
Gene expression microarray: 
Differential expression, data 

artifacts 



Outline

• Scientific goal and potential problems. 
• Review of basic statistical concepts:

– Hypothesis testing.
– Multiple comparison problem.

• Differential expression (DE) test methods:
– SAM 
– Empirical Bayesian (EB) methods: limma.
– Complex designs.
– Permutation.

• Data artifacts:
– Technical artifacts: batch effect. 
– Biological artifacts: cell type mixture. 



Input data for DE test

• Assume data are correctly within- and 
between-array normalized. 

• Input data for DE test is a matrix of positive 
number:
– Rows for genes and columns for samples. 
– Usually work on logarithm of the data, which are 

normal-ish.



Goal of DE test

• Goal: find genes that are expressed differently 
between (among) conditions. 
– Assign a score for each gene to represent its statistical 

significance of being different.
– Rank the genes according to the score. 
– Find a proper threshold for the score for calling DE. 

• Easy solutions: 
– Hypothesis testing (t-test, ANOVA, linear model, etc.) to 

get p-values and use as scores.
– Use canonical cutoff (0.05) to call DE. 



Potential problems

• Hypothesis testing:
– sample sizes are usually small, which lead to unstable test 

results. 

• When data are not normal, p-values are not 
accurate.

• Use 0.05 as threshold of p-values to call DE - multiple 
comparison problem.



Review of statistical inference

• Two-group t-test:
– data from two groups (cancer and normal): X1, …, XM; Y1, …, YN. 

– Assume X’s and Y’s are normally distributed.

– A “null hypothesis” is that the means of X’s and Y’s are identical. 

– Test statistics 

where 

– t follows t-distribution.

– P-value: under null hypothesis (that the means are the same), the 
probability to observe a t-statistics more extreme than the observed. 
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Why gene-by-gene t-test is a bad idea

• Small sample size (e.g., 3 vs. 3) leads to unstable 
estimates of variances. 
– By chance some genes have very small variance, which will 

result in large t-statistics and tiny p-values even when the 
difference is small. 

– Solution: SAM, EB methods. 

• Sometimes data are not normally distributed, lead to 
incorrect p-values. 
– solution: non-parametric approach to obtain p-values.



SAM t-test
Tusher et al. (2001) PNAS

• Try to remove (or minimize) the dependence of test 
statistics on variances (because small variance tend 
to lead to bigger test statistics). 

• Solutions: add a small constant to the denominator 
in calculating t statistics:

di =
yi − xi
si + s0

yi, xi : Means of two groups for gene i.
si : Standard deviation for gene i, assuming equal variace in both groups.
so : "Exchangeability factor" estimated using all genes.



The exchangeability factor

• Chosen to make signal-to-noise ratios independent 
of signal, e.g., the distribution of the statistics 
independent of the variance.

• Procedure:
– Let Sα be the α percentile of the si values 
– For                                     compute
– Compute                                                               , here qj are 

quantile. 
– Compute cv(α), the coefficient of variation of
– Choose 

α ∈ (0, 0.01, 0.02, ..., 1.0) di
α = (yi − xi ) / (si + s

α )

vj
α =mad(di

α | si ∈ [qj,,qj+1)), j =1,2,…99

vj
α
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a
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SAM t-test

• Highly cited (~14,000 citations as of 2022), 
http://www-stat.stanford.edu/~tibs/SAM/. 

• Implemented as Bioconductor package 
siggenes, and Excel plugin. 

• Follow-up work: SAMSeq on RNA-seq DE test. 
• Limitations: solutions for s0 often sensitive to 

data.  

http://www-stat.stanford.edu/~tibs/SAM/


Empirical Bayes method from limma
Smyth et al. (2004) Statistical Applications in Genetics and Molecular Biology

• Highly cited (~13,000 citations as of 2022).
• Use a Bayesian hierarchical model in multiple 

regression setting. 
• Borrow information from all genes to estimate gene 

specific variances.
– As a result, variance estimates will be “shrunk” toward the 

mean of all variances. So very small variance scenarios will 
be alleviated. 

• Implemented in Bioconductor package “limma”.
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The hierarchical model defined in the next section will assume that the estimators

�̂g and s2
g from di�erent genes are independent. Although this is not necessarily a

realistic assumption, the methodology which will be derived makes qualitative sense
even when the genes are dependent, as they likely will be for data from actual microarray
experiments.

This paper focuses on the problem of testing the null hypotheses H0 : �gj = 0 and
aims to develop improved test statistics. In many gene discovery experiments for which
microarrays are used the primary aim is to rank the genes in order of evidence against
H0 rather than to assign absolute p-values (Smyth et al, 2003). This is because only a
limited number of genes may be followed up for further study regardless of the number
which are significant. Even when the above distributional assumptions fail for a given
data set it may still be that the tests statistics perform well from a ranking the point
of view.

