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An epigenetic modification of the DNA sequence: adding a 
methyl group to the 5 position of cytosine (5mC)

Primarily happens at CpG sites (C followed by a G), 
although non-CG methylation exists 

DNA methylation
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In human genome, >90% of CpG sites are fully methylated, except at CpG 
islands where methylation levels are typically low.

Methylation of CpG islands in/near promoter region of gene could silence 
gene expression.

DNA methylation
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• Important in gene regulation
– Methylation of promoter regions can suppress gene expression 

• Plays crucial role in development
– Heritable during cell division

– Helps cells establish identity during cell/tissue differentiation

• Can be influenced by environment 
– Good candidate to mediate GxE interactions

Function of DNA methylation
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Sequencing approaches for DNA methylation

• Can be divided into two categories
– Capture-based or enrichment-based sequencing

• Use methyl-binding proteins or antibodies to capture methylated 
DNA fragments, then sequence fragments

• Resolution is low: can typically quantify the amount of DNA 
methylation in 100-200 bp regions

– Bisulfite-conversion-based sequencing
• Bisulfite treatment converts unmethylated C’s to T’s
• Sequencing converted data gives single-bp resolution 
• Can measure methylation status of each CpG site
• Until recently, not possible to distinguish 5mC from 5hmC

• Focus of this lecture: bisulfite sequencing
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Capture-based sequencing approaches

• All involve capture of methylated DNA followed by sequencing

• MeDIP-seq (Methylated DNA ImmunoPrecipitation)1

– Like ChIP-seq, but uses antibody against methylated DNA

– MEDIPS2 is a popular tool for analysis

• Capture via methyl-binding domain proteins: MBD-seq3/MIRA-
seq4, methylCap-seq5

• Capture via methyl-sensitive restriction enzymes (MRE-seq)6
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Bisulfite sequencing (BS-seq)

• Technology in a nutshell:
– Treat fragmented DNA with bisulfite 
• Unmethylated C will be converted to U, amplified as T
• Methylated C will be protected and remain C
• No change for other bases

– Amplify the treated DNA
– Sequence the DNA segments
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Reduced representation bisulfite 
sequencing (RRBS)1,2

• Goal: affordable alternative to genome-wide sequencing 

– By narrowing focus to CpG-rich areas, reduce # of reads necessary to 

obtain deep coverage of promoter regions

– Interrogates ~1% of the genome but 5-10% of CpG sites

• Approach: enrich for CpG-rich segments of genome

– MspI restriction enzyme cuts at CpG sites, leaving fragments with CpGs at 

either end:

– Size selection for fragments of 40-220bp maximizes coverage of promoter 

regions and CpG islands

– Bisulfite treat, amplify, end-sequence, and align fragments to genome

81Meissner (2005) NAR; 2Gu et al. (2011) Nat Protoc
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Illustration of bisulfite conversionBMC Bioinformatics 2009, 10:232 http://www.biomedcentral.com/1471-2105/10/232
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detect the methylation pattern of every C in the genome.
Nevertheless, the mapping of millions of bisulfite reads to
the reference genome remains a computational challenge.

Problems
First, the searching space is significantly increased relative
to the original reference sequence. Unlike normal
sequencing, the Watson and Crick strands of bisulfite-
treated sequences are not complementary to each other
because the bisulfite conversion only occurs on Cs. As a
result, there will be four distinct strands after PCR ampli-
fication: BSW (bisulfite Watson), BSWR (reverse comple-
ment of BSW), BSC (bisulfite Crick), and BSCR (reverse
complement of BSC) (Figure 1). During shotgun sequenc-
ing, a bisulfite read is almost equally likely to be derived
from any of the four strands.

Second, sequence complexity is reduced. In the mamma-
lian genome, although ~19% of the bases are Cs and

another 19% are Gs, only ~1.8% of dinucleotides are CpG
dinucleotides. Because C methylation occurs almost
exclusively at CpG dinucleotide, the vast majority of Cs in
BSW and BSC strands will be converted to Ts. Therefore,
most reads from the above two strands will be C-poor.
However, PCR amplification will transcribe all Gs as Cs in
BSWR and BSCR strands, so reads from those two strands
are typically G-poor and have a normal C content. As a
result, we expect the overall C content of bisulfite reads to
be reduced by ~50%.

Third, C to T mapping is asymmetric. The T in the bisulfite
reads could be mapped to either C or T in the reference
but not vice versa. This phenomenon not only increases
the search space for mapping but also complicates the
matching process (Figure 2). Efficient implementation of
such asymmetric C/T matching is critical for mapping
high-throughput bisulfite reads to the reference genome

Pipeline of bisulfite sequencingFigure 1
Pipeline of bisulfite sequencing. 1) Denaturation: separating Watson and Crick strands; 2) Bisulfite treatment: converting 
un-methylated cytosines (blue) to uracils; methylated cytosines (red) remain unchanged; 3) PCR amplification of bisulfite-
treated sequences resulting in four distinct strands: Bisulfite Watson (BSW), bisulfite Crick (BSC), reverse complement of 
BSW (BSWR), and reverse complement of BSC (BSCR).

