
Introduction to gene expression 
microarray data analysis



Outline
• Brief introduction:
– Technology and data.
– Statistical challenges in data analysis.

• Preprocessing – data normalization and 
transformation.

• Useful Bioconductor packages.



A short history
• Evolved from Southern blotting, which is a procedure to 

detect and quantify a specific DNA sequence. 
• Gene expression microarray can be thought as parallelized 

Southern blotting experiments. 
• First influential paper: Schena et al. (1995) Science. 

– study the expression of 45 Arabidopsis genes. 

• Very popular for the past 25+ years. Searching “gene 
expression microarray” on PubMed returns 100,000+ hits. 



Still microarray?

• Microarray is still widely used because of lower costs, 
easier experimental procedure and more established 
analysis methods.

• Similar problems are presented in newer 
technologies such as RNA-seq, and similar statistical 
techniques can be borrowed. 



Introduction to GE microarray 
technology and design



Goal: measure mRNA abundance

gene

The amount of these 
matters!  But they are 
difficult to measure.

The amount of these is 
easy to measure. And it is 
positively correlated with 
the protein amount!

DNA
(2 copies)

mRNA
(multiple copies)

Protein
(multiple copies)



Gene expression microarray design

TTAAGTCGTACCCGTGTACGGGCGC
AATTCAGCATGGGCACATGCCCGCG

• A collection of DNA spot on a solid 
surface. 

• Each spot contains many copies of the 
same DNA sequence (called “probes”).
– Probe sequences are designed to target 

specific genes. 

• A gene with part of its sequence 
complementary to a probe will stick to 
that probe (hybridization).

• The amount of hybridization on each 
probe measures the amount of mRNA 
for its target gene.



Experimental procedure

wet lab: perform experiment 

dry lab: data analysis



Available platforms

• Affymetrix
• Agilent
• Nimblegene
• Illumina
• ABI
• Spotted cDNA



Affymetrix Gene expression arrays

The Affymetrix platform is one of the most widely used. 

http://www.affymetrix.com/



Affymetrix GeneChip array design 

Use U133 system for illustration:
• Around 20 probes per gene.
• Not necessarily evenly spaced: sequence property matters.
• The probes are located at random locations on the array to average 

out the effects of the surface.

TTAAGTCGTACCCGTGTACGGGCGC Gene sequence
AATTCAGCATGGGCACATGCCCGCG Probe sequence



One-color vs. two-color arrays

• Two-color (two-channel) arrays hybridize 
two samples on the same array with 
different colors (red and green). 
– Each spot produce two numbers. 
– Agilent, Nimblegen

• One-color (single-channel) arrays 
hybridize one sample per array.
– Easier when comparing multiple groups.
– Have to use twice as many arrays.
– Affymetrix, Illumina.



Data from microarray
• Data are fluorescent intensities:

– extracted from the images with artifacts (e.g., 
cross-talk) removed, which Involves many 
statistical methods.  

– Final data are stored in a matrix: row for probes, 
column for samples.

– For each sample, each probe has one number 
from one-color arrays and two numbers for two-
color arrays.

sample1   sample2   sample3  sample4
1007_s_at  8.575758  8.915618  9.150667 8.967870
1053_at    6.959002  7.039825  6.898245 7.136316
117_at     7.738714  7.618013  7.499127 7.610726
121_at    10.114529 10.018231 10.003332 9.809068
1255_g_at  5.056204  4.759066  4.629297 4.673458
1294_at    8.009337  7.980694  8.343183 8.025335
1316_at    6.899290  7.045843  6.976185 7.063050
1320_at    7.218898  7.600437  7.433031 7.201984
1405_i_at  6.861933  6.042179  6.165090 6.200671
1431_at    5.073265  5.114023  5.159933 5.063821
...



Microarray data measure the “relative” 
levels of mRNA abundance 

• Expression levels for different genes on the same 
array are not directly comparable. 

• Expression levels for the same genes from different 
arrays can be compared, after proper normalization.

• All statistical inferences are for relative expressions, 
e.g., “the expression of gene X is higher in caner 
compared to normal”. 



Statistical challenges 

• Data normalization: remove systematic technical artifacts.
– Within array: variations of probe intensities are caused by:

• cross-hybridization: probes capture the “wrong” target.
• probe sequence: some probes are “sticker”.
• others: spot sizes, smoothness of array surface, etc.

– Between array: intensity-concentration response curve can be 
different from different arrays, caused by variations in sample 
processing, image reader, etc.