3 Hierarchical Model

Given the large number of gene-wise linear model fits arising from a microarray ex-
periment, there is a pressing need to take advantage of the parallel structure whereby
the same model is fitted to each gene. This section defines a simple hierarchical model
which in e�ect describes this parallel structure. The key is to describe how the unknown
coe⇤cients �gj and unknown variances ⇥2
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This describes how the variances are expected to vary across genes. For any given j,
we assume that a �gj is non zero with known probability

P (�gj ⇤= 0) = pj.

Then pj is the expected proportion of truly di�erentially expressed genes. For those
which are nonzero, prior information on the coe⌅cient is assumed equivalent to a prior
observation equal to zero with unscaled variance v0j, i.e.,

�gj | ⇤2
g , �gj ⇤= 0 � N(0, v0j⇤

2
g).

This describes the expected distribution of log-fold changes for genes which are di�er-
entially expressed. Apart from the mixing proportion pj, the above equations describe
a standard conjugate prior for the normal distributional model assumed in the previous
section. In the case of replicated single sample data, the model and prior here is a
reparametrization of that proposed by Lönnstedt and Speed (2002). The parametriza-
tions are related through dg = f , vg = 1/n, d0 = 2⇥, s2

0 = a/(d0vg) and v0 = c where f ,
n, ⇥ and a are as in Lönnstedt and Speed (2002). See also Lönnstedt (2001). For the
calculations in this paper the above prior details are su⌅cient and it is not necessary
to fully specify a multivariate prior for the �g.

Under the above hierarchical model, the posterior mean of ⇤�2
g given s2

g is s̃�2
g with

s̃2
g =

d0s2
0 + dgs2

g

d0 + dg
.

The posterior values shrink the observed variances towards the prior values with the
degree of shrinkage depending on the relative sizes of the observed and prior degrees of
freedom. Define the moderated t-statistic by

t̃gj =
�̂gj

s̃g
⇧

vgj
.

This statistic represents a hybrid classical/Bayes approach in which the posterior vari-
ance has been substituted into to the classical t-statistic in place of the usual sample
variance. The moderated t reduces to the ordinary t-statistic if d0 = 0 and at the
opposite end of the spectrum is proportion to the coe⌅cient �̂gj if d0 =⇥.

In the next section the moderated t-statistics t̃gj and residual sample variances s2
g

are shown to be distributed independently. The moderated t is shown to follow a t-
distribution under the null hypothesis H0 : �gj = 0 with degrees of freedom dg +d0. The
added degrees of freedom for t̃gj over tgj reflect the extra information which is borrowed,
on the basis of the hierarchical model, from the ensemble of genes for inference about
each individual gene. Note that this distributional result assumes d0 and s2

0 to be given
values. In practice these values need to be estimated from the data as described in
Section 6.
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with priors:

The hierarchical model 



Posterior statistics

Posterior variance : 
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Summary on two-sample DE test

• Try to alleviate the “small sample variance” 
problem. 

• Combine information from all genes. 
• Many other variations of the model.  
• In practice SAM and limma performs similarly. 



Volcano plot

• A diagnostic plot to visualize the test results.
• Scatter plot of the statistical significance (-

log10 p-values) vs. biological significance (log2 
fold change). 

• Ideally the two should agree with each other.



A bad volcano plot



A good one



More complex experiments

• Complex experimental designs:
– multiple (>2) groups.
– crossed/nested. 
– etc.

• Examples for multiple-group:

! " #

!$ !% !& "$ "% "& #$ #% !"



A complicated loop design on 
two-color array

Oleksiak et al. (2002) Nature Genetics



DE test for complex design

• Two sample test -> multiple regression.
• The same problems still exist, and similar solutions 

can be applied. 
• Mixed effect models can be used to model repeated 

measurements. 
• Both SAM and limma provide functions for complex 

designs. 



P-values by randomization

• When the data don’t satisfy normal assumption, 
permutation/bootstrap can be used to derive empirical p-
values. 

• Procedures for two sample comparison: 
– For each gene, randomly shuffle the sample labels.
– Compute the t-statistics on the randomized data.
– Repeat the procedure for N times, compute p-values as the percent of 

times that the permuted t-statistics more extreme than the observed. 

• The procedure is a little complicated for multiple design. 
Basically shuffle the data based on null model. 



Multiple testing correction

• Multiple testing problem is severe in high throughput 
data analysis because a large number of tests were 
performed. 
– Under type I error α=0.05, 1000 out of 20000 genes will be 

falsely declared DE (false positive) by chance.
– If there are a total of 2000 genes declared DE, the false 

discovery rate (FDR) is 0.5!

• Multiple testing correction
– Bonferroni correction: use α=0.05/20000 (too 

conservative). 
– FDR control (Benjamini and Hochberg, 1995 JRSS-B)



Bioconductor packages for 
microarray analysis



Bioconductor for microarray data

• There’re a rich collection of bioc packages for microarrays. In 
fact, Bioconductor started for microarray analysis. 

• There are currently 200+ packages for microarray. 
• Important ones include:

– affy: one of the earliest bioc packages. Designed for analyzing data 
from Affymetrix arrays.

