Gene expression microarray: Differential expression, data artifacts

Outline

- Scientific goal and potential problems.
- Review of basic statistical concepts:
 - Hypothesis testing.
 - Multiple comparison problem.
- Differential expression (DE) test methods:
 - SAM
 - Empirical Bayesian (EB) methods: limma.
 - Complex designs.
 - Permutation.
- Data artifacts:
 - Technical artifacts: batch effect.
 - Biological artifacts: cell type mixture.

Input data for DE test

- Assume data are correctly within- and between-array normalized.
- Input data for DE test is a matrix of positive number:
 - Rows for genes and columns for samples.
 - Usually work on logarithm of the data, which are normal-ish.

Goal of DE test

- Goal: find genes that are expressed differently between (among) conditions.
 - Assign a score for each gene to represent its statistical significance of being different.
 - Rank the genes according to the score.
 - Find a proper threshold for the score for calling DE.
- Easy solutions:
 - Hypothesis testing (t-test, ANOVA, linear model, etc.) to get p-values and use as scores.
 - Use canonical cutoff (0.05) to call DE.

Potential problems

- Hypothesis testing:
 - sample sizes are usually small, which lead to unstable test results.
- When data are not normal, p-values are not accurate.
- Use 0.05 as threshold of p-values to call DE multiple comparison problem.

Review of statistical inference

- Two-group t-test:
 - data from two groups (cancer and normal): X_1 , ..., X_M ; Y_1 , ..., Y_N .
 - Assume X's and Y's are normally distributed.
 - A "null hypothesis" is that the means of X's and Y's are identical.

- Test statistics
$$t = (\overline{X} - \overline{Y}) / \sqrt{S_X^2 / M + S_Y^2 / N}$$

where $S_X^2 = \frac{1}{M-1} \sum_{i=1}^M (X_i - \overline{X})^2$, $S_Y^2 = \frac{1}{N-1} \sum_{i=1}^N (Y_i - \overline{Y})^2$

- t follows t-distribution.
- P-value: under null hypothesis (that the means are the same), the probability to observe a t-statistics more extreme than the observed.

Why gene-by-gene t-test is a bad idea

- Small sample size (e.g., 3 vs. 3) leads to unstable estimates of variances.
 - By chance some genes have very small variance, which will result in large t-statistics and tiny p-values even when the difference is small.
 - Solution: SAM, EB methods.
- Sometimes data are not normally distributed, lead to incorrect p-values.
 - solution: non-parametric approach to obtain p-values.

SAM t-test Tusher *et al.* (2001) *PNAS*

- Try to remove (or minimize) the dependence of test statistics on variances (because small variance tend to lead to bigger test statistics).
- Solutions: add a small constant to the denominator in calculating t statistics:

$$d_i = \frac{\overline{y}_i - \overline{x}_i}{s_i + s_0}$$

- \overline{y}_i , \overline{x}_i : Means of two groups for gene i.
- s_i : Standard deviation for gene i, assuming equal variace in both groups.
- s_o : "Exchangeability factor" estimated using all genes.

The exchangeability factor

- Chosen to make signal-to-noise ratios independent of signal, e.g., the distribution of the statistics independent of the variance.
- Procedure:
 - Let S^{α} be the α percentile of the s_i values
 - For $\alpha \in (0, 0.01, 0.02, ..., 1.0)$ compute $d_i^{\alpha} = (\overline{y}_i \overline{x}_i) / (s_i + s^{\alpha})$
 - Compute $v_j^{\alpha} = mad(d_i^{\alpha} | s_i \in [q_{j,}, q_{j+1})), j = 1, 2, \dots 99$, here q_j are quantile.
 - Compute $cv(\alpha)$, the coefficient of variation of v_j^{α}
 - Choose $\hat{\alpha} = \operatorname{argmin} \{ cv(a) \}$. $\hat{s}_o = \hat{s}^{\hat{\alpha}}$

SAM t-test

- Highly cited (~14,000 citations as of 2022), <u>http://www-stat.stanford.edu/~tibs/SAM/</u>.
- Implemented as Bioconductor package siggenes, and Excel plugin.
- Follow-up work: SAMSeq on RNA-seq DE test.
- Limitations: solutions for s₀ often sensitive to data.

