Gene expression microarray:
Differential expression, data
artifacts



Outline

Scientific goal and potential problems.

Review of basic statistical concepts:
— Hypothesis testing.
— Multiple comparison problem.

Differential expression (DE) test methods:
— SAM

— Empirical Bayesian (EB) methods: limma.
— Complex designs.

— Permutation.

Data artifacts:
— Technical artifacts: batch effect.
— Biological artifacts: cell type mixture.



Input data for DE test

* Assume data are correctly within- and
between-array normalized.

* |Input data for DE test is a matrix of positive
number:

— Rows for genes and columns for samples.

— Usually work on logarithm of the data, which are
normal-ish.



Goal of DE test

e Goal: find genes that are expressed differently
between (among) conditions.

— Assign a score for each gene to represent its statistical
significance of being different.

— Rank the genes according to the score.
— Find a proper threshold for the score for calling DE.

* Easy solutions:

— Hypothesis testing (t-test, ANOVA, linear model, etc.) to
get p-values and use as scores.

— Use canonical cutoff (0.05) to call DE.



Potential problems

Hypothesis testing:

— sample sizes are usually small, which lead to unstable test
results.

When data are not normal, p-values are not
accurate.

Use 0.05 as threshold of p-values to call DE - multiple
comparison problem.



Review of statistical inference

* Two-group t-test:
— data from two groups (cancer and normal): X, ..., X,,; Y4, ..., Y-

— Assume X’s and Y’s are normally distributed.

— A “null hypothesis” is that the means of X’s and Y’s are identical.

— Test statistics 1=(X-Y)/\S2/M+S2/N
where 2= ' S _%r.s2- L Yy -7y
Sy M_lzl(xl Xy, s; N-1;(’ )
— t follows t-distribution.

— P-value: under null hypothesis (that the means are the same), the
probability to observe a t-statistics more extreme than the observed.



Why gene-by-gene t-test is a bad idea

 Small sample size (e.g., 3 vs. 3) leads to unstable
estimates of variances.

— By chance some genes have very small variance, which will
result in large t-statistics and tiny p-values even when the
difference is small.

— Solution: SAM, EB methods.

 Sometimes data are not normally distributed, lead to
incorrect p-values.

— solution: non-parametric approach to obtain p-values.



SAM t-test
Tusher et al. (2001) PNAS

* Try to remove (or minimize) the dependence of test

statistics on variances (because small variance tend
to lead to bigger test statistics).

e Solutions: add a small constant to the denominator
in calculating t statistics:

S, +5,
y., X, : Means of two groups for gene 1.
s, - Standard deviation for gene 1, assuming equal variace in both groups.

s, : "Exchangeability factor" estimated using all genes.



The exchangeability factor

* Chosen to make signal-to-noise ratios independent

of signal, e.g., the distribution of the statistics
independent of the variance.

* Procedure:
— Let $? be the a percentile of the s; values
— For a€(0,0.01,0.02, ..., 1.0)compute d* =(y,-x,)/ (s, +s%)

— Compute v =mad(d’ s, €1q,.9,,)), j=1,2....99, here g; are
quantile.

— Compute cv(a), the coefficient of variation of ¢
— Choose & =argmin{cv(a)}.§, = §°

a



SAM t-test

Highly cited (~14,000 citations as of 2022),
nttp://www-stat.stanford.edu/~tibs/SAM/.

mplemented as Bioconductor package
siggenes, and Excel plugin.

Follow-up work: SAMSeq on RNA-seq DE test.

Limitations: solutions for s, often sensitive to
data.


http://www-stat.stanford.edu/~tibs/SAM/

Empirical Bayes method from 1imma

Smyth et al. (2004) Statistical Applications in Genetics and Molecular Biology

* Highly cited (~13,000 citations as of 2022).

* Use a Bayesian hierarchical model in multiple
regression setting.

* Borrow information from all genes to estimate gene
specific variances.

— As a result, variance estimates will be “shrunk” toward the
mean of all variances. So very small variance scenarios will
be alleviated.

* Implemented in Bioconductor package “limma”.



