Introduction to gene expression
microarray data analysis



Outline

* Brief introduction:
— Technology and data.
— Statistical challenges in data analysis.

* Preprocessing — data normalization and
transformation.

e Useful Bioconductor packages.



A short history

Evolved from Southern blotting, which is a procedure to
detect and quantify a specific DNA sequence.

Gene expression microarray can be thought as parallelized
Southern blotting experiments.

First influential paper: Schena et al. (1995) Science.
— study the expression of 45 Arabidopsis genes.

Very popular for the past 25+ years. Searching “gene
expression microarray” on PubMed returns 100,000+ hits.



Still microarray?

* Microarray is still widely used because of lower costs,
easier experimental procedure and more established
analysis methods.

e Similar problems are presented in newer
technologies such as RNA-seq, and similar statistical
techniques can be borrowed.



Introduction to GE microarray
technology and design



Goal: measure mRNA abundance
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Gene expression microarray design

AATTCAGCATGGGCACATGCCCGCG

A collection of DNA spot on a solid
surface.

Each spot contains many copies of the

same DNA sequence (called “probes”).
— Probe sequences are designed to target

specific genes.

A gene with part of its sequence

complementary to a probe will stick to

that probe (hybridization).

The amount of hybridization on each
probe measures the amount of mRNA

for its target gene.



Experimental procedure
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Available platforms

Affymetrix
Agilent
Nimblegene
lllumina

ABI

Spotted cDNA



Affymetrix Gene expression arrays

The Affymetrix platform is one of the most widely used.
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~~" DNA probes in one corner
of an Affymetrix array

http://www.affymetrix.com/



Affymetrix GeneChip array design

Use U133 system for illustration:
 Around 20 probes per gene.

 Not necessarily evenly spaced: sequence property matters.
* The probes are located at random locations on the array to average
out the effects of the surface.

TAAGTCGTACCCGTGTACGGGCGC Gene sequence
AATTCAGCATGGGCACATGCCCGCG Probe sequence



One-color vs. two-color arrays
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 Two-color (two-channel) arrays hybridize
two samples on the same array with
different colors (red and green).
— Each spot produce two numbers.
— Agilent, Nimblegen
* One-color (single-channel) arrays
hybridize one sample per array.
— Easier when comparing multiple groups.
— Have to use twice as many arrays.
— Affymetrix, lllumina.



Data from microarray

e Data are fluorescent intensities:

— extracted from the images with artifacts (e.g.,
cross-talk) removed, which Involves many
statistical methods.

— Final data are stored in a matrix: row for probes,
column for samples.

— For each sample, each probe has one number
from one-color arrays and two numbers for two-
color arrays.

samplel sample? sample3 sample4

1007 _s at 8.575758 8.915618 9.150667 8.967870
1053 at 6.959002 7.039825 6.898245 7.136316
117 at 7.738714 7.618013 7.499127 7.610726
121 at 10.114529 10.018231 10.003332 9.809068
1255 g at 5.056204 4.759066 4.629297 4.673458
1294 at 8.009337 7.980694 8.343183 8.025335
1316 _at 6.899290 7.045843 6.976185 7.063050
1320 _at 7.218898 7.600437 7.433031 7.201984
1405 i at 6.861933 6.042179 6.165090 6.200671
1431 at 5.073265 5.114023 5.159933 5.063821



Microarray data measure the “relative”
levels of mMRNA abundance

* Expression levels for different genes on the same
array are not directly comparable.

* Expression levels for the same genes from different
arrays can be compared, after proper normalization.

» All statistical inferences are for relative expressions,
e.g., “the expression of gene X is higher in caner
compared to normal”.



Statistical challenges

 Data normalization: remove systematic technical artifacts.
— Within array: variations of probe intensities are caused by:
e cross-hybridization: probes capture the “wrong” target.
e probe sequence: some probes are “sticker”.
e others: spot sizes, smoothness of array surface, etc.

— Between array: intensity-concentration response curve can be
different from different arrays, caused by variations in sample
processing, image reader, etc.