Empirical Bayes method from limma

Smyth et al. (2004) Statistical Applications in Genetics and Molecular Biology

- Highly cited (~13,000 citations as of 2022).
- Use a Bayesian hierarchical model in multiple regression setting.
- Borrow information from all genes to estimate gene specific variances.
 - As a result, variance estimates will be "shrunk" toward the mean of all variances. So very small variance scenarios will be alleviated.
- Implemented in Bioconductor package "limma".

The hierarchical model

Let β_{gj} be coefficient (difference in means in two group setting) for gene g, factor j, assume

$$\hat{\beta}_{gj} | \beta_{gj}, \sigma_g^2 \sim N(\beta_{gj}, v_{gj}\sigma_g^2) \qquad s_g^2 | \sigma_g^2 \sim \frac{\sigma_g^2}{d_g}\chi_{d_g}^2 \quad \text{with priors:}$$

$$P(\beta_{gj} \neq 0) = p_j. \quad \beta_{gj} | \sigma_g^2, \beta_{gj} \neq 0 \sim N(0, v_{0j}\sigma_g^2). \quad \frac{1}{\sigma_g^2} \sim \frac{1}{d_0 s_0^2}\chi_{d_0}^2.$$

Posterior statistics

Posterior variance :

Moderated t-statistics for testing $\beta_{gj} = 0$:

Summary on two-sample DE test

- Try to alleviate the "small sample variance" problem.
- Combine information from all genes.
- Many other variations of the model.
- In practice SAM and limma performs similarly.

Volcano plot

- A diagnostic plot to visualize the test results.
- Scatter plot of the statistical significance (log10 p-values) vs. biological significance (log2 fold change).
- Ideally the two should agree with each other.

A bad volcano plot

Volcano Plot with moderated t statistics

A good one

More complex experiments

- Complex experimental designs:
 - multiple (>2) groups.
 - crossed/nested.
 - etc.
- Examples for multiple-group:

A complicated loop design on two-color array

Oleksiak et al. (2002) Nature Genetics

DE test for complex design

- Two sample test -> multiple regression.
- The same problems still exist, and similar solutions can be applied.
- Mixed effect models can be used to model repeated measurements.
- Both SAM and limma provide functions for complex designs.

P-values by randomization

- When the data don't satisfy normal assumption, permutation/bootstrap can be used to derive empirical pvalues.
- Procedures for two sample comparison:
 - For each gene, randomly shuffle the sample labels.
 - Compute the t-statistics on the randomized data.
 - Repeat the procedure for N times, compute p-values as the percent of times that the permuted t-statistics more extreme than the observed.
- The procedure is a little complicated for multiple design. Basically shuffle the data based on null model.

Multiple testing correction

- Multiple testing problem is severe in high throughput data analysis because a large number of tests were performed.
 - Under type I error α=0.05, 1000 out of 20000 genes will be falsely declared DE (false positive) by chance.
 - If there are a total of 2000 genes declared DE, the false discovery rate (FDR) is 0.5!
- Multiple testing correction
 - Bonferroni correction: use α=0.05/20000 (too conservative).
 - FDR control (Benjamini and Hochberg, 1995 JRSS-B)

Bioconductor packages for microarray analysis

Bioconductor for microarray data

- There're a rich collection of bioc packages for microarrays. In fact, Bioconductor started for microarray analysis.
- There are currently 200+ packages for microarray.
- Important ones include:
 - affy: one of the earliest bioc packages. Designed for analyzing data from Affymetrix arrays.
 - limma and siggenes: DE detection using limma and SAM-t model.
 - oligo: preprocessing tools for many types of oligonecleotide arrays.
 This is designed to replace affy package.
 - Many annotation data package to link probe names to genes.

My suggestion

- Use oligo to reading in data, normalization and summarization.
- Use siggenes or limma for detecting DE genes.

An exmple of Analyzing a set of Affymetrix data

- Data generated by MAQC (MicroArray Quality Control) project.
- Five brain samples and five reference samples on human exon arrays.
- Raw data are CEL files (binary file generated by factory).
- Each CEL file is around 65Mb.
- The platform design package (pd.huex.1.0.st.v2) needs to be installed.

