuroscience, the majority of the large-scale data ini-
tiatives so far have been retrospective collections of independently 
acquired data from different research centres58. Such data reposito-
ries can vary considerably in key properties, such as data quality and 
quality-control procedures. Across-site heterogeneity may explain 
why, counterintuitively, predictive model performance has been 
repeatedly reported to decrease as the available data increase59. As 
an ambitious attempt to create a large-scale neuroimaging dataset, 
the ENIGMA consortium launched in 2009 to centrally orches-
trate research projects and recruitment of participating groups by 
providing analysis pipelines and quality-control protocols. Several 
thousand participants were characterized with different imaging 
modalities and genetic profiling. A smaller number of data initia-
tives realized prospectively planned collections with agreed-on stan-
dards for data acquisition. Ensuing repositories offer higher data 
comparability due to strengthened efforts to, among many others, 
calibrate acquisition conditions, staff training or travelling experts. 
The Human Connectome Project was launched in 200960 to promote 
insight into human brain connectivity by providing extensive mul-
timodal measurements of approximately 1,200 healthy adults (aged 
22–35), including approximately 300 twin pairs. For each participant, 
the project gathered structural, functional and diffusion magnetic 
resonance imaging, genotyping data, as well as a variety of more than 
400 demographic, behavioural and lifestyle indicators. With genetic 
profiling and an extensive variety of phenotyping descriptors, UK 
Biobank Imaging is even more comprehensive. This data collection 
initiative set out in 2006 to gather genetic and environmental (for 
example, nutrition, lifestyle, medications) data of approximately 
500,000 volunteers (aged 40–69) and is currently the world’s larg-
est biomedical dataset. Its brain and body imaging extension was 
launched in 2014 (with the brain imaging gathering structural, func-
tional, diffusion and susceptibility-weighted magnetic resonance 
imaging for approximately 100,000 participants by 2022)45.

Compared with more established application domains of machine 
learning, large datasets of human populations pose additional chal-
lenges. Extensive phenotypical profiling calls for a careful balance 
of trust between protecting each participant’s privacy and provid-
ing rich open biomedical datasets to the larger research community. 
UK Biobank participants may be given the possibility to opt out of 
sharing records and retroactively deny consent at any time. Industry 
can boost health-related big-data analytics by offering computing 
infrastructure as well as data gathering. However, possible conflicts 
of interest need to be taken into consideration. As public and media 
perception is very important, transparent presentation, that is both 
enthusiastic about the benefits of a study and completely honest, is 
crucial to avoid inaccurate negative messages being promulgated.

Powerful ‘black box’ predictions supplement simple 
models
As a core value of classical data analysis, insight is maximized by 
assuming linear additivity in how the input variables relate to each 
other and to the output prediction6,12. A traditional goal of statistics  
is to cleanly isolate the (univariate) effects of ‘special’ variables on 

an outcome, such as a risk factor or a treatment response. All com-
ponents of the model were supposed to be readily understandable 
by the investigator. The input variables were typically meticulously 
hand-picked and chosen to have meaningful units based on existing 
domain knowledge. This analysis paradigm of generating subject-
matter understanding from ‘introspecting’ isolated variable rela-
tionships has contributed tremendously to scientific progress in 
the twentieth century3. However, this explainable modelling regime 
may also have exhausted the repertoire of natural phenomena that 
can be usefully described and understood by straightforward linear 
modelling (but see ref. 61).

In many empirical sciences, including imaging neuroscience, 
investigators started moving towards more complex modelling 
approaches and analysis pipelines. Expanding data resources is a 
prerequisite to estimating flexible, highly adaptive models that have 
a larger capacity to represent convoluted relationships between 
variables, such as hierarchical dependencies and higher-order non-
linearity62. As more data become available, empirical scientists can 
now bring to bear more flexible models. In certain cases, the price 
one may have to pay is that some aspects of the estimated model 
remain partly opaque to human intuition, pushing investigators to 
give up on uncompromised model transparency. As an early hint, 
Bayesian hierarchical modelling can gain traction on complicated 
datasets that handle nested data settings (for example, brain scans 
from participants in different cities) with many more model param-
eters than input variables. These extensions of classical linear models 
allow for integrating disparate information sources, sharing statisti-
cal strengths between variability sources, de-escalating concerns of 
class imbalance and selection bias, and estimating full uncertainty 
distributions29. As a side effect of increased model complexity, how-
ever, not every single parameter value of such a Bayesian hierarchi-
cal model may merit equal attention for scientific interpretation.

As a continuation of this theme, in adaptive machine-learning 
algorithms, and especially in deep neural-network algorithms, 
much emphasis is put on the output of a model. This change of focus 
is why identifiability may receive lesser attention in certain studies, 
although model interpretability was key in classical statistics. Take 
for example a neurosurgeon who wants to remove brain tissue with-
out impairing language. By relying on a linear model, she predicts 
outcome in a language task from neural activity measured across 
the cortex35. If quite different model parameter solutions yield an 
identical prediction accuracy, the model is not identifiable. This fit-
ted linear model cannot be physiologically interpreted as a brain 
map indicating where tissue resection is safer to preserve language 
capacity. Different candidate models would have other parameters 
with small absolute values that can suggest diverging brain locations 
to be less implicated in language processes, which hampers the clas-
sical goal towards mechanistic explanation.

