
Introduction to second-
generation sequencing



Review: DNA sequencing

• Technologies to determine the nucleotide sequences 
of a DNA molecule. 

• Motivation: decipher the genetic codes hidden in 
DNA sequences for different biological processes. 

• Genome projects: determine DNA sequences for 
different species, e.g., human genome project.

• Genomic research (in a nutshell): study the functions 
of DNA sequences and related components.



Sequencing technologies

• Traditional technology: Sanger sequencing.
– Slow (low throughput) and expensive: it took Human 

Genome Project (HGP) 13 years and $3 billion to sequence 
the entire human genome.

– Relatively accurate. 

• New technology: different types of high-throughput 
sequencing. 



Second generation sequencing

• Aka: high-throughput sequencing, next generation 
sequencing (NGS). 

• Able to sequence large amount of short sequence 
segments in a short period:
– high throughput: billions of sequences in a run.
– Cheap: sequence entire human genome with good 

coverage costs below one thousand dollars now. 
– short read length: up to several hundred bps. 







Available platforms

• Major player:
– Illumina: HiSeq, MiSeq.
– LifeTech (now ThermoFisher): SOLiD, Ion Torrent.

• Others (third-generation sequencing):
– Pacific Bioscience (SMRT)
– Oxford Nanopore 



High-throughput sequencers



Second-generation sequencing 
technologies



Second-generation sequencing 
technologies

• Complicated and involves a lot of biochemical reactions.
– Sequencing by synthesis: 

https://www.youtube.com/watch?v=fCd6B5HRaZ8. 
– Sequencing by ligation.
– Pyrosequencing.

• In a nutshell: 
– Cut the long DNA into smaller segments (several hundreds to several 

thousand bases). 
– Sequence each segment: start from one end and sequence along the 

chain, base by base. 
– The process stops after a while because the noise level is too high. 
– Results from sequencing are many sequence pieces. The lengths vary, 

usually a few thousands from Sanger, and several hundreds from NGS. 
– The sequence pieces are called “reads” for NGS data. 

https://www.youtube.com/watch?v=fCd6B5HRaZ8


Single-end vs. paired-end sequencing

• Sequence one or both ends of the DNA segments. 
• Single-end sequencing: sequence one end of the DNA 

segment. 
• Paired-end sequencing: sequence both ends of a DNA 

segments.
– Result reads are “paired”, separated by certain length (the length of 

the DNA segments, usually a few hundred bps). 
– Paired-end data can be used as single-end, but contain extra 

information which is useful in some cases, e.g., detecting structural 
variations in the genome.

– Modeling technique is more complicated.



Applications of Second-generation 
sequencing



Applications

• NGS has a wide range of applications. 
– DNA-seq: sequence genomic DNA.
– RNA-seq: sequence RNA products.
– ChIP-seq: detect protein-DNA interaction sites.
– Bisulfite sequencing (BS-seq): measure DNA methylation 

strengths. 
– A lot of others.

• Basically replaced microarrays with better data: 
greater dynamic range and higher signal-to-noise 
ratios. 





DNA-seq

• Sequence the untreated genomic DNA. 
– Obtain DNA from cells, cut into small pieces then sequence 

the segments.

• Goals: 
– Compare with the reference genome and look for genetic 

variants: 
• Single nucleotide polymorphisms (SNPs)
• Insertions/deletions (indels), 
• Copy number variations (CNVs) 
• Other structural variations (gene fusion, etc.).

– De novo assembly of a new genome. 



Variations of DNA-seq

• Targeted sequencing, e.g., exome sequencing.
– Sequence the genomic DNA at targeted genomic regions. 
– Cheaper than whole genome DNA-seq, so that money can be spent to 

get bigger sample size (more individuals). 
– The targeted genomic regions need to be “captured” first using 

technologies such as microarrays. 

• Metagenomic sequencing.
– Sequence the DNA of a mixture of species, mostly microbes, in order 

to understand the microbial environments. 
– The goal is to determine number of species, and their proportions in 

the population. 
– The proportion can be associated to outcomes.  



RNA-seq

• Sequence the “transcriptome”: the set of RNA 
molecules. 

• Goals: 
– Catalogue RNA products. 
– Determine transcriptional structures: alternative splicing, 

gene fusion, etc.
– Quantify gene expression: the sequencing version of gene 

expression microarray. 



ChIP-seq

• Chromatin-Immunoprecipitation (ChIP) followed by 
sequencing (seq): sequencing version of ChIP-chip.

• Used to detect locations of certain “events” on the 
genome:
– Transcription factor binding. 
– DNA methylations and histone modifications.