Read in data

```
## load in necessary libraries
> library(oligo)
> library(limma)
## get a list of CEL files
> CELfiles=dir(pattern="CEL")
## read in all raw data
> rawdata=read.celfiles(CELfiles)
> rawdata
ExonFeatureSet (storageMode: lockedEnvironment)
assayData: 6553600 features, 10 samples
  element names: exprs
protocolData
  rowNames: ambion A1.CEL, ambion A2.CEL, ..., stratagene K2.CEL
(10 total)
. . .
Annotation: pd.huex.1.0.st.v2
```

Normalization and summarization

```
## using RMA
> normdata=rma(rawdata, target = "core")
> normdata
ExpressionSet (storageMode: lockedEnvironment)
assayData: 22011 features, 10 samples
  element names: exprs
. . .
## extract expression values using expr function
> data=exprs(normdata)
> head(data)
          sample 1 sample 2 sample 3
                                     sample 4
1007 s at 10.160224 10.214496 10.090697 11.020649
1053 at 9.501826 9.500412 9.574311 7.361141
117 at 5.669447 5.478072 5.648788 6.048142
121 at 8.061479 8.154549 8.156215 7.902597
1255 g at 4.307739 4.017903 3.992333 4.668972
1294 at 7.108730 7.185586 7.122404 6.597161
```

check data distribution after RMA > boxplot(data)

The boxplot looks really good after RMA, so between array normalization is unnecessary. But in case you need it, use normalizeQuantiles function from limma for quantile normalization :

> data2=normalizeQuantiles(data)

Now the new boxplot after quantile normalization:

DE detection using SAM t-test

- > library(siggenes)
- ## create a vector for design.
- > design <- c(rep(0,5),rep(1,5))</pre>
- > sam.result=sam(data2, cl=design)
- > sam.result

SAM Analysis for the Two-Class Unpaired Case Assuming Unequal Variances

DE detection using limma

create design matrix. Intercept must be included
> design=cbind(mu=1,beta=c(rep(0,5),rep(1,5)))
fit linear model and compute estimates
> limma.result=lmFit(data2, design=design)
Empirical Bayes method to get p-values
> limma.result=eBayes(limma.result)
get p-values for the comparison
> pval=limma.result\$p.value[,"beta"]

Compare results from limma and SAM

- Agreement is good, 0.95 Spearman rank correlation.
- Limma seems to be more liberal.

limma p-values

Obtain gene annotations

- Now you get p-values for all genes, but you also need gene names for generating report.
- There are many annotation packages available for different array platforms. For example, hgu133a.db is for HGU133A arrays.
- These packages contain comprehensive information for all probes, including their sequences, chromosome, position, corresponding gene IDs, GO terms, etc.

- A typical way to convert probeset names to accession number or gene alias is:
 - > library(hgu133a.db)

convert to accession numbers:

- > geneAcc=as.character(hgu133aACCNUM[rownames(data)])
- ## convert to gene names
- > geneNames=as.character(hgu133aSYMBOL[rownames(data)])

Finally generate a report table

```
> ix=sam.result@q.value<0.1</pre>
```

```
> result=data.frame(gene=geneNames[ix],
```

```
pvalue=sam.result@p.value[ix],
```

```
fold=sam.result@fold[ix])
```

sort by fold change

```
> ix2=sort(result$fold, decreasing=TRUE, index.return=TRUE)$ix
```

> result=result[ix2,]

```
> head(result)
```

	gen	ne pvalue	fold	
2731192	NM_000477	0 185.	5720	
3457336	NM_006928	0 155.	7143	
2772566	NM_144646	0 152.	8232	
2731230	NM_001134	0 132.	8515	
> write.t	file="repo	rt.txt",	<pre>sep="\t")</pre>	
Data artifacts: batch effect and cell mixture

Technical artifact: batch effect

- Microarray experiments are very sensitive to experimental conditions:
 - Equipment, agents, technicians, etc.
- Data generated from different "batches" (lab, time, etc.) can be quite different, but data from the same batch tend to be more similar.
- So batch effects are structured noise/bias common to all replicates in the same batch, but markedly different from batch to batch.

Example

9 A: naive spleen 7 A: naive spleen 27 E: sepsis peritoneal 26 E: sepsis peritoneal 11 B: sepsis spleen 10 C: naive bone marrow 6 D: sepsis bone marrow 2 C: naive bone marrow 8 C: naive bone marrow 25 E: sepsis peritoneal 28 F: tumor spleen 29 F: tumor bone marrow 12 D: sepsis bone marrow 5 B: sepsis spleen 4 D: sepsis bone marrow 3 B: sepsis spleen 1 A: naive spleen

Variation within and between batches

Methods to remove batch effects

- Based on linear model: batches cause location/scale changes (e.g., combat).
- Based on dimension reduction technique: SVD, PCA, factor analysis, etc. (e.g., sva).
 - The singular vectors/PCs/factors that are correlated with batch are deemed from batch effects.
 - Remove batch effects from data, leftovers are biological signals.