>>ACmGTTCGCTTGAG>> <<TGCmAAGCGAACTC<<

Watson

Crick

Watson Crick

>>ACmGTTUGUTTGAG>> <<TGCmAAGUGAAUTU<<

<<TGCmAAGTGAATTT<<

>>ACG TTCACTTAAA>><<TG CAAACAAACTC<<

>>ACmGTTTGTTTGAG>>BSW

BSWR

BSW

BSC

BSCR
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Cm   methylated
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1)  Denaturation

2)  Bisulfite Treatment

3)  PCR Amplification

>>ACmGTTCGCTTGAG>>

<<TGCmAAGCGAACTC<<

Xi and Li (2009) BMC Bioinformatics 9



Alignment of BS-seq
• Problem: reads cannot be directly aligned to the 

reference genome. 
– Four different strands after bisulfite treatment and PCR 
– C-T mismatches: unmethylated reads can’t be aligned to 

the correct position
• Unmethylated CpGs will align with TpGs or likely not at all
• Will lead to a strong bias in favor of methylated reads

• One possible solution: in silico bisulfite conversion
– Switch all C’s to T’s in both reads and reference sample
– Use this for alignment, then change back to original
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• In silico bisulfite conversion 
of fragments and reference 

genome
–Convert all C’s to T’s

–Make complementary strand 
by converting all G’s to A’s

–Align both strands to the four 
possible reference genomes

–Choose best alignment

• Once aligned, convert back 
to original bases

• Compare to ref. genome to 
assess methylation 

Strategy used by BISMARK1

11
1Krueger and Andrews (2011) Bioinformatics



• Possible problems with in silico approach

– By converting all C’s to T’s, reduce sequence complexity to 
3 bases

– Larger search space for possible alignments 

– Could lead to mismatches or non-unique mapping

Alignment issues
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and is still lacking in current short read alignment soft-
ware.

A common approach to overcome these issues is to con-
vert all Cs to Ts and map the converted reads to the con-
verted reference; then, the alignment results are post-
processed to count false-positive bisulfite C/T alignments
as mismatches, where a C in the BS-read is aligned to a T
in the reference [2]. Although this all-inclusive C/T con-
version is effective for reads derived from the C-poor
strands, it is not appropriate for reads derived from the G-
poor strands, where all the Cs are actually transcribed
from Gs by PCR amplification and thus could not be con-
verted to Ts during bisulfite treatment. During shotgun
sequencing, however, a bisulfite read is almost equally
likely to be derived from either the C-poor or the G-poor
strands. There is no precise way to determine the original

strand a bisulfite read is derived from. Furthermore, by
ignoring the C/T mapping asymmetry, this strategy gener-
ates a large number of false-positive bisulfite mappings
and greatly increases the computational load in a quad-
ratic manner with an increase in the size of the reference
sequence. In order to accurately extract the true bisulfite
mappings in the post-processing stage, all mapping loca-
tions have to be recorded, even the non-unique map-
pings. Therefore, this approach is only practical for small
reference sequences, where only the C-poor strands are
sequenced. For example, Meissner et al. used this map-
ping strategy for reduced representation bisulfite sequenc-
ing (RRBS) [2], where the genomic DNA was digested by
the Mspl restriction enzyme and 40–220 bp segments
were selected for sequencing. The reference sequence (~27
M nt) is only about 1% of the whole mouse genome, cov-
ering 4.8% of the total CpG dinucleotides.

Mapping of bisulfite readsFigure 2
Mapping of bisulfite reads. 1) Increased search space due to the cytosine-thymine conversion in the bisulfite treatment. 2) 
Mapping asymmetry: thymines in bisulfite reads can be aligned with cytosines in the reference (illustrated in blue) but not the 
reverse.

>>ATTTCG>>

>>ATACTTCGATGATCTCGCAAGACTCCGGC>>

ATTTCG ATTTCGATTTCG

Bisulfite Read
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Bisulfite Read Reference

C

T

C

T

1)  Multiple Mapping

2)  Mapping Asymmetry
Xi and Li (2009) BMC Bioinformatics



• Consider methylation status during 
alignment 
– create multiple versions of reference 

seed with C’s converted to T’s

– compare each read to all possible seeds

– do the same for complementary strand

• This approach reduces search 
space compared to in silico

conversion of all C’s to T’s
– T’s in reads can match to C’s or T’s in 

reference

– C’s in reads can only match to C’s in 
reference

• Computationally more intensive

Strategy used by BSMAP1

131Xi and Li (2009) BMC Bioinformatics



Which alignment software is best?
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• Advantages of BSMAP: 
– reduces search space by eliminating mapping of C’s to T’s

– greater proportion of uniquely mapping reads1

• Advantages of BISMARK:
– much faster than BSMAP and other programs1

– uniqueness of mapping independent of methylation status1

– more user-friendly in terms of extracting data, interfacing 
with other software1

• In general, BISMARK seems to be the popular choice

1Chatterjee et al. (2012) NAR



Other aligners
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• Alignment of RRBS data

– Chatterjee et al. notes it is much faster if we use information 
on MspI cutpoints to “reduce” reference genome in silico1

– RRBSMAP: a version of BSMAP that does exactly that2

– Has option to work with different restriction enzymes

• Many other aligners for bisulfite sequencing data
– One useful review of these is Hackenberg et al.3

1Chatterjee et al. (2012) NAR; 2Xi et al. (2012) Bioinformatics; 
3Hackenberg et al. (2012): Chapter 2 in “DNA Methylation – From Genomics to 
Technology” Tatarinova (Ed.)  http://www.intechopen.com/books



