Bisulfite sequencing



DNA methylation

An epigenetic modification of the DNA sequence: adding a
methyl group to the 5 position of cytosine (5mC)
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Primarily happens at CpG sites (C followed by a G),
although non-CG methylation exists
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DNA methylation

In human genome, >90% of CpG sites are fully methylated, except at CpG
islands where methylation levels are typically low.
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Varley K E et al. Genome Res. 2013;23:555-567

Methylation of CpG islands in/near promoter region of gene could silence
gene expression.



Function of DNA methylation

* Important in gene regulation

— Methylation of promoter regions can suppress gene expression

* Plays crucial role in development

— Heritable during cell division

— Helps cells establish identity during cell/tissue differentiation

e Can be influenced by environment

— Good candidate to mediate GxE interactions



Sequencing approaches for DNA methylation

* Can be divided into two categories

— Capture-based or enrichment-based sequencing

* Use methyl-binding proteins or antibodies to capture methylated
DNA fragments, then sequence fragments

e Resolution is low: can typically quantify the amount of DNA
methylation in 100-200 bp regions
— Bisulfite-conversion-based sequencing
e Bisulfite treatment converts unmethylated C’s to T’s
e Sequencing converted data gives single-bp resolution
* Can measure methylation status of each CpG site
e Until recently, not possible to distinguish 5mC from 5hmC

* Focus of this lecture: bisulfite sequencing



Capture-based sequencing approaches

* Allinvolve capture of methylated DNA followed by sequencing

* MeDIP-seq (Methylated DNA ImmunoPrecipitation)?
— Like ChlIP-seq, but uses antibody against methylated DNA
— MEDIPS? is a popular tool for analysis

* Capture via methyl-binding domain proteins: MBD-seq3/MIRA-
seq®, methylCap-seq

e Capture via methyl-sensitive restriction enzymes (MRE-seq)®

lWeber et al. (2005) Nat Genet; °Chavez et al. (2010) Gen Res; 3Serre et al. (2010) NAR
4Rauch et al. (2010) Methods; >Brinkman et al. (2010) Methods; ®Maunakea et al. (2010)
Nature



Bisulfite sequencing (BS-seq)

* Technology in a nutshell:

— Treat fragmented DNA with bisulfite
* Unmethylated C will be converted to U, amplified as T
* Methylated C will be protected and remain C
* No change for other bases

— Amplify the treated DNA
— Sequence the DNA segments



Reduced representation bisulfite
sequencing (RRBS)!2

* @Goal: affordable alternative to genome-wide sequencing

— By narrowing focus to CpG-rich areas, reduce # of reads necessary to

obtain deep coverage of promoter regions
— Interrogates ~1% of the genome but 5-10% of CpG sites
e Approach: enrich for CpG-rich segments of genome

— Mspl restriction enzyme cuts at CpG sites, leaving fragments with CpGs at

either end: GG
CCG

— Size selection for fragments of 40-220bp maximizes coverage of promoter

regions and CpG islands

— Bisulfite treat, amplify, end-sequence, and align fragments to genome

IMeissner (2005) NAR; °Gu et al. (2011) Nat Protoc



lllustration of bisulfite conversion

Watson >>AC*GTTCGCTTGAG>> C™ methylated
Crick  <<TGCrAAGCGAACTC<< C Un-methylated
1) Denaturation ﬂ
Watson >>ACGTTCGCTTGAG> > Crick <<TGCrAAGCGAACTC<K
2) Bisulfite Treatment ﬂ
BSW >>ACGTTUGUTTGAG>> BSC <<TGCrAAGUGAAUTU<K
3) PCR Amplification ﬂ
BSW >>ACGTTTGTTTGAG>> BSC <<TGCrAAGTGAATTT<L
BSWR <<TG CAAACAAACTC<L BSCR >>ACG TTCACTTAAA>>

Xi and Li (2009) BMC Bioinformatics



Alignment of BS-seq

* Problem: reads cannot be directly alighed to the
reference genome.
— Four different strands after bisulfite treatment and PCR

— C-T mismatches: unmethylated reads can’t be aligned to
the correct position
 Unmethylated CpGs will align with TpGs or likely not at all
* Will lead to a strong bias in favor of methylated reads

* One possible solution: in silico bisulfite conversion
— Switch all C’'s to T's in both reads and reference sample
— Use this for alighment, then change back to original



Strategy used by BISMARK!