• Summarization of gene expressions:
– Summarize values for multiple probes on the same gene to one 

number.
• Differential expression detection:

– Find genes expressed differently between different experimental 
conditions, e.g., cases and controls. 



Gene expression microarray 
data normalization



Normalization

• Artifacts are introduced at each step of the 
experiment:
– Sample preparation: PCR effects.
– Array itself: array surface effects, printing-tip effects. 
– Hybridization: non-specific binding, GC effects.
– Scanning: scanner effects. 

• Normalization is necessary before any analysis to 
ensure differences in intensities are due to 
differential expression, not artifacts.  



Within- and between-array 
normalization

• Within-array: normalization at each array individually 
to remove array-specific artifacts. 

• Between-array: to adjust the values from different 
arrays and put them at the same baseline, so that 
numbers are comparable.



Within array normalization, two-color

• Most common problem is the intensity dependent 
effect: log ratios of intensities from two channels 
depends on the total intensity. 

• Most popular: loess normalization.



MA plot
• Widely used diagnostic plot for microarray data (Yang et al. 2002, 

Nucleic Acids Research). 
• Also used for different types of sequencing data. 
• For spot i, let Ri and Gi be the intensities, define:

– Mi=log2Ri-log2Gi, A=(log2Ri+log2Gi)/2.
– M measures relative expression, A measures total expression. 

• Visualize relative vs. total expression dependence.
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MostMost  Common ProblemCommon Problem

Intensity dependent effect: Different

background level most likely culprit

Scatter PlotScatter Plot

Demonstrates importance of MA plot

Two-color platformsTwo-color platforms

• Platforms that use printing robots are
prone to many systematic effects:

– Dye

– Print-tip

– Plates

– Print order

– Spatial

• Some examples follow



Loess normalization

• Based on the assumptions that: (1) most genes are not 
DE (with M=0), and (2) M and A are independent, MA 
plot should be flat and centered at 0.

• Normalization procedure:
– Fit a smooth curve of M vs. A using loess, e.g., M=f(A)+ε, f(.) 

is smooth.
– Mnorm=M-f(A)

– loess (lowess): locally weighted scatterplot smoothing. 
– method to fit a smooth curve between two variables . 



Loess normalization: before and after



Within array normalization: one-color

• RMA (Robust Multi-array Average) background model (Irizarry 
et al. 2003, Biostatistics). 

• Idea: observed intensity Y is composed of the true intensity S
(exponentially distributed) and a random background noise B 
(normally distribute). 

• For each array, assume:
Y = S +B
Signal:   S ~ Exp(λ)
Background:    B ~ N(µ,σ 2 ) left-truncated at zero



Simple derivation

• Observed: Y; of interest: S. 
• The idea is to predict S from Y using             :

• The joint:  
• Marginal distribution of Y can be derived. 

E[S |Y ]

E[S |Y ]= s f (∫ s |Y = y)ds = s f (s,Y = y)
fY (y)

∫ ds = 1
fY (y)

s f (∫ s,Y = y)ds

f (s,Y = y) = f (s,B = y− s) = fS (s) fB (y− s)

fY (y)



An extension to consider probe sequence 
effects: GCRMA

for a given gene become correlated across experimental units. This makes obtaining reliable esti-

mates of uncertainty difficult. However, a multi-array versions of our model motivates a method

that performs background adjustment, normalization, and summarization as part of the estimation

procedure. Using this approach one can compute standard error estimates that account for the three

steps.

For example, if we were comparing gene expression across different conditions, each contain-

ing various arrays, we could write the following model based on (2):

Ygi j = Ogi j +Ngi j +Sgi j (5)

= Ogi j + exp(µgi j + εgi j)+ exp(sg+δgXi+agi j +bi+ξgi j). (6)

Here Ygi j is the PM intensity for the probe j in probeset g on array i, εgi j is a normally distributed

error that account for NSB for the same probe behaving differently in different arrays, sg repre-

sents the baseline log expression level for probeset g, agi j represents the signal detecting ability

of probe j in gene g on array i, bi is a term used to describe the need for normalization, ξgi j is a

normally distributed term that accounts for the multiplicative error, and δg is the expected differ-

ential expression for every unit difference in covariate X . Notice δg is the parameter of interest. As

described by Naef and Magnasco (2003) ag j is a function of α.