Reference 
genome

CpG 1 CpG 2 CpG 3 CpG 4 CpG 5

Methylated

Unmethylated

Methylated counts (X) 1 2 1 2 0

Coverage (N) 1 4 2 3 2

Methylation level 
(X/N)

1 0.5 0.5 0.67 0

WGBS
data

BS-seq data after alignment



• At each position, we have the total number of reads, and the 
methylated number of reads:

chr1 3010874 22 18

chr1 3010894 31 27
chr1 3010922 12 10
chr1 3010957 7 6

chr1 3010971 6 6
chr1 3011025 7 5

Total # reads # methylated readsPosition of CpG site

BS-seq data
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Study design for BS-seq studies

• High costs à few samples
• Two common study designs
– Analysis of a single sample: 
• Goal: observe methylation patterns across genome
• Commonly done to characterize methylome for a 

particular cell type or species

– Comparison of several samples:
• Typical goal: compare methylation among groups: 

Differential methylation analysis

18



Differential methylation analysis

• Typical goal: compare methylation levels between 
two groups
– Example: tumor vs. normal tissue samples
– Important: do groups contain biological replicates?
– Some studies may compare 1 tumor to 1 normal sample
– Other studies will include 2 or more replicates of each

• Popular ad hoc approaches for this comparison are 
Fisher’s exact test and two-group t-test
– We will show why these can be problematic

19



Fisher’s exact test

• If we have only one sample per group (no biological 
replicates), Fisher’s exact test is a natural choice

• Example: from one CpG site
– For tumor sample, 32/44 methylated reads
– For normal sample, 8/12 methylated reads

• Can then perform Fisher’s exact test on the 
following table:

• OR = 1.33
• p = .73

Methylated Unmeth. Total reads

Tumor 32 12 44

Normal 8 4 12

Total 40 16 56
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Fisher’s exact test in methylKit
• For comparisons between two samples, Fisher’s 

exact test is a reasonable choice
– Easy to carry out in R using fisher.test() function

– Alternatively, methylKit1 is a suite of R functions that 
facilitates analysis of genome-wide methylation data

– Differential methylation analysis via either
• Fisher’s exact test (for comparisons between two samples)

• Logistic regression based on methylation proportions
– Analogous to two-group t-test, but with covariates

• Can perform analysis in user-defined tiling windows
– However, based on simple collapsing of information across sites rather than 

smoothing
211Akalin et al. 2012 Genome Biology



Fisher’s exact test with replicates

• For Fisher’s exact test with biological replicates, 
need to collapse read information within groups

• Example: single CpG site sequenced for 4 samples
– For 2 tumor samples, 32/44 and 4/10 methylated reads
– For 2 normal samples, 8/12 and 12/34 methylated reads

• Could then perform Fisher’s exact test on the 
following table:

• OR = 2.6
• p = .0264

Methylated Unmeth. Total reads

Tumor 36 = 32+4 18 54 = 44+10

Normal 20 = 8+12 26 46 = 12+34

Total 56 44 100
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Problem with Fisher’s exact test
• To perform Fisher’s exact test with replicates, we have to 

collapse read counts across samples within each group
• By doing this, we are ignoring information on biological 

variation between samples
– Biological variation: natural variation in underlying fraction of DNA 

methylated between samples in the same condition
– Technical variation: variation in estimation of methylation levels due to 

random sampling of DNA during sequencing1

• By collapsing, we are assuming that:
– samples within a group inherently have the same underlying 

fraction of DNA methylated
– any variation between samples is due to technical variation

231Hansen et al. 2012 Genome Biology



Naïve t-test
• Example: single CpG site sequenced for 4 samples
– For 2 tumor samples, 32/44 and 4/10 methylated reads
– For 2 normal samples, 8/12 and 12/34 methylated reads

• For t-test, compute a proportion for each sample
– .727 and .400 for tumor samples
– .667 and .353 for normal samples

• Difference in mean proportions = .563 - .510 = .053
• T-statistic = 0.2375
• p = .834
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Problem with t-test

• To perform t-test, computed a proportion for each 
sample
– Test inherently gives equal weight to each sample
– Does not account for uncertainty in proportion 

estimates. Note: such uncertainty is lower for samples 
with more reads

• Another issue with this approach is the small 
number of samples
– With N=4, the t-test has very little power due to low df
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Fisher’s exact vs. t-test
• The two tests yielded very different results

– Fisher’s exact p = .0264

– T-test p = .834

• Main difference: unit of observation (reads vs. samples)

• Fisher’s test was based on 100 “independent” reads
– Reads are not independent：correlated within each sample, since 

samples have different methylation fractions 

• T-test was based on 4 samples 
– Treated samples as equally informative, when they are not

– For 2 tumor samples, 32/44 and 4/10 methylated reads

– For 2 normal samples, 8/12 and 12/34 methylated reads

26



Need better approaches

• Problem: want to test many sites with few samples
– Limited information available at each site due to low # of 

samples

• Solution: borrow information across CpG sites
– Smoothing approaches that share information across 

nearby sites
– Bayesian hierarchical model that borrows information 

across the genome 

27



Smoothing approaches

• First consider analysis of a single sample

• Goal here is to identify methylated regions:
– Can estimate proportion of reads that are methylated at 

each C position, but:  

• Variability in estimation needs to be considered

• Spatial correlation among nearby CpG sites can be 
utilized to improve estimation

– Methylated regions (or states) can be determined by 
smoothing based methods using the estimated 
methylation proportion as input