• A type of “captured” sequencing. ChIP step is to 
capture genomic regions of interest. 

• Similar technologies: MeDIP-seq, hMe-seal, etc.



Second-generation sequencing
data analyses



Workflow of second generation
sequencing data analysisSec-gen sequencing data 

analysis workflow 

Raw images

Fluorescent intensities

sequence reads

aligned reads contigs

imaging analysis

base calling

alignment de novo assembly

variant calling
(DNA seq)

DE/splicing 
(RNA seq) 

peak/DMR detection
(ChIP/MeDIP- seq)

...



Imaging analysis

• Extract intensity values from images.
– There are four images per sequencing cycle, one for a 

nucleotide. 

• Similar to that in microarrays. 
• Involves many statistical methods to extract signals 

from noisy data. 
• Results of the imaging analysis: a 3-dimensional 

matrix: nreads x 4 x nbases. 



Base calling

• For each read, at each position, convert four fluorescent 
intensities (continuous) into a base or color (categorical).

• It’s a classification problem. 

Base1 Base2 Base3 Base4 Base5 
A 0.290 0.046 0.014 0.026 0.010 
C 0.014 0.654 0.132 0.803 0.006 
G 0.062 0.009 0.001 0.016 0.712 
T 0.016 0.010 0.455 0.046 0.768

…

ACTCT…



Example of base calling method:
Alta-Cyclic for Illumina data

The training process (green arrows) starts with creation of the training set, beginning with sequences generated by the standard
Illumina pipeline, by linking intensity reads and a corresponding genome sequence (the 'correct' sequence). Then, two grid 
searches are used to optimize the parameters to call the bases. After optimization, a final SVM array is created, each of which 
corresponds to a cycle. In the base-calling stage (blue arrows), the intensity files of the desired library undergo deconvolution to 
correct for phasing noise using the optimized values and are sent for classification with the SVM array. The output is processed, 
and sequences and quality scores are reported.

Erlich et al. Nature Methods 5: 679-682 (2008) 



Raw sequence reads from second 
generation sequencing after base calling

• Large text file (millions of lines) with simple format. 
– Most frequently used: fastq format

Secgen sequencing data: 
fastq format

@HWI-EAS165:1:1:50:908:1
CTGCGGTCTCTAAAGTGCCATCTCATTGTGCTTTGTATCAGTCAGTGCTGGA
+
BCCBCB8ABBBBBBB:BC=8@BBA:@BB@BBBCBB<9BBAC;A<C?BAAB<#
@HWI-EAS165:1:1:50:0:1
NCAACCCCCACAGTAATATGTAAAACAAAAACTAAAACCAGGAGCTGAAGGG
+
#BABABBBBBB@08<@?A@7:A@CCBCCCCBBBCCBB=?BBBB@7@B=A>:2
@HWI-EAS165:1:1:50:708:1
GGTCAGCATGTCTTCTGTTAAGTGCTTGCACAAGCTAGCCTCTGCCTATGGG
+
BB@A;B>@A@@=BB=BB?A>@@>B?ABBA=A?@@>@@A:=?>?A@=B8@@AB
@HWI-EAS165:1:1:50:1494:1
CTGGTGTCACACAAGCAGGTCTCCTGTGTTGACTTCACCAGACACTGTCATT
+
BCBB@AB@1ABBBBBBAAB?BBBBAB<A?AA>BB@?1ABBA@BBBA@;B>>:

read name
read sequence
separator
quality scores



Sequence alignment and assembly

• Sequence a known genome --- Alignment
– Use the known genome (called “reference genome”) as a blue print.
– Determine where each read is located in the reference genome.

• Sequence a whole new genome --- Assembly
– New genome: a species with unknown genome, or the genome is 

believed  to be very different from reference (e.g., cancer). 
– Basically the short reads are “stitched” together to form long 

sequences called “contigs”. 
– Overlaps among sequence reads are required, so it needs a lot of 

reads (deep coverage).
– More computationally intensive. 



Alignment
• Need: sequence reads file and a reference genome.
• It is basically a string search problem: where is the short (50-

letter) string located within the reference string of 3 billion 
letters.

• Brute-force searching is okay for a single read, but 
computationally infeasible to alignment millions of reads. 

• Clever algorithms are needed to preprocess the reference 
genome (indexing), which is beyond the scope of this class.