– limma and siggenes: DE detection using limma and SAM-t model. 
– oligo: preprocessing tools for many types of oligonecleotide arrays. 

This is designed to replace affy package. 
– Many annotation data package to link probe names to genes.



My suggestion

• Use oligo to reading in data, normalization 
and summarization.

• Use siggenes or limma for detecting DE 
genes. 



An exmple of Analyzing a set of 
Affymetrix data

• Data generated by MAQC (MicroArray Quality 
Control) project. 

• Five brain samples and five reference samples on 
human exon arrays.

• Raw data are CEL files (binary file generated by 
factory).

• Each CEL file is around 65Mb. 
• The platform design package (pd.huex.1.0.st.v2) 

needs to be installed. 



Read in data
## load in necessary libraries                                                                                         

> library(oligo)
> library(limma)
## get a list of CEL files                                                                                             
> CELfiles=dir(pattern="CEL")
## read in all raw data                                                                                                
> rawdata=read.celfiles(CELfiles)
> rawdata
ExonFeatureSet (storageMode: lockedEnvironment)
assayData: 6553600 features, 10 samples 

element names: exprs 
protocolData

rowNames: ambion_A1.CEL, ambion_A2.CEL, ..., stratagene_K2.CEL  
(10 total)
...
Annotation: pd.huex.1.0.st.v2 



Normalization and summarization
## using RMA                                                                                

> normdata=rma(rawdata, target = "core")
> normdata
ExpressionSet (storageMode: lockedEnvironment)
assayData: 22011 features, 10 samples 

element names: exprs 
...
## extract expression values using expr function
> data=exprs(normdata)
> head(data)

sample 1  sample 2  sample 3  sample 4

1007_s_at 10.160224 10.214496 10.090697 11.020649
1053_at    9.501826  9.500412  9.574311  7.361141
117_at     5.669447  5.478072  5.648788  6.048142
121_at     8.061479  8.154549  8.156215  7.902597
1255_g_at  4.307739  4.017903  3.992333  4.668972
1294_at    7.108730  7.185586  7.122404  6.597161



## check data distribution after RMA
> boxplot(data)



The boxplot looks really good after RMA, so between array 
normalization is unnecessary. But in case you need it, use 
normalizeQuantiles function from limma for quantile 
normalization : 
> data2=normalizeQuantiles(data)

Now the new boxplot after quantile normalization:



DE detection using SAM t-test

> library(siggenes)
## create a vector for design.
> design <- c(rep(0,5),rep(1,5))
> sam.result=sam(data2, cl=design)
> sam.result
SAM Analysis for the Two-Class Unpaired 
Case Assuming Unequal Variances 



DE detection using limma

## create design matrix. Intercept must be included 
> design=cbind(mu=1,beta=c(rep(0,5),rep(1,5)))

## fit linear model and compute estimates                                                                              

> limma.result=lmFit(data2, design=design)

## Empirical Bayes method to get p-values                                                                              

> limma.result=eBayes(limma.result)

## get p-values for the comparison

> pval=limma.result$p.value[,"beta"]



Compare results from limma and SAM

• Agreement is good, 0.95 Spearman rank correlation. 
• Limma seems to be more liberal. 



Obtain gene annotations

• Now you get p-values for all genes, but you also need 
gene names for generating report. 

• There are many annotation packages available for 
different array platforms. For example, hgu133a.db is 
for HGU133A arrays. 

• These packages contain comprehensive information 
for all probes, including their sequences, 
chromosome, position, corresponding gene IDs, GO 
terms,  etc. 



• A typical way to convert probeset names to accession 
number or gene alias is: 
> library(hgu133a.db)

## convert to accession numbers:
> geneAcc=as.character(hgu133aACCNUM[rownames(data)])
## convert to gene names 
> geneNames=as.character(hgu133aSYMBOL[rownames(data)])



Finally generate a report table

> ix=sam.result@q.value<0.1

> result=data.frame(gene=geneNames[ix], 
pvalue=sam.result@p.value[ix],
fold=sam.result@fold[ix])

## sort by fold change
> ix2=sort(result$fold, decreasing=TRUE, index.return=TRUE)$ix
> result=result[ix2,]
> head(result)

gene pvalue     fold
2731192    NM_000477      0 185.5720
3457336    NM_006928      0 155.7143
2772566    NM_144646      0 152.8232
2731230    NM_001134      0 132.8515
> write.table(result, file=”report.txt”, sep=”\t”)



Data artifacts: 
batch effect and cell mixture



Technical artifact: batch effect

• Microarray experiments are very sensitive to 
experimental conditions:
– Equipment, agents, technicians, etc.

• Data generated from different “batches” (lab, time, 
etc.) can be quite different, but data from the same 
batch tend to be more similar. 

• So batch effects are structured noise/bias common 
to all replicates in the same batch, but markedly 
different from batch to batch. 
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12 D: sepsis bone marrow
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Variation within and between batches



Methods to remove batch effects

• Based on linear model: batches cause 
location/scale changes (e.g., combat). 