28



HMM: Hidden Markov model
• Model switches between states along a chromosome
• Could model 3 methylation states: FMR, LMR, UMR
– Stadler et al.1 used estimated proportions to identify 

regions in mouse methylome corresponding to 3 states

DNase-I-hypersensitive sites (DHS), a unique chromatin state that
depends on DNA-binding factors10–12. In fact, at least 80% of LMRs
and 90% of UMRs overlap with DHS (Fig. 2 and Supplementary
Fig. 2). LMRs are unlikely novel promoters as we find only weak signal
for RNA polymerase II (Fig. 2 and Supplementary Fig. 3) and no RNA
signal abovewhat we observe atmethylated regions evenwhen using a
strand-specific protocol that does not require polyadenylation (Sup-
plementary Fig. 3). Next, we explored if LMRs could represent distal
regulatory regions, such as enhancers. Indeed, LMRs are strongly
enriched for chromatin features such as highH3K4monomethylation
(H3K4me1) signal relative to H3K4 trimethylation (H3K4me3) and
the presence of p300 histone acetyltransferase, which are predictive
features of enhancers13 (Fig. 2). This indicates that a subset of LMRs
are enhancers that, in light of the absence of H3K27me3 and the
presence of H3K27ac, are presumably active14 (Fig. 2b). Transgenic
assays further show that individual LMRs increase the activity of a
linked promoter and experimentally function as enhancers (Sup-
plementary Fig. 4). We thus conclude that many LMRs, identified
solely by their DNA methylation pattern, represent active regulatory
regions.
To investigate LMR features further, we combined newly generated

and published data sets for several DNA-binding factors and addi-
tional histone modifications (Supplementary Table 1, Fig. 2b and
Supplementary Figs 5 and 6). LMRs and UMRs are depleted for the
heterochromatic histone modification H3K9me2 in agreement with
the absence of this mark at active chromatin6. Most DNA-binding
factors show enrichment not only at UMRs, which are mostly pro-
moters, but also at LMRs. Factors enriched at LMRs in stem cells
include pluripotency transcription factors such as Nanog, Oct4 and
Klf4, but also structural DNA-binding factors such as the insulator

protein CTCF15 and members of the cohesin complex (Fig. 2b and
Supplementary Fig. 5), both of which bind promoters and distal
regulatory regions16. Notably, not all factors occupy distal and
proximal regulatory regions with equal preferences. Smad1 binds to
neither LMRs nor UMRs, whereas some bind primarily at UMRs, such
as KDM2A and Zfx, and others such as Nanog and Esrrb show higher
enrichment at LMRs (Fig. 2b and Supplementary Fig. 5). In summary,
several lines of evidence including genomic position, conservation,
chromatin state, regulatory activity and transcription factor occupancy
support the hypothesis that LMRs are indeed active distal regulatory
regions.
InterestinglyLMRsshowastrongpresenceof5-hydroxymethylcytosine

(5hmC), consistent with recent reports of 5hmC presence at enhancer
regions17–19. One candidate protein responsible for catalysing 5hmC,
Tet1 (refs 20, 21), is enriched at both UMRs and LMRs (Fig. 2b).
To ask if LMRs are also present in other mammals we performed

HMM segmentation of a human stem cell methylome3, which also
identifies LMRswith similar features, indicating that these are a general
characteristic of mammalian methylomes (Supplementary Fig. 7).

Transcription factor binding creates LMRs
Todetermine howLMRs are formed,we investigated theDNA-binding
protein CTCF, which binds to regulatory regions including promoters,
enhancers and insulators22,23.Wedetermined the genome-wide binding
of CTCF by chromatin immunoprecipitation followed by sequencing
(ChIP-seq) (Supplementary Fig. 8), revealing high occupancy at both
UMRs and LMRs (Fig. 2b and Supplementary Fig. 5). A composite view
of DNA methylation shows an average methylation of 20% at CTCF
binding sites with increasing methylation adjacent to it (Supplemen-
tary Fig. 9), in line with a previous report in primates24. If reduced
methylation is a general feature of CTCF-occupied sites, inclusion of
DNA methylation data should improve prediction of CTCF binding.
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Smoothing sequencing data
• Problem with directly smoothing the proportions:
– Doesn’t consider the uncertainty in proportion estimates: 

estimates are more variable for sites with low coverage 
– May want to put less weight on these estimates

• A better approach: BSmooth model1

– A local-likelihood smoothing approach
– Key assumptions:

• True methylation level πj is a smooth curve of genomic coordinates. 
• The observed counts Mj follow a binomial(Nj, πj) distribution.
• Binomial assumption accounts for differences in variation for 

samples with different total read counts Nj

301Hansen et al. 2012 Genome Biology



BSmooth smoothing
• Notation for CpG site j:
– Nj, Mj: # total and # methylated reads
– πj: underlying true methylation level
– lj: location

• Model:

where 𝛽!, 𝛽", 𝛽$ vary smoothly along the genome.