The hierarchical model

Let 5, be coefficient (difference in means in
two group setting) for gene g, factor j, assume

2

2 2 2 g : :
Bgi | Bojs 0y ~ N(Byj,vg50,)  s7|og ~ d—ngzg with priors:
g

1 1
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Posterior statistics

B d()S(Q) + ng?]

Posterior variance : 3% =
I do + d,

Moderated t-statistics for P By
: —0 - 9j — = :
testing B, = 0 : Sg\/ Ugj




Summary on two-sample DE test

Try to alleviate the “small sample variance”
problem.

Combine information from all genes.
Many other variations of the model.

In practice SAM and limma performs similarly.



Volcano plot

* A diagnostic plot to visualize the test results.

* Scatter plot of the statistical significance (-
log10 p-values) vs. biological significance (log2
fold change).

* |deally the two should agree with each other.



LOD score - Negative log10 of P-value
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More complex experiments

 Complex experimental designs:
— multiple (>2) groups.
— crossed/nested.
— etc.

 Examples for multiple-group:

A B C
JING I TN
A1 A2 A3 B1T B2 B3 C1 C2 C3

/N /N /N /N /N /N /N N




A complicated loop designh on
two-color array

Oleksiak et al. (2002) Nature Genetics



DE test for complex design

Two sample test -> multiple regression.

The same problems still exist, and similar solutions
can be applied.

Mixed effect models can be used to model repeated
measurements.

Both SAM and limma provide functions for complex
designs.



P-values by randomization

When the data don’t satisfy normal assumption,
permutation/bootstrap can be used to derive empirical p-
values.

Procedures for two sample comparison:
— For each gene, randomly shuffle the sample labels.
— Compute the t-statistics on the randomized data.
— Repeat the procedure for N times, compute p-values as the percent of
times that the permuted t-statistics more extreme than the observed.
The procedure is a little complicated for multiple design.
Basically shuffle the data based on null model.



Multiple testing correction

* Multiple testing problem is severe in high throughput
data analysis because a large number of tests were
performed.

— Under type | error a=0.05, 1000 out of 20000 genes will be
falsely declared DE (false positive) by chance.

— If there are a total of 2000 genes declared DE, the false
discovery rate (FDR) is 0.5!

 Multiple testing correction

— Bonferroni correction: use a=0.05/20000 (too
conservative).

— FDR control (Benjamini and Hochberg, 1995 JRSS-B)



Bioconductor packages for
microarray analysis



Bioconductor for microarray data

There’re a rich collection of bioc packages for microarrays. In
fact, Bioconductor started for microarray analysis.

There are currently 200+ packages for microarray.
Important ones include:

— affy: one of the earliest bioc packages. Designed for analyzing data
from Affymetrix arrays.

— limma and siggenes: DE detection using limma and SAM-t model.

— oligo: preprocessing tools for many types of oligonecleotide arrays.
This is designed to replace affy package.

— Many annotation data package to link probe names to genes.



My suggestion

* Use oligo to reading in data, normalization
and summarization.

* Use siggenes or 1imma for detecting DE
genes.



An exmple of Analyzing a set of
Affymetrix data

Data generated by MAQC (MicroArray Quality
Control) project.

Five brain samples and five reference samples on
human exon arrays.

Raw data are CEL files (binary file generated by
factory).

Each CEL file is around 65Mb.

The platform design package (pd.huex.1.0.st.v2)
needs to be installed.



Read in data

## load in necessary libraries

> library(oligo)

> library(limma)

## get a list of CEL files

> CELfiles=dir(pattern="CEL")

## read in all raw data

> rawdata=read.celfiles(CELfiles)

> rawdata

ExonFeatureSet (storageMode: lockedEnvironment)

assayData: 6553600 features, 10 samples
element names: exprs

protocolData

rowNames: ambion Al.CEL, ambion A2.CEL, ..., stratagene K2.CEL
(10 total)

Annotation: pd.huex.l1.0.st.v2



Normalization and summarization

## using RMA
> normdata=rma(rawdata, target = "core")
> normdata
ExpressionSet (storageMode: lockedEnvironment)
assayData: 22011 features, 10 samples
element names: exprs
## extract expression values using expr function
> data=exprs(normdata)
> head(data)

sample 1 sample 2 sample 3 sample 4
1007 s at 10.160224 10.214496 10.090697 11.020649
1053 at 9.501826 9.500412 9.574311 7.361141