Popular general alignment software

• Bowtie: fast, but less accurate. 
• BWA (Burrows-Wheeler Aligner): same algorithm as bowtie, but

allow gaps in alignments. 
– about 5-10 times slower than bowtie, but provide better results 

especially for paired end data.
• Maq (Mapping and Assembly with Qualities): with SNP calling 

capabilities.
• ELAND: Illumina’s commercial software. 
• A lot of others. See

http://en.wikipedia.org/wiki/List_of_sequence_alignment_software for 
more details.

http://en.wikipedia.org/wiki/List_of_sequence_alignment_software


Other technology-specific 
alignment software

• RNA-seq:
– Tophat, STAR, HISAT
– Pseudoaligner: Salmon, kallisto. 

• Bisulfite sequencing: 
– Bismark
– BSMAP



bowtieBowtie

Bowtie is an ultrafast, memory-efficient short read 
aligner. It aligns short DNA sequences (reads) to the 
human genome at a rate of over 25 million 35-bp 
reads per hour. Bowtie indexes the genome with a 
Burrows-Wheeler index to keep its memory footprint 
small: typically about 2.2 GB for the human genome 
(2.9 GB for paired-end).



Use bowtie: build alignment index

• Alignment index files are built based on reference genome 
(can be download as text files from UCSC). 

• Note that pre-built indexes for many genomes are available 
from bowtie page, check that before building your own index.

• Command example for Human hg18 genome. Assume we 
have the hg18 sequence file ready called hg18.fa:
bowtie-build hg18.fa hg18

• Results: several ebwt files.
• Tips: the index files can be stored in a common place and 

shared among colleagues.



Use bowtie: alignment

• Test whether it works:
bowtie -c hg18 GGTATATGCACAAAATGAGATGCTTGCTTA

• Align a read files
bowtie -v 3 -f hg18 reads.fa reads.map



bowtie: commonly used parameters
• Input file format: 

– -q: query input files are FASTQ .fq/.fastq (default)
– -f: query input files are (multi-)FASTA .fa/.mfa
– -r: query input files are raw one-sequence-per-line

• Aligment: 
– -v: allowing v mismatches.
– -5: ignoring some based from 5’ end.
– -3: ignoring some based from 3’ end.

• Output format:
– -S: output in SAM (sequence alignment map)format.

• Example: input is a single fa file, allowing 3 mismatches, 
ignore 5 bases from 3’ end, output in SAM format:
bowtie -v 3 -3 5 -S hg18 reads.fa reads.sam



Output from bowtie

• SAM format

• Bowtie format

Output from bowtie

• SAM output:
@HD     VN:1.0  SO:unsorted
@SQ     SN:phage        LN:5386
@PG     ID:Bowtie       VN:0.12.5       CL:"/Users/hwu/bin/bowtie-0.12.5/bowtie -v 3 -f -S phage reads.fa reads.sam"
5_143_428_832   4       *       0       0       *       *       0       0       GATATTGTAGCATAACGCAACTTGGGAGGTGAGCTT    IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII    XM:i:0
5_143_984_487   0       phage   3948    255     36M     *       0       0       GTTTTCATGCCTCCAAATCTTGGAGGCTTTTTTATG    IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII    XA:i:0  MD:Z:36 NM:i:0
5_143_963_690   0       phage   3503    255     36M     *       0       0       GGTATATGCACAAAATGAGATGCTTGCTTATCAACA    IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII    XA:i:0  MD:Z:36 NM:i:0
5_143_957_461   16      phage   3903    255     36M     *       0       0       TTGTCTAGGAAATAACCGTCAGGATTGACACCCTCC    IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII    XA:i:0  MD:Z:36 NM:i:0
5_143_808_403   0       phage   4122    255     36M     *       0       0       GATAACCGCATCAAGCTCTTGGAAGAGATTCTGTCT    IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII    XA:i:0  MD:Z:36 NM:i:0
5_143_986_385   4       *       0       0       *       *       0       0       GATGCTGAAGGAACTTGGTAAAATTTATCTGGAGAA    IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII    XM:i:0
5_143_981_626   16      phage   1522    255     36M     *       0       0       TCCTCCTGAGACTGAGCTTTCTCGCCAAATGACGAC    IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII    XA:i:0  MD:Z:36 NM:i:0
5_143_470_717   16      phage   2061    255     36M     *       0       0       ATGCGCCTTCGTATGTTTCTCCTGCTTATCACCTTC    IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII    XA:i:0  MD:Z:36 NM:i:0