sva package in Bioconductor

- Contains ComBat function for removing effects of known batches.
- Assume we have
 - edata: a matrix for raw expression values
 - batch: a vector named for batch numbers.

```
modcombat = model.matrix(~1, data=as.factor(batch))
combat_edata = ComBat(dat=edata, batch=batch,
    mod=modcombat, par.prior=TRUE, prior.plot=FALSE)
```

BatchQC - Batch Effects Quality Control

- A Bioconductor package with a GUI (shiny app).
- <u>http://bioconductor.org/packages/release/bio</u>
 <u>c/html/BatchQC.html</u>

Comparison of the transcriptional landscapes between human and mouse tissues

Shin Lin^{a,b,1}, Yiing Lin^{c,1}, Joseph R. Nery^d, Mark A. Urich^d, Alessandra Breschi^{e,f}, Carrie A. Davis^g, Alexander Dobin^g, Christopher Zaleski^g, Michael A. Beer^h, William C. Chapman^c, Thomas R. Gingeras^{g,i}, Joseph R. Ecker^{d,j,2}, and Michael P. Snyder^{a,2}

 One major conclusion is that tissues are more similar within a species, compared with the same tissue across species.

Yoav Gilad, Orna Mizrahi-Man

Ä

Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA

Experimental design: data are for 5 batches.

D87PMJN1 (run 253, flow cell D2GUAACXX, lane 7)	D87PMJN1 (run 253, flow cell D2GUAACXX , lane 8)	D4LHBFN1 (run 276, flow cell C2HKJACXX , lane 4)	MONK (run 312, flow cell C2GR3ACXX , lane 6)	HWI-ST373 (run 375, flow cell C3172ACXX , lane 7)
heart	adipose	adipose	heart	brain
kidney	adrenal	adrenal	kidney	pancreas
liver	sigmoid colon	sigmoid colon	liver	brain
small bowel	lung	lung	small bowel	spleen
spleen	ovary	ovary	testis	Human
testis		pancreas		Mouse

After correcting for batch effects

 Tissues tend to cluster together more.

Batch effects are prevalent

- Observed in many high-throughput experiments: microarray, different types of sequencing, single cell omics, brain imaging.
- Methods for identifying and removing batch effects is under continuous developments.

OPINION

Tackling the widespread and critical impact of batch effects in high-throughput data

Jeffrey T. Leek, Robert B. Scharpf, Héctor Corrada Bravo, David Simcha, Benjamin Langmead, W. Evan Johnson, Donald Geman, Keith Baggerly and Rafael A. Irizarry

Biological artifact: cell mixture

- Tissue sample is a mixture of different cell types.
- Data collected are mixed signals.

An example: EWAS in aging study

- Cellular composition changes with age.
- Cellular composition is a major source of variability in DNA methylation datasets in whole blood.

Jaffe and Irizarry GB(2014)

Existing signal deconvolution methods

- **Reference-based** methods (some type of regression):
 - Require cell type specific signature: Abbas et al. 2009; Clarke et al. 2010; Gong et al. 2011; Lu et al. 2003; Wang et al. 2006; Vallania et al. 2018; Du et al. 2018;
 - Requires mixture proportions: Erkkila et al. 2010; Lahdesmaki et al. 2005; Shen-Orr et al. 2010; Stuart et al. 2004.
- **Reference free** methods (some type of factor analysis):
 - Gaujoux et al. 2011; Kuhn et al. 2011; Repsilber et al. 2010; Roy et al. 2006; Venet et al. 2001; Houseman et al. 2012, 2014, 2016; Rahmani et al. 2016, 2018; Lutsik et al. 2017; Xie et al. 2018;

Method to adjust for cell proportion

- In EWAS, add proportion as covariate in the model.
- More rigorous statistical modeling for DE/DM with sample mixture has been a popular topic recently, and a number of methods are developed:
 - csSAM: Shen-Orr et al. 2010 Nature methods
 - CellDMC: Zheng et al. 2018 *Nature Methods*
 - TOAST: Li et al. 2019 Bioinformatics, 2019 Genome Biology

Review

- We have covered microarray analysis DE test, including:
 - SAM t-test.
 - EB method: Limma.
 - A little on complex design.
 - Permutation test.
 - Multiple testing.
 - R/Bioconductor packages for DE analysis.
- Batch effects.
- Cell type mixture in complex tissues