• Fit this as a weighted generalized linear model (GLM)
• Obtain a smoothed methylation estimate for each 

position along the genome using sliding window

M j ~ Bin(N j,π j )

log(π j / (1−π j )) = β0 +β1l j +β2l j
2

31Hansen et al. 2012 Genome Biology



Sliding window approach

• Choose window size (either distance or # CpG sites)
• For every genomic location lj , use data in window 

surrounding lj
• Fit weighted GLM for all data in window, where 

weight for data point k depends inversely on:
– the variance of estimated πk, estimated as πk(1-πk)/Nk

– distance of CpG site from window center |lk – lj |

• Estimation of  𝛽!, 𝛽", 𝛽$ in window surrounding lj
provides estimate of πj

32Hansen et al. 2012 Genome Biology



Benefits of smoothing dense data

• By borrowing information across sites, can 
achieve high precision even with low coverage
– Pink line is from smoothing full 30x data
– Black line is from smoothing 5x version of data
– Correlation = .90 across entire dataset
– Median absolute difference of .056

33Hansen et al. 2012 Genome Biology



Smoothed differential methylation analysis

• Goal: identify regions differentially methylated 
(DMRs) between groups

• BSmooth computes a t-test-like statistic
– Signal-to-noise ratio based on smoothed data for multiple 

samples
– Essentially the average difference between smoothed 

profiles from 2 groups, divided by estimated standard error
– When biological replicates are included, this statistic 

correctly accounts for biological variation

• Identify DMRs as regions where this statistic exceeds 
some cutoff

34Hansen et al. 2012 Genome Biology



Bsmooth functions implemented in 
Bioconductor package bsseq1

• Functions for 
– Smoothing
– Smoothed t-tests
– DMR identification
– Visualization of results
– Fisher’s exact test (not smoothed)

• Can be implemented in parallel computing 
environment to speed up calculation 

351Hansen et al. 2012 Genome Biology



Use bsseq

• First create BSseq objects
• Use BSmooth function to smooth.
• fisherTests performs Fisher’s exact test, if there’s no 

replicate.
• BSmooth.tstat performs t-test with replicates.
• dmrFinder calls DMRs based on BSmooth.tstat results.



library(bsseq)
library(bsseqData)

## take chr21 on BS.cancer.ex to speed up calculation
data(BS.cancer.ex)
ix = which(seqnames(BS.cancer.ex)=="chr21")
BS.chr21 = BS.cancer.ex[ix,]

## use BSmooth to smooth and call DMR
BS.chr21 = BSmooth(BS.chr21) ## this takes 1-2 minutes

## perform t-test
BS.chr21.tstat = BSmooth.tstat(BS.chr21, 

c("C1","C2","C3"),c("N1","N2","N3"))

## call DMR
dmr.BSmooth <- dmrFinder(BS.chr21.tstat, cutoff = c(-4.6, 4.6))

37



Another approach: Bayesian hierarchical model1

• Hierarchical model to separately model biological and 
technical variation
– Biological variation: natural variation in underlying fraction of 

DNA methylated between samples in the same condition
– Technical variation: variation in estimation of methylation levels
– Many methods only capture one or the other

• Fisher’s exact test: technical variation only

• Naïve t-test: biological variation only 

• Shrinkage approach allows us to borrow information 
across genome
– useful when information per CpG site is limited due to low 

number of samples
381Feng et al. 2014 Nucleic Acids Research



Beta-binomial hierarchical model

• “The most natural statistical model for replicated BS-seq DNA 
methylation measurements”1

• Sampling of reads for each CpG site will follow a binomial 
distribution
– Out of N reads covering a particular site, how many are methylated?
– This number will follow a binomial(N,π) distribution
– However, π may vary across replicates

• To model the biological variation of π across replicates, the 
beta distribution is a natural choice

• Beta-binomial distribution used to model methylated reads in 
DSS2, BiSeq3, MOABS4, RADMeth5, MethylSig6
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1Robinson et al. 2014;  2Feng et al. 2014;  3Hebestreit et al. 2013;  4Sun et al. 2014;  
5Dolzhenko & Smith 2014;  6Park et al. 2014 



Beta-binomial hierarchical model
• Example: CpG site i, two groups j=1 (cancer) and 2 (normal), 

two replicates per group (k = 1, 2)

• Biological variation modeled by dispersion parameter ϕij

– Replicates in each group may vary in true methylation proportion πijk

• Technical variation: given Nijk and πijk, number of methylated 
reads Mijk varies due to random sampling of DNA

• Goal: test whether μi1 and μi2 are significantly different
40

Group 1:
πi1k ~ Beta(μi1,ϕi1)

Group 2:
πi2k ~ Beta(μi2,ϕi2)

Rep 1:
Mi11 ~ Bin(Ni11,πi11)

Rep 2:
Mi12 ~ Bin(Ni12,πi12)

Rep 1:
Mi11 ~ Bin(Ni11,πi11)

Rep 2:
Mi12 ~ Bin(Ni12,πi12)

1Feng et al. 2014 Nucleic Acids Research



Motivation for shrinkage approach

• Hierarchical model:

• Goal: after correctly modeling different sources of variation, 
test whether μi1 and μi2 are significantly different at CpG i

• Possible limitation of model: with small number of samples, 
estimation of parameters may be poor

• Solution: borrow information from CpG sites across the 
genome to obtain reasonable estimates of ϕij

41

Mijk ~ Binomial Nijk ,π ijk( )
π ijk ~ Beta µij ,φij( )