5_143_961_681   +       phage   4397    GCTGCTGAACGCCCTCTTAAGGATATTCGCGATGAG    IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII    0       
5_143_996_500   +       phage   2537    GGTTAATGCTGGTAATGGTGGTTTTCTTCATTTCAT    IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII    0       32:G>T
5_143_468_916   +       phage   339     GGATTACTATCTGAGTCCGATGCTGTTCAACCACTA    IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII    0       
5_143_972_467   +       phage   3021    GTGGCATTCAAGGTGATGTGCTTGCTACCGATAACA    IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII    0       
5_143_953_471   -       phage   5017    ATACGTTAACAAAAAGTCAGATATGGACCTTGCTGC    IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII    0       
5_143_687_97    +       phage   1287    GACTGTTAACACTACTGGTTATATTGACCATGCCAC    IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII    0       34:G>A
5_143_620_93    +       phage   4463    GATGAGTGTTCAAGATTGCTGGAGGCCTCCACTATG    IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII    0       
5_143_766_307   +       phage   3024    GCATTCTAGGCGATGTGCTTGCTACCGTTAACAATA    IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII    0       6:A>T,10:T>C,27:A>T

• Bowtie output:

:@HD     VN:1.0  SO:unsorted
@SQ     SN:phage LN:5386
@PG     ID:Bowtie VN:0.12.7       CL:"bowtie -v 3 -f -S phage reads.fa reads.sam"
5_143_428_832   4       *       0       0       *       *       0       0       GATATTGTAGCATAACGCAACTTGGGAGGTGAGCTT    IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII    XM:i:0
5_143_984_487   0       phage   3948    255     36M     *       0       0       GTTTTCATGCCTCCAAATCTTGGAGGCTTTTTTATG    IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII    XA:i:0  MD:Z:36 NM:i:0
5_143_963_690   0       phage   3503    255     36M     *       0       0       GGTATATGCACAAAATGAGATGCTTGCTTATCAACA    IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII    XA:i:0  MD:Z:36 NM:i:0
5_143_957_461   16      phage   3903    255     36M     *       0       0       TTGTCTAGGAAATAACCGTCAGGATTGACACCCTCC    IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII    XA:i:0  MD:Z:36 NM:i:0
5_143_808_403   0       phage   4122    255     36M     *       0       0       GATAACCGCATCAAGCTCTTGGAAGAGATTCTGTCT    IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII    XA:i:0  MD:Z:36 NM:i:0
5_143_986_385   4       *       0       0       *       *       0       0       GATGCTGAAGGAACTTGGTAAAATTTATCTGGAGAA    IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII    XM:i:0
5_143_981_626   16      phage   1522    255     36M     *       0       0       TCCTCCTGAGACTGAGCTTTCTCGCCAAATGACGAC    IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII    XA:i:0  MD:Z:36 NM:i:0
5_143_470_717   16      phage   2061    255     36M     *       0       0       ATGCGCCTTCGTATGTTTCTCCTGCTTATCACCTTC    IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII    XA:i:0  MD:Z:36 NM:i:0
5_143_992_626   4       *       0       0       *       *       0       0       GCCCAGAAGGGGCGGTTAAATGGTTTTTGGAGAAAG    IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII    XM:i:0
5_143_400_771   0       phage   3816    255     36M     *       0       0       GATATTTTTCATGGAATTGATAAAGCTGTTGCCGAT    IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII    XA:i:1  MD:Z:14T21      
NM:i:1
5_143_962_110   16      phage   5074    255     36M     *       0       0       AATGGAACAACTCACTAAAAACCAAGCTGTCGCTAC    IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII    XA:i:0  MD:Z:36 NM:i:0
5_143_774_100   0       phage   3810    255     36M     *       0       0       GTGGTTGATATTTTTCATGGTATTGATAAAGCTGTT    IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII    XA:i:0  MD:Z:36 NM:i:0



Bioconductor alignment packages 

• Rsubread, Rbowtie/Rbowtie2, QuasR, etc.
• Example code for Rsubread:

library('Rsubread') 

## build reference
buildindex(basename="reference_index",

reference=”ref.fa")
## align 
align.stat <- align(index="reference_index",

readfile1="reads.fa", 
output_file="alignResults.BAM",
type="dna")



Once the reads are aligned

• Downstream analyses depend on purpose.
– We will cover the analyses for RNA-seq, ChIP-seq, and BS-

seq in next several lectures. 

• Often one wants to manipulating and visualizing the 
alignment results. There are several useful tools:
– file manipulating (format conversion, counting, etc.):  

samtools/Rsamtools, BEDTools, bamtools, IGV tools.
– Visualizing: samtools (text version), IGV (Java GUI).



samtools
• samtools provide various utilities for manipulating alignments 

in the SAM format, including sorting, merging, indexing and 
generating alignments in a per-position format.