• Based on dimension reduction technique: 
SVD, PCA, factor analysis, etc. (e.g., sva). 
– The singular vectors/PCs/factors that are 

correlated with batch are deemed from batch 
effects. 

– Remove batch effects from data, leftovers are 
biological signals. 



sva package in Bioconductor

• Contains ComBat function for removing 
effects of known batches. 

• Assume we have
– edata:a matrix for raw expression values
– batch: a vector named for batch numbers.

modcombat = model.matrix(~1, data=as.factor(batch)) 
combat_edata = ComBat(dat=edata, batch=batch, 

mod=modcombat, par.prior=TRUE, prior.plot=FALSE)



BatchQC - Batch Effects Quality Control

• A Bioconductor package with a GUI (shiny 
app). 

• http://bioconductor.org/packages/release/bio
c/html/BatchQC.html

http://bioconductor.org/packages/release/bioc/html/BatchQC.html


• One major conclusion 
is that tissues are 
more similar within a 
species, compared 
with the same tissue 
across species.
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Although the similarities between humans and mice are typically
highlighted, morphologically and genetically, there are many differ-
ences. To better understand these two species on a molecular level,
we performed a comparison of the expression profiles of 15 tissues
by deep RNA sequencing and examined the similarities and differ-
ences in the transcriptome for both protein-coding and -noncoding
transcripts. Although commonalities are evident in the expression of
tissue-specific genes between the two species, the expression for
many sets of genes was found to be more similar in different tissues
within the same species than between species. These findings were
further corroborated by associated epigenetic histonemark analyses.
We also find that many noncoding transcripts are expressed at a low
level and are not detectable at appreciable levels across individuals.
Moreover, the majority lack obvious sequence homologs between
species, evenwhenwe restrict our attention to those which are most
highly reproducible across biological replicates. Overall, our results
indicate that there is considerable RNA expression diversity between
humans and mice, well beyondwhat was described previously, likely
reflecting the fundamental physiological differences between these
two organisms.

transcriptome | epigenome | species comparison | noncoding transcripts

The mouse has served as a valuable model organism for hu-
man biology and disease. It is widely assumed that bio-

chemical, cellular, and developmental pathways in the mouse are
highly conserved with humans and that many processes are
clearly preserved at a molecular and genetic level. Moreover,
recent detailed studies have examined gene expression in a lim-
ited number of tissues in humans and mice. These studies have
indicated that gene expression is often conserved and is more
similar between the comparable tissues of different organisms
rather than within tissues of the same organism. In contrast, the
transcript isoform repertoire was found to be markedly different
between species (1, 2).

Gene Expression Is More Similar Among Tissues Within
a Species Than Between Corresponding Tissues of the Two
Species
To examine the similarities between humans and mice in much
greater detail, we produced RNA-seq data from 13 human tissues
[as part of the Encyclopedia Of DNA Elements (ENCODE)],
another 11 human tissues [as part of the Roadmap Epigenomics
Mapping Consortium (REMC) (3)], and 13 mouse tissues (for
mouse ENCODE). We also included in our analysis other data
from mouse ENCODE and the Illumina Human BodyMap 2.0
(HBM) (SI Materials and Methods). Sequencing was performed
to a depth of 11,313,824–166,188,101 mappable reads (median
of 68,399,538 with and an interquartile range of 31,557,381–
81,836,199). In total, our analysis used 93 datasets encompassing
the most tissue-diverse RNA-seq dataset to date spanning several

major projects. Thirteen of the mouse and human orthologous
datasets were produced by the same laboratory. For our analysis
regarding noncoding transcripts, we incorporated an additional 294
RNA-seq datasets from the Genotype-Tissue Expression (GTEx)
project (4).
We first explored gene expression similarities and differences by

analyzing the expression of ∼15,106 protein-coding orthologs; this
list was generated by the modENCODE and mouse ENCODE
consortia and represents the most recent mouse–human ortholog
list to date (biorxiv.org/content/biorxiv/early/2014/05/31/005736.full.
pdf). Fragments per kilobase of transcript per million (FPKM)
values were obtained from each dataset, and principal component
analysis (PCA) was used to compare gene expression (Materials and
Methods). In contrast to what was reported previously (1, 2, 5),
surprisingly, we found that themouse and human samples cluster by
species when the data are projected onto the first three principal
components (Fig. 1A). Because the same tissues of the same species
produced by different laboratories did not cluster together, the
possibility of methodologic differences among laboratories con-
founding our results was considered. To address this issue, analysis
of only the 13 paired samples processed under one experimental
protocol yielded the same species-specific clustering (Fig. 1C). The
same species-specific clustering was observed when other combi-
nations of 10 or more tissues were examined, indicating that the
clustering is not due to the particular 13–15 tissues selected. Finally,