1Feng et al. 2014 Nucleic Acids Research



Smith et al. data

log(estimated dispersion)
−7 −6 −5 −4 −3 −2 −1

• To obtain stable estimates of dispersion with few samples, we: 
– impose a log-normal prior on ϕ:
– use information from all CpGs in the genome to estimate the 

parameters mj and rj
2

• Choice of log-normal prior was motivated by distribution of 
dispersion in bisulfite sequencing data
– Estimation robust to departure 

from log-normality
– Prior provides a good “referee”
– Encourages dispersion estimates 

to stay within bounds

42

Estimating dispersion parameter

φij ~ lognormal mj ,rj
2( )

1Feng et al. 2014 Nucleic Acids Research



Wald test for DML, based on hierarchical model1

• DML: Differentially Methylated Loci 
– Test for differential methylation at each CpG site

• At site i, test:

• Basic algorithm:
– Use naïve estimates of ϕ across genome to estimate prior

– For each site i, estimate μi1 and μi2 as proportion of 
methylated reads for each group

– Bayesian estimation of ϕij based on data and prior

– Plug in estimates of μij and ϕij to create Wald statistic of 
form 

Xijk|Nijk, pijk ⇠ Bin(Nijk, pijk)

pijk ⇠ Beta(µik,�i)

H0 : µi1 = µi2

In beta distribution

E(X) =
↵

↵+ �
⌘ µ; V (X) =

↵�

(↵+ �)2(↵+ � + 1)
⌘ �

2

�
2 = µ ⇤ (1� µ) ⇤ 1

↵+�+1

� ⌘ 1
↵+�+1

In beta-binomial

E(X) =
N↵

↵�
⌘ Nµ

V (X) =
N↵�(↵+ � +N)

(↵+ �)2(↵+ � + 1)
⌘ �

2

�
2 = Nµ ⇤ (1� µ)⇤

1
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ti =
µ̂i1 − µ̂i2

Var µ̂i1 − µ̂i2( )
1Feng et al. 2014 Nucleic Acids Research



Using DSS to call DML and DMRs

• DSS can identify differentially methylated loci (DML) 
and regions (DMRs)
– DML identified via Wald test, based on p-value threshold
– DMRs called from DML based on user-specified criteria 

(region length, p-value and effect size thresholds)
– Accommodates single-replicate studies by smoothing data 

from nearby CpG sites to form “pseudo-replicates”1

– Inclusion of design matrix to allow covariates and a more 
general experimental design2
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1Wu et al. Nucleic Acids Research 2015. 
2Park et al. Bioinformatics 2016. 



BS-seq experiment under general design 

• General experimental design: 
– Multiple groups.
– Multiple factors, crossed/nested.
– Continuous covariates.

• Limited data analysis methods with not so good 
properties:
– BiSeq and RADMeth, both based on generalized linear 

model (GLM).
– Computationally demanding.
– Numerically unstable.



DSS-general

• Suppose the input data include N CpG sites and D samples.
• Notations:
– Yid , mid: methylated and total counts for ith CpG and dth

data set. 
– πid , Φi: mean and dispersion. 
– X: full ranked design matrix of dimension D by p. 

• Counts are modeled by a beta-binomial regression:

• DML detection is achieved by a general hypothesis testing: 
where C is a p-vector. 

This is for slides

Yid ⇠ beta-bin(mid,⇡id,�i)

g(⇡id) = xd�i

1

This is for slides

Yid ⇠ beta-bin(mid,⇡id,�i)

g(⇡id) = xd�i

H0 : CT�i = 0, where C is a p-vector.

1



GLM approximation

• Beta-binomial regression.
• Transformation:
– g(Y/m) as response or data
– What is g(·)?

• Applying generalized (weighted) least square 
to estimate parameters, but with caution! 



Choice of the link function

• arcsine link:
• “Variance stabilization transformation” for 

binomial proportion:
– Variance of the transformed data does not depend on 

mean (but on dispersion), so least square approach is 
possible.
• Note: logit or probit transformed data needs iterative 

procedure since variance depends on mean. 

– More linear than logit or probit, especially at the 
boundaries. 

This is for slides

Yid ⇠ beta-bin(mid,⇡id,�i)

g(⇡id) = xd�i

H0 : CT�i = 0, where C is a p-vector.

g(x) = arcsin(2x� 1).

1



Parameter estimation 

Considering a transformation Zid = arcsin(2Yid/mid � 1). We have:

E[Zid] ⇡ arcsin(2E[Yid]/mid � 1) = arcsin(2⇡id � 1) = xd�i.

The variance of Zid can be obtained as follows (refer to Supplementary Materials for more details)

var(Zid) ⇡
1 + (mid � 1)�i

mid
. (2)

Given dispersion parameter �i, a GLS method can be applied to estimate the regression

coe�cients �i. To be specific, define the following covariance matrix:

Vi = diag

✓
1 + (mid � 1)�i

mid

◆
,

then

�̂i = (XT
V

�1
i X)�1XT

V
�1
i Z.

For beta-binomial model, there are several ways to estimate dispersion parameter such as

maximizing likelihood, and using Pearson �
2 or deviance statistics. Here we propose to use

Pearson �
2 statistics based on transformed linear model to estimate �i because it is less

computationally demanding and has relatively good property. We first let �i = 0 and the initial

covariance matrix is Vi0 = diag(1/mid). Then the parameter estimator from GLS with covariance

matrix V0 is: �̂(0)
i = (XT

V
�1
i0 X)�1XT

V
�1
i0 Z.