Instead, the predictive analyst would typically neglect such arbi-
trary values of estimated model parameters and prioritize success-
ful prediction of language performance. This neuroscience example 
illustrates that parameter interpretation is often more challenging 
in multivariate models optimized for prediction performance3. The 
difficulty in explaining the role of individual input variables is even 
bigger in current deep neural-network architectures63. Here, the 
output predictions can result from highly nonlinear processing cas-
cades from the input variables. There may be little hope to exhaus-
tively understand every single one of the thousands or millions of 
model parameters in some of today’s machine-learning models64,65. 
Although some remedies have been recently proposed66,67, these 
largely provide understandable simplifications of or linear approxi-
mations to the actual nonlinear prediction function.

Consequently, for increasingly popular, powerful prediction 
models, classical (parametric) inference may become more chal-
lenging to obtain statistically significant P values. In complicated 
nonlinear models, it is partly infeasible to assess the ‘trueness’ of an 
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effect of individual input variables, as an exclusive path for scientific 
knowledge creation9,68,69. These developments do not belittle the 
importance of working theories in guiding the cumulative construc-
tion of scientific understanding. However, there are certain hard 
problems in empirical research where estimating complex ‘black 
box’ models may be one of the very few viable solutions. This is 
probably the case in weather forecasting, perhaps also in some areas 
of neuroscience. Assessing which aspects of a phenomenon have 
been successfully captured or inadvertently ignored in an estimated 
model will probably more often rely on predictive simulation of 
new data or querying the obtained model for predictions on unseen 
participants or observations in the twenty-first century. As a side 
effect of optimizing uncompromised prediction performance, some 
neuroscience applications may move away from the goal of causal 
discovery or even move away from cumulative creation of scientific 
knowledge70. Aiming for crude prediction performance estranges 
the investigator from asking ‘why?’—the reason behind statistical 
relationships between certain input variables. Today, there is still no 
commonly agreed-on framework for causal inference.

Instead of carving out new biological mechanisms in nature, pre-
diction metrics can capture how well an estimated complex ‘black 
box’ model can ‘imitate’ or ‘reproduce’ the studied phenomenon. 
The Bayesian-frequentist debate, which ignited much controversy 
in twentieth-century statistics (for example, ref. 71), may give way 
to a new antagonistic discourse. One candidate dilemma is classi-
cal statistical inference in interpretable models versus prediction 
accuracy of complicated natural phenomena. Particularly flexible 
analysis approaches can be applied to quantitatively describe par-
ticularly complex systems, such as the human brain in health and 
disease. In many settings, empirical scientists may have to prioritize 
‘providing insight’ (that is, classical statistical inference targeted at 
single input variables) against ‘accurately modelling the world’ (that 
is, model prediction outputs)72. The implied domain interpretability 
trade-offs will have important consequences for ethical consider-
ations and policy-making73.

In imaging neuroscience, the prediction–inference antago-
nism has surfaced as whether or not the prediction accuracies of 
increasingly used multivariate pattern-learning approaches and 
machine-learning algorithms should undergo post-hoc statisti-
cal significance testing (compare with refs. 47,59,74). This discussion 
appears to highlight a culture clash between different data-analysis 
communities seldom in contact before12. Neuroimaging and other 
empirical academic fields have been dominated by a decade-long 
legacy of initial linear-regression-type estimation and subsequent 
statistical null-hypothesis testing. Since its inception, machine 
learning, however, has put a premium on prediction performance as 
‘hard currency’12,20. This is especially the case given the immediate 
practical relevance for various data-intensive industries, such as rec-
ommendation systems or micro-targeted customer advertisement75. 
In general, input variables that do enhance prediction accuracy do 
not always declare to be statistically significant14,25,58. Conversely, 
variables that are assessed to be statistically significant can be use-
less for the goal of prediction in new data in certain cases (compare 
with ref. 69). To recapitulate these diverging modelling notions of 
importance, validating a built machine-learning model based on the 
metric of successful out-of-sample prediction is based on extracting 
patterns in the training data and evaluating how well these identified 
relationships extrapolate to independent observations drawn from 
the same distribution. In contrast, classical null-hypothesis signifi-
cance testing pursues a different analytical goal in asking the ques-
tion whether an obtained prediction accuracy exceeds two standard 
deviations of happening by chance under some null hypothesis.

Conclusion
Historically, innovation and changing practices in quantitative 
analytics have been shaped by trends in application domains. The 

recent advent of massive data in neuroscience and biomedicine is 
ushering towards larger revisions in everyday analytical practices. 
(1) Unconstrained linear regression models have been a workhorse 
in twentieth-century empirical research. However, in the twenty-
first century, analysis that biases model estimation by parameter 
regularization or involves dimensionality-reducing transformations 
may become ubiquitous as extensive datasets become more avail-
able. (2) Many classical models have routinely been backed up by 
consistency theorems, emulating infinite sample size to character-
ize the model’s quality for converging to a good parameter solution. 
Assessing model quality based on the variance explained in the fit-
ted data will probably be increasingly supplemented by empirical 
validation procedures, such as prediction accuracy in untouched 
data. (3) Many empirical sciences such as neuroscience may tran-
sition from the predominance of a  priori planned, gathered and 
published experimental data to conducting more re-analyses of 
freely available data resources with deep and wide phenotyping. 
Traditionally, scientific value was seen in unique private datasets. 
Now, creative modelling strategies may become key to making the 
most of mushrooming open datasets. (4) Powerful predictive mod-
els may not easily lend themselves to exhaustive understanding of 
all extracted variable–variable relationships. However, the democ-
ratization and feasibility of advanced pattern-learning algorithms 
may enable quantifying always more sophisticated phenomena in 
nature. Hence, an important dilemma arises between classical rel-
evance claims about single model parameters and successful ‘black 
box’ predictions of complicated natural phenomena. These mega-
trends in data analytics will hopefully propel the scientific descrip-
tion of particularly complex systems, epitomized by the human 
brain in health and disease.
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