Significance

To date, various studies have found similarities between humans
and mice on a molecular level, and indeed, the murine model
serves as an important experimental system for biomedical sci-
ence. In this study of a broad number of tissues between humans
and mice, high-throughput sequencing assays on the tran-
scriptome and epigenome reveal that, in general, differences
dominate similarities between the two species. These findings
provide the basis for understanding the differences in pheno-
types and responses to conditions in humans and mice.
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different normalization methods (e.g., quantile normalization) ap-
plied to the data produced similar groupings.
To understand the differences between our results and those

of others (1, 2, 5), we performed extensive additional analyses.
We first varied the ortholog list and similarity measure, but these
changes did not significantly alter our results (Fig. S1A). We next
applied our analytic process to human and mouse data produced
from other studies that reported tissue dominated clustering (1,
5), and we were able to reproduce their findings (Fig. S1 B and
C). Moreover, in our own dataset, we observed a more tissue-
dominated clustering for principal components 4–6 (Fig. 1 B and
D). Thus, gene expression profiles of different organism tissues

do exhibit similarities in gene expression but of lower strength
relative to organismal signals.
To determine whether we could further reconcile these vari-

ous observations, we identified the groups of genes that are tis-
sue specific and those present in all tissues (i.e., housekeeping)
using Shannon entropy (H) (6). H is a parameter commonly used
to assess tissue specificity, with lower values signifying expression
in a smaller fraction of the total set. We calculated H for each
gene using our expression data and considered genes with values
below two to be tissue specific. We found that testes, brain, liver,
muscle (cardiac and/or skeletal), and kidney were among the
tissues that expressed the most tissue-specific genes (Fig. 1E),

Fig. 1. Loading plots from PCA on human and mouse gene expression data. (A) PCA is performed on the combined Stanford (human, mouse), Salk (human),
HBM (human), LICR (mouse), and CSHL (mouse) expression datasets using 15 tissue types, 15,106 orthologs (biorxiv.org/content/biorxiv/early/2014/05/31/
005736.full.pdf), and Pearson’s correlation as the distance measure. The loadings on principal components 1–3 are plotted. (B) Same as in A except loadings
on principal components 4–6 are plotted. (C ) The loadings on principal components 1–3 are plotted from a PCA performed as in A except only 13 human
and mouse tissue sets processed at Stanford. (D) The loadings on principal components 4–6 for the analysis in C are used. (E ) Barplot of number of tissue
specific-genes per tissue. (F ) PCA is performed as in A except the tissue set is restricted to testis, brain, heart, liver, and kidney, which have higher numbers
of tissue-specific genes. The loadings on principal components 1–3 are plotted.
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• Experimental design: data are from 5 
batches. 
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of the number of ortholog pairs analyzed by Lin et al. Nevertheless, 
we believe that a possible explanation for this disparity is a pars-
ing error. The last two columns of the ‘modENCODE ortholog file’ 
represent the number of genes from each species in the ortholog 
group. One of the steps required to obtain the subset of ortholog 
groups for analysis is to select those records where the two last col-
umns have a value of 1 (i.e. one-to-one ortholog pairs). We found 
that if this selection is done through a command line search that 
does not require that the value in the last column be exactly “1”, 
but rather just begins with “1”, then the result is 15,104 putative 
human-mouse ortholog pairs.

Quality assessment of RNA-Seq data
We used the FastQC software v0.10.0 (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) to assess the quality of the individ-
ual FASTQ files (Supplementary Table 2–Supplementary Table 6). 
We were concerned by evidence for GC content bias and over-
represented sequences. To examine the latter in greater detail, we 
mapped the sequences overrepresented in at least one sample to the 
genome of the respective species, using BLAT searches6 against the 
hg19 (human) and mm10 (mouse) assemblies at the UCSC genome 
browser site (http://genome.ucsc.edu/)6. We found that in both spe-
cies many of the overrepresented sequences mapped perfectly to 
the mitochondrial genome (Supplementary Table 3–Supplementary 
Table 6). For the mouse pancreas sample only, we also found many 
overrepresented sequences mapped to regions with rRNA repeats 
from the SSU-rRNA_Hsa and LSU-rRNA_Hsa families.

Mapping RNA-Seq reads to genome sequences
We mapped the RNA-Seq reads to their respective genomes using 
Tophat v2.0.117 with the following options: “--mate-inner-dist 200” 
(i.e. inner mate distance is 200nt, based on paired-end reads with 
length 100nt each and an insert size of 350-450nt ); “--bowtie-n” 
(i.e. the “-n” option will be used in Bowtie8 in the initial read map-
ping stage); “-g 1” (i.e. multi-mapping reads will be excluded from 
alignment); “-m 1” (i.e. one mismatch is allowed in the anchor region 
of a spliced alignment); “--library-type fr-firststrand” (the libraries 
had been constructed using the Illumina TruSeq Stranded mRNA LT 
Sample Prep Kit2). An exception was the mouse pancreas sample, for 
which the mapping process stalled consistently at the same stage. 