* In silico bisulfite conversion
of fragments and reference
genome

—Convert all C'sto T’s

—Make complementary strand

by converting all G’s to A’s

—Align both strands to the four

possible reference genomes
—Choose best alignment
* Once aligned, convert back

to original bases

« Compare to ref. genome to

assess methylation

lKrueger and Andrews (2011) Bioinformatics
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Alignment issues

* Possible problems with in silico approach

— By converting all C’s to T’s, reduce sequence complexity to

3 bases
— Larger search space for possible alignments

— Could lead to mismatches or non-unigue mapping

Bisulfite Read >>ATTTCG> >

d 4 g

ATTTCG ATTTCG ATTTCG
Reference > 5 7 TACTTCGATGCATCTCGCAAGCACTCCGCC>>

Xi and Li (2009) BMC Bioinformatics



Strategy used by BSMAP!

* Consider methylation status during
alignment

— create multiple versions of reference

seed with C’s converted to T's
— compare each read to all possible seeds

— do the same for complementary strand
* This approach reduces search
space compared to in silico

conversion of all C’'sto T’s

— T’s in reads can match to C’s or T’s in

reference

— C’s in reads can only match to C’s in

reference

 Computationally more intensive

Reference
>>ACGTCGCT[ GATAGCT>>
Coordinate: 4875362
Seed
Table
key value
ggg'd”a' ACGTCGCT| = 4875362, ...
ACGTCGTT | = 4875362, ...
bisulfite ACGTTGCT | =—> 4875362, ...
seeds ACGTTGTT| == 4875362, ...
ATGTCGCT — 4BTIS3nE. ...
ATGTCGTT | = 4875362, ...
ATGTTGCT | == 4875362, ...
ATGTTGTT | = 4875362, ...

Read >>ATGTCGCTTGAGAGCT>>

IXi and Li (2009) BMC Bioinformatics



Which alighment software is best?
* Advantages of BSMAP:

— reduces search space by eliminating mapping of C’sto T's

— greater proportion of uniquely mapping reads?

* Advantages of BISMARK:
— much faster than BSMAP and other programs?

— uniqueness of mapping independent of methylation status*

— more user-friendly in terms of extracting data, interfacing
with other software!

* |In general, BISMARK seems to be the popular choice

IChatterjee et al. (2012) NAR



Other aligners

Alignment of RRBS data

— Chatterjee et al. notes it is much faster if we use information

on Mspl cutpoints to “reduce” reference genome in silico?
— RRBSMAP: a version of BSMAP that does exactly that?

— Has option to work with different restriction enzymes

Many other aligners for bisulfite sequencing data
— One useful review of these is Hackenberg et al.3
IChatterjee et al. (2012) NAR; %Xi et al. (2012) Bioinformatics;

3Hackenberg et al. (2012): Chapter 2 in “DNA Methylation — From Genomics to
Technology” Tatarinova (Ed.) http://www.intechopen.com/books



BS-seq data after alighment
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BS-seq data

* At each position, we have the total number of reads, and the
methylated number of reads:

Position of CpG site Total # reads # methylated reads
chrl 3010874 22 18
chrl 3010894 31 27
chrl 3010922 12 10
chrl 3010957 7 6
chrl 3010971 6 6

chrl 3011025 7 5



Study design for BS-seq studies

* High costs = few samples
e Two common study designs

— Analysis of a single sample:
* Goal: observe methylation patterns across genome

 Commonly done to characterize methylome for a
particular cell type or species

— Comparison of several samples:

* Typical goal: compare methylation among groups:
Differential methylation analysis



Differential methylation analysis

* Typical goal: compare methylation levels between
two groups
— Example: tumor vs. normal tissue samples
— Important: do groups contain biological replicates?
— Some studies may compare 1 tumor to 1 normal sample
— Other studies will include 2 or more replicates of each

* Popular ad hoc approaches for this comparison are
Fisher’s exact test and two-group t-test

— We will show why these can be problematic



Fisher’s exact test

If we have only one sample per group (no biological
replicates), Fisher’s exact test is a natural choice

Example: from one CpG site

— For tumor sample, 32/44 methylated reads
— For normal sample, 8/12 methylated reads

Can then perform Fisher’s exact test on the

following table:
Methylated Unmeth. Total reads

OR=1.33 Tumor 32 12 44
p= 73 Normal 8 4 12
Total 40 16 56




Fisher’s exact test in methylKit

* For comparisons between two samples, Fisher’s

exact test is a reasonable choice

— Easy to carry out in R using fisher.test() function

— Alternatively, methylKit! is a suite of R functions that
facilitates analysis of genome-wide methylation data

— Differential methylation analysis via either

e Fisher’s exact test (for comparisons between two samples)

* Logistic regression based on methylation proportions
— Analogous to two-group t-test, but with covariates
e Can perform analysis in user-defined tiling windows

— However, based on simple collapsing of information across sites rather than
smoothing
1Akalin et al. 2012 Genome Biology



Fisher’s exact test with replicates

For Fisher’s exact test with biological replicates,
need to collapse read information within groups

Example: single CpG site sequenced for 4 samples
— For 2 tumor samples, 32/44 and 4/10 methylated reads
— For 2 normal samples, 8/12 and 12/34 methylated reads

Could then perform Fisher’s exact test on the

following table:
OR=2.6
p =.0264

Tumor
Normal

Total

Methylated Unmeth.

Total reads

36
20

18
26

54
46

56

44

100




Problem with Fisher’s exact test

To perform Fisher’s exact test with replicates, we have to
collapse read counts across samples within each group

By doing this, we are ignoring information on biological
variation between samples

— Biological variation: natural variation in underlying fraction of DNA
methylated between samples in the same condition

— Technical variation: variation in estimation of methylation levels due to
random sampling of DNA during sequencing!?

By collapsing, we are assuming that:

— samples within a group inherently have the same underlying
fraction of DNA methylated

— any variation between samples is due to technical variation

'Hansen et al. 2012 Genome Biology



Naive t-test

Example: single CpG site sequenced for 4 samples
— For 2 tumor samples, 32/44 and 4/10 methylated reads
— For 2 normal samples, 8/12 and 12/34 methylated reads

For t-test, compute a proportion for each sample
— .727 and .400 for tumor samples
— .667 and .353 for normal samples

Difference in mean proportions = .563 - .510 =.053
T-statistic = 0.2375
p=.834



Problem with t-test

* To perform t-test, computed a proportion for each
sample
— Test inherently gives equal weight to each sample

— Does not account for uncertainty in proportion

estimates. Note: such uncertainty is lower for samples
with more reads

 Another issue with this approach is the small
number of samples

— With N=4, the t-test has very little power due to low df



Fisher’s exact vs. t-test

The two tests yielded very different results
— Fisher’s exact p =.0264
— T-testp =.834
Main difference: unit of observation (reads vs. samples)

Fisher’s test was based on 100 “independent” reads

— Reads are not independent: correlated within each sample, since
samples have different methylation fractions

T-test was based on 4 samples
— Treated samples as equally informative, when they are not
— For 2 tumor samples, 32/44 and 4/10 methylated reads
— For 2 normal samples, 8/12 and 12/34 methylated reads



Need better approaches

* Problem: want to test many sites with few samples

— Limited information available at each site due to low # of
samples
e Solution: borrow information across CpG sites