117 at 5.669447 5.478072 5.648788 6.048142
121 at 8.061479 8.154549 8.156215 7.902597
1255 g at 4.307739 4.017903 3.992333 4.668972
1294 at 7.108730 7.185586 7.122404 6.597161



## check data distribution after RMA

> boxplot(data)
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The boxplot looks really good after RMA, so between array
normalization is unnecessary. But in case you need it, use

normalizeQuantiles function from 1imma for quantile
normalization :

> data2=normalizeQuantiles(data)

Now the new boxplot after quantile normalization:
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DE detection using SAM t-test

> library(siggenes)

## create a vector for design.

> design <- c(rep(0,5),rep(1l,5))

> sam.result=sam(data2, cl=design)
> sam.result

SAM Analysis for the Two-Class Unpaired
Case Assuming Unequal Variances



DE detection using limma

## create design matrix. Intercept must be included
> design=cbind(mu=1,beta=c(rep(0,5),rep(1l,5)))

## f£it linear model and compute estimates
> limma.result=1lmFit(data2, design=design)
## Empirical Bayes method to get p-values
> limma.result=eBayes(limma.result)
## get p-values for the comparison

> pval=limma.result$p.value[, "beta"]



Compare results from limma and SAM

e Agreement is good, 0.95 Spearman rank correlation.
* Limma seems to be more liberal.

SAM p-values
0.6 0.8 1.0

0.4

0.2

0.0 0.2 0.4 0.6 0.8 1.0

limma p-values



Obtain gene annotations

* Now you get p-values for all genes, but you also need
gene names for generating report.

 There are many annotation packages available for
different array platforms. For example, hgu133a.db is
for HGU133A arrays.

* These packages contain comprehensive information
for all probes, including their sequences,
chromosome, position, corresponding gene IDs, GO
terms, etc.



* A typical way to convert probeset names to accession
number or gene alias is:

> library(hgul33a.db)
## convert to accession numbers:
> geneAcc=as.character (hgul33aACCNUM[ rownames (data)])

## convert to gene names
> geneNames=as.character (hgul33aSYMBOL[rownames (data) ])



Finally generate a report table

> ix=sam.result@qg.value<0.1

> result=data.frame(gene=geneNames[ix],
pvalue=sam.result@p.value[ix],

fold=sam.result@fold[ix])

## sort by fold change
> ix2=sort(result$fold, decreasing=TRUE,
> result=result[ix2, ]

> head(result)

2731192
3457336
2772566
2731230

gene pvalue

NM 000477
NM 006928
NM_ 144646
NM_ 001134

0
0
0
0

185
155
152
132

fold
.5720
.7143
.8232
.8515

index.return=TRUE)S$ix

> write.table(result, file="report.txt”, sep="\t")



Data artifacts:
batch effect and cell mixture



Technical artifact: batch effect

* Microarray experiments are very sensitive to
experimental conditions:
— Equipment, agents, technicians, etc.

e Data generated from different “batches” (lab, time,
etc.) can be quite different, but data from the same
batch tend to be more similar.

* So batch effects are structured noise/bias common
to all replicates in the same batch, but markedly
different from batch to batch.



Example
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Variation within and between batches
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Methods to remove batch effects

* Based on linear model: batches cause
location/scale changes (e.g., combat).

* Based on dimension reduction technique:
SVD, PCA, factor analysis, etc. (e.g., sva).

— The singular vectors/PCs/factors that are
correlated with batch are deemed from batch
effects.

— Remove batch effects from data, leftovers are
biological signals.



sva package in Bioconductor

e Contains ComBat function for removing
effects of known batches.

e Assume we have

— edata :a matrix for raw expression values
— batch: avector named for batch numbers.

modcombat = model .matrix(~1l, data=as.factor (batch))
combat edata = ComBat (dat=edata, batch=batch,
mod=modcombat, par.prior=TRUE, prior.plot=FALSE)



BatchQC - Batch Effects Quality Control

* A Bioconductor package with a GUI (shiny
app).