With this model in place one may obtain point estimates and standard errors for δg using, say,

theMLE.With appropriate priors in place one could also obtain Bayesian estimates. However, both

these approaches are computationally difficult. In Figure 5 we present some preliminary results

obtained using generalized estimating equations to estimate δ. A difficulty with this approach is

that when Sgi j = 0 in (5) then (6) is not defined. However, preliminary results look promising and

making this approach useful in practice is the subject of current research.
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Wu et al. (2005) JASA



Probe sequence effects

• Probe affinity is modeled as:

• This kind of modeling is widely 
used in other microarray and 
sequencing data!

base effects:

α=
25

∑
k=1

∑
j⇤{A,T,G,C}

µj,k1bk= j with µj,k =
3

∑
l=0

β j,lkl, (1)

where k= 1, . . . ,25 indicates the position along the probe, j indicates the base letter, bk represents

the base at position k, 1bk= j is an indicator function that is 1 when the k-th base is of type j and 0

otherwise, and µj,k represents the contribution to affinity of base j in position k. For fixed j, the

effect µj,k is assumed to be a polynomial of degree 3. The model is fitted to log intensities from

many arrays using least squares (Naef and Magnasco, 2003).

We adapt this idea to help describe the NSB component. We fit (1) to our NSB experiment log

intensity data using a spline with 5 degrees of freedom instead of a polynomial of degree 3. The

least squares estimates µ̂j,k are shown in Figure 3. This Figure is similar to Figure 3 in Naef and

Magnasco (2003). In Section 3 we use these affinity estimates to describe NSB noise.

Zhang et al (Zhang et al., 2003) propose using a positional-dependent-nearest-neighbor (PDNN)

model which is based on hybridization theory. This model takes into account interactions between

bases that are physically close. However, Naef and Magnasco (2003) demonstrate that these in-

teractions do not add much predictive power for specific signal probe effects. Similar results for

prediction of NSB are found in Wu and Irizarry (2004). Figure 4 shows background adjusted

log2(PM) against α for the NSB data. Notice the affinities predict NSB quite well. Almost as

well as theMM intensities. The advantage of the affinities over the MM is that they will not detect

signal since they are pre-computed numbers.
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Figure 3: The effect of base A in position k, µA,k, is plotted against k. Similarly for the other three
bases.

3 Background Model

In this section we propose a statistical model that motivates useful background adjustments. For

any particular probe-pair we assume that:

PM = OPM +NPM +S (2)

MM = OMM +NMM +φS.

Here O represents optical noise, N represents NSB noise and S is a quantity proportional to RNA

expression (the quantity of interest). The parameter 0 < φ < 1 accounts for the fact that for

some probe-pairs the MM detects signal. We assume O follows a log-normal distribution and

that log(NPM) and log(NMM) follow a bivariate-normal distribution with means of µPM and µMM

and the variance var[log(NPM] = var[log(NMM)]� σ2 and correlation ρ constant across probes. We

assume µPM � h(αPM) and µMM � h(αMM), with h a smooth (almost linear) function and the αs

defined by (1). Because we do not expect NSB to be affected by optics we assume O and N are
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Summary: within array normalization

• To remove the unwanted artifacts and obtain true 
signals. 

• Performed at each array individually.
• Both MA-plot based normalization and background 

error models (eg, RMA) are popular in many other 
data (other microarrays, ChIP-seq, RNA-seq) 
– Use loess with caution because it assumes most genes are 

not DE.
– The error model (additive background, multiplicative error) 

is very useful.



Between array normalization

• Data from arrays (intensity values) represent 
mRNA quantities, but the intensity-mRNA 
quantities response can be different from 
different arrays. So a number, say, 5, on arrays 
1 doesn’t mean the same on array 2.

• This could be caused by:

– Total amount of mRNA used

– Properties of the agents used.

– Array properties

– Settings of laser scanners

– etc.

• These artifacts cannot be removed by within 
array normalization.

• Goal: normalize so that data from different 
arrays are comparable! 



Linear scaling method

• Used in Affymetrix software MAS:
– Use a number of “housekeeping” genes and 

assume their expressions are identical across all 
arrays.

– Shift and rescale all data so the average 
expression of these genes are the same across all 
arrays.