— Smoothing approaches that share information across
nearby sites

— Bayesian hierarchical model that borrows information
across the genome



Smoothing approaches

* First consider analysis of a single sample

* Goal here is to identify methylated regions:

— Can estimate proportion of reads that are methylated at
each C position, but:

 Variability in estimation needs to be considered

 Spatial correlation among nearby CpG sites can be
utilized to improve estimation

— Methylated regions (or states) can be determined by
smoothing based methods using the estimated
methylation proportion as input



HMM: Hidden Markov model

* Model switches between states along a chromosome

* Could model 3 methylation states: FMR, LMR, UMR

— Stadler et al.! used estimated proportions to identify
regions in mouse methylome corresponding to 3 states
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Smoothing sequencing data

* Problem with directly smoothing the proportions:

— Doesn’t consider the uncertainty in proportion estimates:
estimates are more variable for sites with low coverage

— May want to put less weight on these estimates

* A better approach: BSmooth model*

— A local-likelihood smoothing approach

— Key assumptions:

* True methylation level rt;is a smooth curve of genomic coordinates.
* The observed counts M, follow a binomial(N,, rt;) distribution.

* Binomial assumption accounts for differences in variation for
samples with different total read counts N,

'Hansen et al. 2012 Genome Biology



BSmooth smoothing

Notation for CpG site j:
— N,, M;: # total and # methylated reads
— 1;;: underlying true methylation level
— I; location
Model: M, ~Bin(N,,x))
log(w, /(1=7 )=y + Bl + b1
where By, f; B, vary smoothly along the genome.

Fit this as a weighted generalized linear model (GLM)

Obtain a smoothed methylation estimate for each
position along the genome using sliding window

Hansen et al. 2012 Genome Biology



Sliding window approach

Choose window size (either distance or # CpG sites)

For every genomic location /;, use data in window
surrounding /,

Fit weighted GLM for all data in window, where
weight for data point k depends inversely on:
— the variance of estimated i, estimated as m,(1-1,)/N;
— distance of CpG site from window center |/, —/; |

Estimation of S, 1 [ in window surrounding /;
provides estimate of r;

Hansen et al. 2012 Genome Biology



Methylation
02 05 0.8

Benefits of smoothing dense data

* By borrowing information across sites, can
achieve high precision even with low coverage

— Pink line is from smoothing full 30x data

— Black line is from smoothing 5x version of data
— Correlation = .90 across entire dataset

— Median absolute difference of .056

1 kb

Hansen et al. 2012 Genome Biology



Smoothed differential methylation analysis

* Goal: identify regions differentially methylated
(DMRs) between groups

* BSmooth computes a t-test-like statistic

— Signal-to-noise ratio based on smoothed data for multiple
samples

— Essentially the average difference between smoothed
profiles from 2 groups, divided by estimated standard error

— When biological replicates are included, this statistic
correctly accounts for biological variation

* |dentify DMRs as regions where this statistic exceeds
some cutoff

Hansen et al. 2012 Genome Biology



Bsmooth functions implemented in
Bioconductor package bsseq?

* Functions for
— Smoothing
— Smoothed t-tests
— DMR identification
— Visualization of results
— Fisher’s exact test (not smoothed)

* Can be implemented in parallel computing
environment to speed up calculation

'Hansen et al. 2012 Genome Biology



Use bsseq

First create BSseq objects
Use BSmooth function to smooth.

fisherTests performs Fisher’s exact test, if there’s no
replicate.