For this sample we used Tophat v1.4.18 with the same options as 
above. Tophat requires a Bowtie8 index. For human we used the 
Bowtie index that was packaged with the genome sequence in the 
file downloaded from the Illumina iGenomes page (http://support.
illumina.com/sequencing/sequencing_software/igenome.html). For 
mouse we built an index using the bowtie-build utility from Bowtie 
v2.2.1 (v 0.12.7 for the index used with Tophat v1.4.1).

Calculating gene GC content
For each of the two species we used the appropriate GTF file to 
generate a table, which contains for each gene its ENSEMBL gene 
identifier its common name, and the GC content of the sequence 
covered by the union of the gene’s transcripts. To this end, we first 
generated a GTF file where overlapping exons from different tran-
scripts of the same gene were merged into a single “exon” with the 
same sequence coverage, retaining the association with the gene 
identifier. Next, we computed the nucleotide content of the exons 
in this new GTF file using the ‘nuc’ utility from bedtools v2.17.09. 
Finally, we computed the GC content for each gene identifier by 
summing the number of ‘G’ and ‘C’ nucleotides in its merged exons 
and dividing by the sum of counts of unambiguous nucleotides in 
these exons.

Per-gene FPKM values
We used Cufflinks v2.2.110 to compute fragments per kilo base 
of transcript per million (FPKM) values and aggregate them per 
gene. The only option used was “--library-type fr-firststrand”. For 
the required transcript annotation file (“-G” parameter) we used 
the GTF file for the respective species described in the “Genome 
and gene annotation files” section. We then generated a matrix of 
14,744 by 26 FPKM values for each gene (in the ortholog table) 
and sample. While generating this table we noticed that some 
of the common gene names were associated with more than one 
ENSEMBL gene identifier. In some cases we determined that 
this was due to gene identifiers that have been retired from the 
ENSEMBL database3 but were retained in the GTF file (27 and 64 
retired identifiers for human and mouse, respectively). These retired 
identifiers were ignored when constructing the FPKM matrix. For 
the remaining such cases we incorporated the value from the first 
appearance of the common name.

Figure 1. Study design. Sequencing batches as inferred based on the sequence identifiers of the RNA-Seq reads.
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After correcting for batch effects

• Tissues tend to 
cluster together 
more. 

Analysis of normalized data after accounting for batch 
effects yields clustering by tissue
A previous evaluation of normalization methods for RNA-Seq 
data15 suggested that FPKM values were not optimal for cluster-
ing analysis. Therefore, as a basis for our reanalysis, we used the 
matrix of per-gene raw fragment counts. The entire analysis was 
done within R environment v 3.1.3 GUI 1.65 Snow Leopard build 
(6912)12. See Supplementary Text 2 for detailed commands, and 
a supplement zip file for the R input (available in Zenodo: http://
dx.doi.org/10.5281/zenodo.17606).

Following Li et al.16, we removed the 30% of genes with the lowest 
expression as determined by the sum of fragment counts across all 
samples. Next, due to the presence of mitochondrial genes among 
the overrepresented sequences in the data, we also removed reads 
that map to the 12 mitochondrial genes. This left us with expression 
data from 10,309 genes for analysis. We note that merely limiting 
the analysis to this subset of genes does not have a marked effect on 
the patterns reported by Lin et al. (Figure S3; detailed commands 
in Supplementary Text 3, and a supplement zip file for the R input 
(available in Zenodo: http://dx.doi.org/10.5281/zenodo.17606)). We 
performed within-column normalization to remove the GC bias in 
the data, indicated by the initial quality assessment. To this end, we 
applied the ‘withinLaneNormalization’ function from the EDASeq 
package v2.0.017 to each column in the matrix, using the gene GC 
values for the species associated with the column. Next, we used the 
‘calcNormFactors’ from the edgeR package v3.8.618, with the trimmed 
mean of M-values (TMM) method19, to calculate normalization 

factors for the library sizes for the samples. We used these normali-
zation factors in the depth normalization of the columns (using the 
column sums of the original, unfiltered, counts matrix as a proxy 
for library sizes). The normalized data were log2-transformed (after 
adding ‘1’ to each value in the matrix to avoid undefined values).

We then considered how to account for the fact that the assignment 
of samples to sequencing flowcells and lanes was nearly completely 
confounded with the species annotations of the samples (Figure 1). 
The consideration of ‘batch effect’ was the most important differ-
ence between the analysis that recapitulated the patterns reported 
by the mouse ENCODE papers (the previous ‘Results’ section) 
and the current reanalysis effort. Specifically, we accounted for the 
sequencing study design batch effects using the ‘ComBat’ function 
from the sva package v3.12.020, with a model that includes effects 
for batch, species and tissue. For this purpose the samples were 
classified into five batches, based on the sequencing study design 
(see methods and Figure 1).