• Command line driven, meaning one needs to type command 
in a terminal window. 
– Installation could be tricky. Needs to install extra tools on Windows or 

Mac, such as Cygwin and perl on Windows and Xcode on Mac.  

• Main functionalities:
– view: SAM<->BAM conversion
– sort: sort alignment file
– mpileup: multi-way pileup 
– depth: compute the coverage depth
– tview: text alignment viewer
– index: index alignment



samtools: generate sorted, indexed bam files 

• BAM file: binary SAM. Smaller file sizes and faster 
operations. 

• To convert from sam to bam:
samtools view -bS reads.sam > reads.bam

• Sort and index bam file. This sorts the reads by 
chromosome and position and makes subsequence 
analysis easier.  
samtools sort reads.bam reads.sorted

samtools index reads.sorted.bam



Another useful software: BEDTools

• A set of commands to manipulate BED/GFF/VCF files.
• Conversion tools: pairToBed(BAM), bamToBed, 
bedToBam, etc.

• Counting tools: coverageBed(BAM), windowBed 
(BAM)

• Others: sortBed, overlap, etc.



Bioconductor package: Rsamtools

• Provide functions to import BAM files to R. 
• There are many tools (samtools, BEDTools, bamtools) 

available to convert different formats (BED, SAM, 
fasta, fastq, etc.) to BAM. 

• Read alignment results should always be saved in 
BAM format because they are smaller and faster. 



Read in a BAM file
> bamFile="reads.sorted.bam"
> bam <- scanBam(bamFile)
> names(bam[[1]])
[1] "qname"  "flag"   "rname"  "strand" "pos"    "qwidth" "mapq"   "cigar" 
[9] "mrnm"   "mpos"   "isize"  "seq"    "qual”

This gives the available information in the BAM file. One can 
specify what to read in (to save time and memory):

> what <-c("rname", "strand", "pos”, ”qwidth”) ## fields to read in                                         

> param <- ScanBamParam(what = what)
> bam <- scanBam(bamFile, param=param)[[1]]
> names(bam)
[1] "rname"  "strand" "pos” "qwidth”
> bam$pos[1:10]
[1] 1 2 3 3 4 4 4 4 4 5
> bam$strand[1:10]
[1] + + + + - - - - - +
Levels: + - *



Summarize the read counts

• Remember each aligned read can be treated as a genomic 
interval. So the results from scanBam can be used to 
construct a GRanges object (of millions of intervals):

> GRange.reads=GRanges(seqnames=Rle(bam$rname), 
ranges=IRanges(bam$pos, width=bam$qwidth))

• Then it becomes very handy, for example, we can:
– compute genome coverage:

> cc=coverage(IRange.reads)

– count number of reads in intervals (such as genes):
> countOverlaps(genes, GRange.reads)



An example: obtaining RNA-seq reads 
mapped to exons and introns

library(GenomicRanges)
library(GenomicFeatures)
library(Rsamtools)
## get gene annotation, and extract exons/introns

refGene.hg18=makeTranscriptDbFromUCSC(genom="hg18",tablename="refGene")
ex=exonsBy(refGene.hg18, "tx")

intr=intronsByTranscript(refGene.hg18)

## read in RNA-seq BAM file

what=c("rname", "strand", "pos", "qwidth")
TSS.counts=NULL

param=ScanBamParam(what = what)
bam=scanBam(”RNA-seq.bam", param=param)[[1]]

IRange.reads=GRanges(seqnames=Rle(bam$rname),
ranges=IRanges(bam$pos, width=bam$qwidth))

## obtain counts
counts.exon=countOverlaps(ex, IRange.reads)

counts.intron=countOverlaps(intr, IRange.reads)



Visualization of sequencing data –
Integrated Genome Viewer (IGV) 

• “The Integrative Genomics Viewer (IGV) is a high-
performance visualization tool for interactive 
exploration of large, integrated datasets. It supports 
a wide variety of data types including sequence 
alignments, microarrays, and genomic annotations.”

• Written in Java and runs on all OS.
• Very versatile and fast.
• Ability to connect to data server and display some 

public data (from ENCODE, broad, etc.)



Aligned reads on IGV



ChIP-seq data on IGV



RNA-seq junction reads on IGV



Review
• We’ve covered 
– Basics of second-generation sequencing: 

technology, data, application
– Alignment using bowtie
– Manipulation of alignment results using samtools
– Import alignment into R using Rsamtools.
– Visualization using IGV.