Consider Pearson chi-square statistics �2
i =

P
dmid(Zid � xd�̂0

i )
2. Let �̂2

i = �
2
i /(D � p), an

estimator for �i is obtained as below (detailed derivations provided in Supplementary Materials):

�̂i =
D(�̂2

i � 1)P
d(mid � 1)

. (3)

Note that our model is based on beta-binomial distribution and hence 0 < �i < 1, which requires

1 < �̂
2
i <

P
d(mid�1)

D + 1. However, because of random variation and approximation bias, it is

possible that �̂2
i does not satisfy the constraints. To avoid this, we take an ad hoc procedure to

force �̂i to be bounded by 0.001 and 0.999. This procedure achieves some “shrinkage” e↵ects,

which helps stabilize the result.

Given estimated dispersion, the estimate of variance structure is

V̂i = diag
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!
.
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This is for slides

Yid ⇠ beta-bin(mid,⇡id,�i)

g(⇡id) = xd�i

1

• Model:

• Transformation:

• Least square estimator:



Two-step estimation
• Dispersion estimation
– Estimate            by setting dispersion to 0.
– Estimate variance based on Pearson’s chi-square statistics:

,
– Dispersion can be derived as: 

– Restriction: 

• Parameter estimation using GLS based on 
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DSS-general

then
�̂i = (XTV �1

i X)�1XTV �1
i Z.

For beta-binomial model, there are several ways to estimate dispersion
parameter such as maximizing likelihood, and using Pearson �

2 or deviance
statistics. Here we propose to use Pearson �

2 statistics based on transformed
linear model to estimate �i because it is less computationally demanding and
has relatively good property. We first let �i = 0 and the initial covariance
matrix is Vi0 = diag(1/mid). The parameter estimator from GLS with
covariance matrix Vi0 is: �̂(0)

i = (XTV �1
i0 X)�1XTV �1

i0 Z.

Consider Pearson chi-square statistics �
2
i =

P
d mid(Zid � xd�̂0

i )
2.

Let �̂2
i = �

2
i /(D � p), an estimator for �i is obtained as below (detailed

derivations provided in Supplementary Materials):

�̂i =
D(�̂2

i � 1)
P

d(mid � 1)
. (3)

Our model is based on beta-binomial distribution and hence 0 < �i < 1,
which requires 1 < �̂

2
i <

P
d(mid�1)

D + 1. However, because of random
variation and approximation bias, it is possible that �̂2

i does not satisfy the
constraints. To avoid this, we restrict �̂i to be bounded by 0.001 and 0.999.

Given estimated dispersion, the estimate of variance structure is now

V̂i = diag

 
1 + (mid � 1)�̂i

mid

!
.

GLS procedure is applied once more based on V̂i, and the updated estimates
for regression coefficients and covariance matrix are obtained as

�̂i = (XT V̂ �1
i X)�1XT V̂ �1

i Z,

and
⌃̂i ⌘ \var(�̂i) = (XT V̂ �1

i X)�1
.

The estimation procedure utilizes two GLS for each CpG site without
relying on intensive iterative algorithm. It has profound connection with
a beta-binomial GLM, in which the initial regression coefficients are
estimated from logistic regression and using Pearson �

2 statistics to estimate
dispersion parameter similar to equation (3) (Hinde and Demétrio, 1998).
The covariance structure Vi is diagonal matrix. Thus our GLS procedure is
also a wighted least square, where weight for sample d is V �1/2

id .

2.4 Hypothesis testing

Hypothesis testing for differential methylation at CpG site i can be
formulated as: H0 : CT�i = 0. Here C is a p-vector. The procedure is
very general and can test any linear combination of the effects. For example,
to test the effect of factor k, C will be a vector having 1 at the k

th element
and 0’s in all others. With point estimation and estimated covariance matrix,
the null hypothesis is tested through a standard Wald test procedure. The
Wald test statistics is calculated as:

ti =
CT �̂iq
CT ⌃̂iC

.

The Wald test statistics approximately follow normal distribution, and
the p-values can be obtained accordingly. False discovery rate (FDR) will
be estimated using established procedures such as Benjamini-Hochberg’s
method (Benjamini and Hochberg, 1995).

2.5 Simulation settings

In all simulations, data are generated semi-parametrically. The counts
are generated from the data model described in Equation (1) with model
parameters estimated from the human lung adenocarcinoma dataset. The
model is 2 ⇥ 2 factorial design with 20,000 CpG sites for 3 replicates
in each condition group (12 datasets in total). For each factor, 5% of the
CpG sites are DML, and the DM status for two factors are independently
generated. The regression coefficients �g (g = 0, 1, 2) are simulated in

the following way: (1) �0 (the intercept) is randomly sampled from the
estimated intercepts from real data; (2) �1 and �2 are set to be 0 if the CpG
site is not DML, and sampled from N(0, 1) if the CpG site is DML; (3)
The dispersion parameter �i’s are independently generated from log-normal
distribution with mean -3 and standard deviation 0.7, which are similar to
the real data estimates.

We also perform simulations when data are generated from a GLM with
“logit” link to assess the robustness of our method. In this case, since the
scales of the coefficients under “logit” link are greater than those from
“arcsine” link for the same data (by a ratio of approximately 2.3), we
multiply 2.3 for �g’s for all simulations using “logit” link.

3 RESULTS
3.1 Simulation

Comprehensive simulation studies are conducted to evaluate the
performance of DSS-general from several different aspects.