To visualize the data, we used the function ‘prcomp’ (with the 
‘scale’ and ‘center’ options set to TRUE) to perform principal com-
ponent analysis (PCA) of the transposed log-transformed matrix of 
‘clean’ values (after removal of invariant columns, i.e. genes), and 
the ggplot2 package13 to generate scatter plots of the PCA results. 
None of the first five principal components (accounting together 
for 56% of the variability in the data) support the clustering of the 
gene expression data by species (Figure 3a and Figure S4–Figure S5). 
However, the sixth principal component, which accounts for 6% of 

Figure 3. Clustering of data once batch effects are accounted for. a. Two-dimensional plots of principal components calculated by 
applying PCA to the transposed matrix of batch-corrected log-transformed normalized fragment counts (from 10,309 orthologous gene pairs 
that remained after the exclusion steps described in the results) for the 26 samples, after removal of invariant columns (genes). b. Heatmap 
based on pairwise Pearson correlation of the expression data used in panel a. We used Euclidean distance and complete linkage as distance 
measure and clustering method, respectively.
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Batch effects are prevalent

• Observed in many high-throughput 
experiments: microarray, different types of 
sequencing, single cell omics, brain imaging.

• Methods for identifying and removing batch 
effects is under continuous developments. 
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Tackling the widespread and  
critical impact of batch effects  
in high-throughput data
Jeffrey T. Leek, Robert B. Scharpf, Héctor Corrada Bravo, David Simcha, 
Benjamin Langmead, W. Evan Johnson, Donald Geman, Keith Baggerly  
and Rafael A. Irizarry
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IGPGVKE�XCTKCPVU��IGPG�CPF�RTQVGKP�GZRTGUUKQP��CPF�GRKIGPGVKE�OQFKHKECVKQPU��1PG�
QHVGP�QXGTNQQMGF�EQORNKECVKQP�YKVJ�UWEJ�UVWFKGU�KU�DCVEJ�GHHGEVU��YJKEJ�QEEWT�
DGECWUG�OGCUWTGOGPVU�CTG�CHHGEVGF�D[�NCDQTCVQT[�EQPFKVKQPU��TGCIGPV�NQVU�CPF�
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EQTTGNCVGF�YKVJ�CP�QWVEQOG�QH�KPVGTGUV�CPF�NGCF�VQ�KPEQTTGEV�EQPENWUKQPU��7UKPI�
DQVJ�RWDNKUJGF�UVWFKGU�CPF�QWT�QYP�CPCN[UGU��YG�CTIWG�VJCV�DCVEJ�GHHGEVU�
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Many technologies used in biology — 
including high-throughput ones such as 
microarrays, bead chips, mass spectrom-
eters and second-generation sequencing 
— depend on a complicated set of reagents 

and hardware, along with highly trained per-
sonnel, to produce accurate measurements. 
When these conditions vary during the 
course of an experiment, many of the quan-
tities being measured will be simultaneously 

affected by both biological and non-biological 
factors. Here we focus on batch effects, a 
common and powerful source of variation  
in high-throughput experiments.

Batch effects are sub-groups of measure-
ments that have qualitatively different 
behaviour across conditions and are unre-
lated to the biological or scientific variables 
in a study. For example, batch effects may 
occur if a subset of experiments was run on 
Monday and another set on Tuesday, if two 
technicians were responsible for different 
subsets of the experiments or if two different 
lots of reagents, chips or instruments were 
used. These effects are not exclusive to high-
throughput biology and genomics research1, 
and batch effects also affect low-dimensional 
molecular measurements, such as northern 
blots and quantitative PCR. Although batch 
effects are difficult or impossible to detect 
in low-dimensional assays, high-throughput 
technologies provide enough data to detect 
and even remove them. However, if not 
properly dealt with, these effects can have 
a particularly strong and pervasive impact. 
Specific examples have been documented 
in published studies2,3 in which the biologi-
cal variables were extremely correlated with 
technical variables, which subsequently led 
to serious concerns about the validity of the 
biological conclusions4,5.
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We re-examined data sets from three 
studies for which batch effects have been 
reported (TABLE 1). The first was the sTCC 
study9 described above. The second was a 
microarray data set from a study examining 
population differences in gene expression2. 
The conclusion of the original paper, that 
the expression of 1,097 of 4,197 genes dif-
fers between populations of European and 
Asian descent, was questioned in another 
publication4 because the populations and 
processing dates were highly correlated. 
In fact, more differences were found when 
comparing data from two processing dates 
while keeping the population fixed. The 
third was a mass spectrometry data set  
that was used to develop a statistical pro-
cedure, based on proteomic patterns in 
serum, to distinguish neoplastic diseases 
from non-neoplastic diseases within the 
ovary3. Concerns about the conclusions 
of this paper were raised in another  
publication, which showed that outcome 
was confounded with run date5.

To further illustrate the ubiquity and 
potential hazards associated with batch 
effects, we also carried out analyses on rep-
resentative publicly available data sets that 
have been established using a range of high-
throughput technologies. In addition to the 
three studies described above, we examined: 
data from a study of copy number variation 

in HapMap populations16; a study of copy 
number variation in a genome-wide asso-
ciation study of bipolar disorder17; gene 
expression from an ovarian cancer study 
from The Cancer Genome Atlas (TCGA)18 
produced using two platforms (Affymetrix 
and Agilent); methylation data from the 
same TCGA ovarian cancer samples pro-
duced using Illumina BeadChips; and 
second-generation sequencing data from a 
study comparing unrelated HapMap indi-
viduals (these data were a subset of the data 
from the 1000 Genomes Project).