BSmooth.tstat performs t-test with replicates.
dmrFinder calls DMRs based on BSmooth.tstat results.



library (bsseq)
library (bssegData)

## take chr2l on BS.cancer.ex to speed up calculation
data (BS.cancer.ex)

ix = which (segnames (BS.cancer.ex)=="chr21")

BS.chr2l = BS.cancer.ex[ix, ]

## use BSmooth to smooth and call DMR
BS.chr2l1l = BSmooth (BS.chr2l) ## this takes 1-2 minutes

## perform t-test

BS.chr2l.tstat = BSmooth.tstat (BS.chr2l,
c("cl" , HC2" , "C3H) ,c("Nlﬂ , HN2" , "N3H) )

## call DMR

dmr .BSmooth <- dmrFinder (BS.chr2l.tstat, cutoff = c(-4.6,

4.6))



Another approach: Bayesian hierarchical model*

* Hierarchical model to separately model biological and
technical variation

— Biological variation: natural variation in underlying fraction of
DNA methylated between samples in the same condition

— Technical variation: variation in estimation of methylation levels

— Many methods only capture one or the other
* Fisher’s exact test: technical variation only

* Naive t-test: biological variation only
* Shrinkage approach allows us to borrow information
across genome

— useful when information per CpG site is limited due to low
number of samples

'Feng et al. 2014 Nucleic Acids Research



Beta-binomial hierarchical model

“The most natural statistical model for replicated BS-seq DNA
methylation measurements”?

 Sampling of reads for each CpG site will follow a binomial
distribution

— QOut of N reads covering a particular site, how many are methylated?
— This number will follow a binomial(N,) distribution

— However, m may vary across replicates

To model the biological variation of it across replicates, the
beta distribution is a natural choice

Beta-binomial distribution used to model methylated reads in
DSS?, BiSeq3, MOABS*, RADMeth>, MethylSig®

lRobinson et al. 2014; 2Feng et al. 2014; 3Hebestreit et al. 2013; 4Sun et al. 2014;
>Dolzhenko & Smith 2014; °Park et al. 2014



Beta-binomial hierarchical model

 Example: CpG site i, two groups j=1 (cancer) and 2 (normal),
two replicates per group (k=1, 2)

Group 1: Group 2:
Ty ~ Beta(u;;, ;1) Ty ~ Beta(u,, @)

Rep 1: Rep 2: Rep 1: Rep 2:
Miy; ~ Bin(Ni;1,7j1;) M;q, ~ Bin(N;;5,7;5) Miy; ~ Bin(Ni;1,7j;) Miz, ~ Bin(Ni;5,7;;,)

* Biological variation modeled by dispersion parameter ¢;

— Replicates in each group may vary in true methylation proportion 7

* Technical variation: given N;; and rt;;, number of methylated
reads M, varies due to random sampling of DNA

* Goal: test whether u;; and u;, are significantly different

'Feng et al. 2014 Nucleic Acids Research



Motivation for shrinkage approach

Hierarchical model: M, ~ Binomial(N,, ., )
ﬂijk ~ Beta(uij ’¢ij)
Goal: after correctly modeling different sources of variation,

test whether u;; and u;, are significantly different at CpG i

Possible limitation of model: with small number of samples,
estimation of parameters may be poor

Solution: borrow information from CpG sites across the
genome to obtain reasonable estimates of ¢;

'Feng et al. 2014 Nucleic Acids Research



Estimating dispersion parameter

* To obtain stable estimates of dispersion with few samples, we:
— impose a log-normal prior on ¢: ¢, ~ lognormal(m,.r})

— use information from all CpGs in the genome to estimate the
parameters m; and r/?

* Choice of log-normal prior was motivated by distribution of
dispersion in bisulfite sequencing data

— Estimation robust to departure
from log-normality

— Prior provides a good “referee”

— Encourages dispersion estimates

to stay within bounds

'Feng et al. 2014 Nucleic Acids Research



Wald test for DML, based on hierarchical model?

 DML: Differentially Methylated Loci
— Test for differential methylation at each CpG site

* Atsite |/, test: Hq @ pin = pio

* Basic algorithm:

— Use naive estimates of ¢ across genome to estimate prior

— For each site i, estimate u;; and u;, as proportion of
methylated reads for each group

— Bayesian estimation of ¢; based on data and prior

— Plug in estimates of u; and ¢ to create Wald statistic of

form , ___ Hi—Ho
\/Vdr(Uil - :uiZ)
'Feng et al. 2014 Nucleic Acids Research



Using DSS to call DML and DMRs

e DSS can identify differentially methylated /oci (DML)
and regions (DMRs)
— DML identified via Wald test, based on p-value threshold

— DMRs called from DML based on user-specified criteria
(region length, p-value and effect size thresholds)

— Accommodates single-replicate studies by smoothing data
from nearby CpG sites to form “pseudo-replicates”?!