Non-linear smoothing based

• Implemented in dChip (Li and Wong 2001, 
Genome Bio.)
– Find a set of genes invariant across arrays. 
– Find a “baseline” array.
– For every other array, fit a smooth curve on 

expressions of invariant genes. 
– Normalize based on the fitted curve. 



dChip normalization
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Figure 10
Similar plots as in Figure 9 for arrays hybridized to two different samples (array 24 and 36 of array set 5). (a) CEL intensities;
(b) same plot as in (a) with superimposed circles representing the invariant set; (c) after renormalization; (d) Q-Q plot of
normalized probe intensities. Note that the smoothing spline in (a) is affected by several points at the lower-right corner,
which might belong to differentially expressed genes. The invariant set, on the other hand, does not include these points
when determining the normalization curve, leading to a different normalization relationship at the high end. 



Quantile normalization

Proposed in Bolstad et al. 2003, Bioinformatics: 
• Force the distribution of all data from all arrays to be the 

same, but keep the ranks of the genes. 
• Procedures:

1. Create a target distribution, usually the average of all arrays. 
2. For each array, match its quantiles to that of the target. To be 

specific: xnorm = F2
-1(F1(x)):

• x: value in the chip to be normalized
• F1: distribution function in the array to be normalized
• F2: target distribution function
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Gene sample1 Sample2 Sample3 Sample4
1        8       15        9       13   
2        7        2        7       15
3        3        6        5        8
4        1        5        2        9
5        9       13        6       11

A simple example for quantile normalization
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1. Find the Smallest Value for each sample

Gene sample1 Sample2 Sample3 Sample4
1        8       15        9       13   
2        7        2        7       15
3        3        6        5        8
4        1        5        2        9
5        9       13        6       11

2. Average them

(1+2+2+8)/4=3.25
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3. Replace Each Value by the Average

Gene sample1 Sample2 Sample3 Sample4
1        8       15        9       13   
2        7      3.25 7       15
3        3        6        5      3.25
4      3.25 5      3.25 9
5        9       13        6       11
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4. Find the Next Smallest Values, then average

Gene sample1 Sample2 Sample3 Sample4
1        8       15        9       13   
2        7      3.25 7       15
3        3        6        5      3.25
4      3.25 5      3.25 9
5        9       13        6       11

(3+5+5+9)/4=5.5
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5. Replace Each Value by the Average

Gene sample1 sample2 sample3 sample4
1        8       15       9       13   
2        7     3.25       7       15
3     5.50        6    5.50 3.25
4     3.25     5.50 3.25     5.50
5        9       13       6       11
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6. Continue the process, we get the following matrix 
after finishing:
Gene sample1 sample2   sample3  sample4
1      10.25    12.00    12.00    10.25   
2       7.50     3.25    10.25    12.00
3       5.50     7.50     5.50     3.25
4       3.25     5.50     3.25     5.50
5      12.00    10.25     7.50     7.50

The result matrix has following properties:
• The values in each column are exactly the same.
• The ranks of genes in each column are the same as 

before normalization. 



Before/after QN boxplot



Summary: between-array normalization

• Must do before comparing different arrays.
• Same problems exist in sequencing data.
• Quantile normalization is very strong and 

could remove the true signals, use with 
caution. 



Microarray data summarization

• There are multiple probes targeting a gene. The task is to 
summarize the readings from these probes into one number 
to represent the gene expression.

• Naïve methods: mean, median.
• From MAS 5.0: use one-step Tukey Biweight (TBW) to obtain a 

robust weighted mean that is resistant to outliers.
– Probes with intensities far away from median will have smaller weights 

in the average.

• dChip (Li & Wong, 2001): model based on PM-MM.  



• Borrow information from multiple samples to estimate probe 
effects.

• Model-fitting: Median Polish (robust against outliers)
• Iteratively removing the row and column medians until convergence
• The remainder is the residual; 
• After subtracting the residual, the row medians are the estimates of 

the expression, and column medians are probe effects.

RMA summarization

Irizarry et al. (2003) Biostatistics.



Bioconductor for microarray data

• There is a rich collection of Bioconductor packages (hundreds) 
for microarrays. In fact, Bioconductor started for microarray 
analysis. 

• Important ones include:
– affy: one of the earliest bioc packages. Designed for analyzing data 

from Affymetrix arrays.
– oligo: preprocessing tools for many types of oligonecleotide arrays. 

This is designed to replace affy package. 
– limma and siggenes: DE detection using limma and SAM-t model. 
– Many annotation data package to link probe names to genes.

• Data normalization and summarization can be done using 
oligo package (details next lecture). 



Review

• We have covered microarray analysis, 
including:
– Data preprocessing: within and between array 

normalization.
– Summarization.

• Next lecture: 
– DE detection for microarray.