We found batch effects for all of these 
data sets, and substantial percentages 
(32.1–99.5%) of measured features showed 
statistically significant associations with 
processing date, irrespective of biologi-
cal phenotype (TABLE 1). This suggests that 
batch effects influence a large percentage 
of the measurements from genomic tech-
nologies. Next, we computed the first five 
principal components of the feature data 
(the principal components were ordered by 
the amount of variability explained). Ideally 
these principal components would correlate 
with the biological variables of interest, as 
the principal components represent the 
largest sources of signal in the data. Instead, 
for all of the studied data sets, the surro-
gates for batch (date or processing group) 
were strongly correlated with one of the top 

principal components (TABLE 1). In general, 
the correlation with the top principal com-
ponents was not as high for the biological 
outcome as it was for the surrogates. This 
suggests that technical variability was more 
influential than biological variability across 
a range of experimental conditions and 
technologies.

For most of the data sets examined, neither  
date nor biological factors was perfectly asso-
ciated with the top principal components, 
suggesting that other unknown sources of 
batch variability are present. This implies 
that accounting for date or processing group 
might not be sufficient to capture and remove 
batch effects. For example, we did a further 
analysis of second-generation sequencing  
data that were generated by the 1000 
Genomes Project (FIG. 2). We found that 32% 
of the features were associated with date but 
up to 73% were associated with the second 
principal component. Note that the principal 
components cannot be explained by biol-
ogy because only 17% of the features are 
associated with the biological outcome.

&QYPUVTGCO�EQPUGSWGPEGU
In the most benign cases, batch effects will 
lead to increased variability and decreased 
power to detect a real biological signal15. 
Of more concern are cases in which batch 
effects are confounded with an outcome of 
interest and result in misleading biological 
or clinical conclusions. An example of con-
founding is when all of the cases are pro-
cessed on one day and all of the controls are 
processed on another. We have shown that 
in a typical high-throughput experiment, 
one can expect a substantial percentage of 
features to show statistically significant dif-
ferences when comparing across batches, 
even when no real biological differences are 
present (FIG. 1; TABLE 1). Therefore, if one is 
not aware of the batch effect, a confounded 
experiment will lead to incorrect biological 
conclusions because results due to batch 
will be impossible to distinguish from 
real biological effects. As an example, we 
consider the proteomics study mentioned 
above3. These published results and further 
confirmation19 led to the development of a 
‘home-brew’ diagnostic assay for ovarian 
cancer. However, in this study the biologi-
cal variable of interest (neoplastic disease 
within the ovary) was extremely correlated 
with processing day5. Furthermore, batch 
effects were identified as a major driver of 
these results. Fortunately, objections raised 
after the assay was advertised led the US 
Food and Drug Administration to block use 
of the assay, pending further validation20.
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Biological artifact: 
cell mixture

• Tissue sample is a mixture of different cell types. 
• Data collected are mixed signals.

Genetic profile
of each cell type

Mixture proportions



An example: EWAS in aging study

Jaffe and Irizarry GB(2014)

• Cellular composition changes with age.

• Cellular composition is a major source of variability in DNA 
methylation datasets in whole blood.



Existing signal deconvolution methods

• Reference-based methods (some type of regression):
• Require cell type specific signature: Abbas et al. 2009; Clarke et al. 

2010; Gong et al. 2011; Lu et al. 2003; Wang et al. 2006; Vallania et 
al. 2018; Du et al. 2018; 

• Requires mixture proportions: Erkkila et al. 2010; Lahdesmaki et al. 
2005; Shen-Orr et al. 2010; Stuart et al. 2004.

• Reference free methods (some type of factor analysis): 
• Gaujoux et al. 2011; Kuhn et al. 2011; Repsilber et al. 2010; Roy et 

al. 2006; Venet et al. 2001; Houseman et al. 2012, 2014, 2016; 
Rahmani  et al. 2016, 2018; Lutsik et al. 2017; Xie et al. 2018;  



Method to adjust for cell proportion

• In EWAS, add proportion as covariate in the model. 
• More rigorous statistical modeling for DE/DM with 

sample mixture has been a popular topic recently, 
and a number of methods are developed: 
– csSAM: Shen-Orr et al. 2010 Nature methods
– CellDMC: Zheng et al. 2018 Nature Methods
– TOAST: Li et al. 2019 Bioinformatics, 2019 Genome Biology



Review
• We have covered microarray analysis DE test, 

including:
– SAM t-test.
– EB method: Limma.
– A little on complex design.
– Permutation test.
– Multiple testing. 
– R/Bioconductor packages for DE analysis.

• Batch effects.
• Cell type mixture in complex tissues