— Inclusion of design matrix to allow covariates and a more
general experimental design?

IWu et al. Nucleic Acids Research 2015.
’Park et al. Bioinformatics 2016.



BS-seq experiment under general design

* General experimental design:
— Multiple groups.
— Multiple factors, crossed/nested.
— Continuous covariates.

* Limited data analysis methods with not so good
properties:

— BiSeqg and RADMeth, both based on generalized linear
model (GLM).

— Computationally demanding.
— Numerically unstable.



DSS-general

Suppose the input data include N CpG sites and D samples.
Notations:

— Y4, m;g: methylated and total counts for it" CpG and d*"
data set.

— 11,4, @:: mean and dispersion.
— X: full ranked design matrix of dimension D by p.
Counts are modeled by a beta-binomial regression:
Yiq ~ beta-bin(m;q, miq, ;)
9(mia) = TaBi

DML detection is achieved by a general hypothesis testing:
Hy: CTB;, =0, where Cis a p-vector.



GLM approximation

* Beta-binomial regression.
* Transformation:
— g(Y/m) as response or data

— What s g(-)?

* Applying generalized (weighted) least square
to estimate parameters, but with caution!



Choice of the link function

e arcsine link: g(z) = arcsin(2z — 1)
* “Variance stabilization transformation” for
binomial proportion:
— Variance of the transformed data does not depend on
mean (but on dispersion), so least square approach is

possible.

* Note: logit or probit transformed data needs iterative
procedure since variance depends on mean.

— More linear than logit or probit, especially at the
boundaries.



Parameter estimation

* Model: Y4~ beta-bin(m;q, 7iq, ;)
9(mid) = TaBi
* Transformation:
Ziq = arcsin(2Y;q/miq — 1).
E|Z;j)l=arcsin(2E[Y;q]/miqg—1) =arcsin(2m;q —1) =X43;

1+ (mig — 1)¢;
Mid '

1+ (miq — 1)¢z‘>

™mid

var(Z;q) ~

V; = diag (

e Least square estimator:
/éi — (XT‘/;—lx)—le‘/;—lz.



Two-step estimation

Dispersion estimation

— Estimate BZ(O) by setting dispersion to O.

— Estimate variance based on Pearson’s chi-square statistics:
= Y amida(Zia — xaB?)?, 62 = x2/(D — p).

— Dispersion can be derived as:

. D6} -1)
K Sp T

— Restriction: 1< §2 < 2=l 4

Parameter estimation using GLS based on o;



Hypothesis testing

* For testing
— Variance/covariance matrix estimates:
> = var(B;) = (XTV1X)~ L.

— Wald test statistics for H,: C73; =0,

CT;

VOTS.O

ti =




Use DSS

* Input data object has the same format as bsseq.
e DMLtest performs Wald test at each CpG.
e callDML/callDMR calls DML or DMR.

## two group comparison

dmlTest <- DMLtest (BSobj, groupl=c("Cc1l", "c2", "c3"),
group2=c("N1","N2","N3"),
smoothing=TRUE, smoothing.span=500)

dmrs <- callDMR(dmlTest)

## A 2x2 design
DMLfit = DMLfit.multiFactor (RRBS, design, ~case+cell)

DMLtest DMLtest.multiFactor (DMLfit, term='"case")



Conclusions

* Analysis of genome-wide bisulfite sequencing data
presents some unique challenges
— Alignment of reads can be complicated

— Many tests to be performed, but number of samples
sequenced is limited by costs in most experiments

— Beta-binomial model is widely used.
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