* http://bioconductor.org/packages/release/bio
c/html/BatchQC.html



http://bioconductor.org/packages/release/bioc/html/BatchQC.html

Comparison of the transcriptional landscapes between

human and mouse tissues

Shin Lin®®", Yiing Lin“", Joseph R. Nery?, Mark A. Urich?, Alessandra Breschi®f, Carrie A. Davis?, Alexander Dobin?,

Christopher Zaleski?, Michael A. Beer", William C. Chapman®, Thomas R. Gingeras?', Joseph R. Ecker

and Michael P. Snyder®?
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RESEARCH ARTICLE N
A reanalysis of mouse ENCODE comparative gene expression

data[version 1; referees: 3 approved, 1 approved with
reservations]
Yoav Gilad, Orna Mizrahi-Man

Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA

* Experimental design: data are from 5
batches.
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After correcting for batch effects

adipose (m)

|
e Tissues tend to T AR AT (LT

cluster together N i
more.

0.8

ladrenal (m)
brain (h) 0.7
[brain (m)
spleen (h) 0.6
spleen (m)
heart (h)

heart (m)

ovary (h)

ovary (m)

lung (h)

lung (M)

kidney (h)
kidney (m)
adipose (h)
pancreas (h)
pancreas (m)
liver (h)

liver (m)

small bowel (h)
sigmoid (h)
sigmoid (m)
small bowel (m)

0.5

1L TR A T A T

(y) Bun

(w) Bun|

(y) Aeupry
(w) Asupny
(y) esodipe
(y) seasoued

(w) seasoued
(u) s

(U) snsay
(W) snse:
(u) reusipe
(w) jeualpe
(y) uteiq
(w) ureuq
(y) ues|ds
(w) ues|ds
(y) veay
(w) peay
(y) Areno
(w) Ateao
(W) Jony|

(u) ;emoq |jewS
(u) prowbis
(w) prowbis

(w) asodipe
(w) ]omoq |lews




Batch effects are prevalent

* Observed in many high-throughput
experiments: microarray, different types of
sequencing, single cell omics, brain imaging.

 Methods for identifying and removing batch
effects is under continuous developments.



OPINION

Tackling the widespread and
critical impact of batch effects
in high-throughput data

Jeffrey T. Leek, Robert B. Scharpf, Héctor Corrada Bravo, David Simcha,
Benjamin Langmead, W. Evan Johnson, Donald Geman, Keith Baggerly
and Rafael A. Irizarry
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Biological artifact:
cell mixture

e Tissue sample is a mixture of different cell types.

* Data collected are mixed signals.

Genetic profile Mixture proportions
of each cell type
o B
i " @ | 80% | 60%
g ™ 111 M
........... : - | 7% 22%
A= 0 | 13% | 18%




An example: EWAS in aging study

* Cellular composition changes with age.

e Cellular composition is a major source of variability in DNA
methylation datasets in whole blood.
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Existing signal deconvolution methods

* Reference-based methods (some type of regression):
* Require cell type specific signature: Abbas et al. 2009; Clarke et al.
2010; Gong et al. 2011; Lu et al. 2003; Wang et al. 2006; Vallania et
al. 2018; Du et al. 2018;

* Requires mixture proportions: Erkkila et al. 2010; Lahdesmaki et al.
2005; Shen-Orr et al. 2010; Stuart et al. 2004.

* Reference free methods (some type of factor analysis):

* Gaujoux et al. 2011; Kuhn et al. 2011; Repsilber et al. 2010; Roy et
al. 2006; Venet et al. 2001; Houseman et al. 2012, 2014, 2016;
Rahmani et al. 2016, 2018; Lutsik et al. 2017; Xie et al. 2018;



Method to adjust for cell proportion

* In EWAS, add proportion as covariate in the model.

* More rigorous statistical modeling for DE/DM with
sample mixture has been a popular topic recently,
and a number of methods are developed:

— ¢SSAM: Shen-Orr et al. 2010 Nature methods
— CellIDMC: Zheng et al. 2018 Nature Methods
— TOAST: Li et al. 2019 Bioinformatics, 2019 Genome Biology



Review

* We have covered microarray analysis DE test,
including:
— SAM t-test.
— EB method: Limma.
— A little on complex design.
— Permutation test.
— Multiple testing.
— R/Bioconductor packages for DE analysis.

e Batch effects.

* Cell type mixture in complex tissues