3.1.1 Dispersion estimation Dispersion parameter is an important
component in various types of differential analysis for sequencing
data. Improved dispersion estimation from RNA-seq and BS-seq
in two-group comparison has been shown to lead to better results
in differential expression and differential methylation analyses
(Robinson and Smyth, 2007; Wu et al., 2013; Feng et al., 2014;
Love et al., 2014).

The estimated dispersions from DSS-general are compared to
the true ones in this simulation. Overall, the Pearson correlation
between estimated and true dispersions is moderate at around 0.4.
Data exploration indicates that large differences of estimated and
true dispersions are mostly comes from the following two types of
CpG sites: (1) those with average methylation levels very close to
0 or 1 and (2) those with low sequencing depth. For those CpG
sites, it is not surprising to see estimates with large variation due
to low in-data information. The correlation indeed improves to 0.55
when restricted to those with average methylation levels between
0.3 and 0.7, and to 0.74 when further restricted to those with average
sequencing depth of at least 30. Figure ?? shows a plot for estimated
vs true dispersions for CpG sites with methylation levels between
0.3 and 0.7. Sites with different levels of sequencing depth are
represented by different colors. It shows reasonably good dispersion
estimation.

3.1.2 DML detection accuracy We next compare the DML
detection accuracies from several methods, including DSS-general,
RADMeth, BiSeq and a binomial GLM with “logit” link in
comparison. Here, the proportion of true positives among a given
number of top-ranked CpGs is used as criterion. This refers to true
discovery rate (TDR) hereafter. Higher TDR is expected from better
method. This criterion is also referred to precision–recall analysis.
Because the proportion of true positives is usually very low in DM
analysis (5% in simulation setting), TDR is a better measurement
of the accuracy for genome-wide differential analysis than receiver
operating characteristic (ROC) (Davis and Goadrich, 2006).

Each simulation is repeated 50 times to obtain the average
TDR estimates. Figure 1(A) shows the TDR curves up to top
1,000 (5% of total) CpG sites when data are simulated using
“arcsine” link function. It can be seen that DSS-general outperforms
other methods for all top ranked CpG sites. For example, among
top 200 ranked CpGs from DSS-general, 99.8% are true DML,
whereas the percentages are 93.6%, 82.4%, and 38.4% from
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The Wald test statistics approximately follow normal distribution, so that the p-values can be

obtained accordingly. False discovery rate (FDR) will be estimated using established procedures

such as Benjamini-Hochberg’s method [45].

4.4 Simulation settings

For all simulations, the data are generated semi-parametrically, i.e., the counts are generated from

the data model described in Equation (1) with model parameters estimated from the human lung

adenocarcinoma dataset. In all simulations, data are generated for a 2⇥ 2 factorial design, with

20,000 CpG sites and 3 replicates in each condition (12 datasets in total). For each factor, we

assume 5% of the CpG sites are DML, and the DM status for two factors are independent. The

regression coe�cients �g (g = 0, 1, 2) are simulated in the following way. �0 (the intercept) is

randomly sampled from the estimated intercept of real data. �1 and �2 are set to be 0 if the CpG
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Use DSS

• Input data object has the same format as bsseq.
• DMLtest performs Wald test at each CpG.
• callDML/callDMR calls DML or DMR.

## two group comparison

dmlTest <- DMLtest(BSobj, group1=c("C1", "C2", "C3"),
group2=c("N1","N2","N3"),

smoothing=TRUE, smoothing.span=500)
dmrs <- callDMR(dmlTest)
## A 2x2 design
DMLfit = DMLfit.multiFactor(RRBS, design, ~case+cell)          
DMLtest = DMLtest.multiFactor(DMLfit, term="case")



Conclusions

• Analysis of genome-wide bisulfite sequencing data 
presents some unique challenges
– Alignment of reads can be complicated
– Many tests to be performed, but number of samples 

sequenced is limited by costs in most experiments
– Beta-binomial model is widely used.
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For software/analysis
• Akalin et al. 2012 Genome Biology 13:R87.  MethylKit paper.
• Chatterjee et al. (2012) Nucleic Acids Research. 40(10):e79.  Compares aligners.
• Chavez et al. (2010) Genome Research 20:1441-50. MEDIPS software.
• Dolzhenko and Smith (2014) BMC Bioinformatics 15:215.  RADMeth.
• Feng, Conneely, and Wu (2014) Nucleic Acids Research 42(8):e69, DSS for two-group. 
• Hansen et al. (2012) Genome Biology 13:R83. Bsmooth paper.
• Hebestreit, Dugas, and Klein (2013) Bioinformatics 29:1647-53.  BiSeq.
• Krueger and Andrews (2011) Bioinformatics 27(11):1571-2.  BISMARK aligner.
• Park et al. (2014) Bioinformatics 30:2414-22.  MethylSig.
• Robinson et al. (2014) Frontiers in Genetics 5:324. Review of methods for DML and DMR
• Stadler et al. (2012) Nature 480:490-6. Mouse methylome paper that used HMM.
• Sun et al. (2014) Genome Biology 15:R38.  MOABS.
• Wu et al. (2015) Nucleic Acids Research. 43(21):e141.  DSS-single for single replicates.
• Park and Wu (2016) Bioinformatics 32 (10), 1446-1453. DSS-general for general design.
• Xi and Li (2009) BMC Bioinformatics 10:232.  BSMAP aligner.
• Xi et al. (2012) Bioinformatics 28(3):430-2.  RRBSMAP aligner.
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