 Summarization of gene expressions:

— Summarize values for multiple probes on the same gene to one
number.

e Differential expression detection:

— Find genes expressed differently between different experimental
conditions, e.g., cases and controls.



Gene expression microarray
data normalization



Normalization

* Artifacts are introduced at each step of the
experiment:
— Sample preparation: PCR effects.
— Array itself: array surface effects, printing-tip effects.
— Hybridization: non-specific binding, GC effects.
— Scanning: scanner effects.

 Normalization is necessary before any analysis to

ensure differences in intensities are due to
differential expression, not artifacts.



Within- and between-array
normalization

* Within-array: normalization at each array individually
to remove array-specific artifacts.

 Between-array: to adjust the values from different

arrays and put them at the same baseline, so that
numbers are comparable.



Within array normalization, two-color

* Most common problem is the intensity dependent
effect: log ratios of intensities from two channels

depends on the total intensity.
 Most popular: loess normalization.



MA plot

Widely used diagnostic plot for microarray data (Yang et al. 2002,
Nucleic Acids Research).

Also used for different types of sequencing data.

For spot i, let R; and G; be the intensities, define:
— M=log,R-log,G;, A=(log,R+log,G))/2.
— M measures relative expression, A measures total expression.

Visualize relative vs. total expression dependence.




Loess normalization

Based on the assumptions that: (1) most genes are not
DE (with M=0), and (2) M and A are independent, MA
plot should be flat and centered at 0.

Normalization procedure:

— Fit a smooth curve of M vs. A using loess, e.g., M=f(A)+¢, f(.)
is smooth.

_ Mnorsz'f (A)
loess (lowess): locally weighted scatterplot smoothing.

— method to fit a smooth curve between two variables .



Loess normalization: before and after
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Within array normalization: one-color

* RMA (Robust Multi-array Average) background model (lrizarry
et al. 2003, Biostatistics).

* |dea: observed intensity Y is composed of the true intensity S
(exponentially distributed) and a random background noise B
(normally distribute).

* For each array, assume:

Y=S+B
Signal: S ~ Exp(A)
Background: B~ N(u,0?) left-truncated at zero



Simple derivation

Observed: Y; of interest: S.

The idea is to predict S from Y using g[siy:

S Y=y, _ 1

= Y =yv)d
) fY(Y)fo(S b

E[SIY]=fsf(sIY=y)ds=fs

The joint: f(s,Y =y)= f(s,B=y-5)= fs(s)f3(y-5)
Marginal distribution of Y f£.(y) can be derived.



An extension to consider probe sequence
effects: GCRMA

Yeij = Ogij+Ngij+5gij

= Ogij+exp(pgij+ €gij) + exp(sg + 0o Xi + dgij + bi + Egij).
Here Y,;; is the PM intensity for the probe j in probeset g on array i, €4;; is a normally distributed
error that account for NSB for the same probe behaving differently in different arrays, s, repre-
sents the baseline log expression level for probeset g, ag;; represents the signal detecting ability
of probe j in gene g on array i, b; is a term used to describe the need for normalization, ;; is a
normally distributed term that accounts for the multiplicative error, and 9, is the expected differ-
ential expression for every unit difference in covariate X . Notice 0, is the parameter of interest. As

described by Naef and Magnasco (2003) a,; is a function of a.

Wu et al. (2005) JASA



Probe sequence effects

* Probe affinity is modeled as:

25
o =
k=1 je{AT,G,C}

3
ML= with i = B k',
[=0

* This kind of modeling is widely
used in other microarray and

seguencing

data!
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Summary: within array normalization

e To remove the unwanted artifacts and obtain true
signals.

* Performed at each array individually.

* Both MA-plot based normalization and background
error models (eg, RMA) are popular in many other
data (other microarrays, ChlP-seq, RNA-seq)

— Use loess with caution because it assumes most genes are
not DE.

— The error model (additive background, multiplicative error)
is very useful.



Between array normalization

e Data from arrays (intensity values) represent
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MRNA quantities, but the intensity-mRNA
guantities response can be different from
different arrays. So a number, say, 5, on arrays
1 doesn’t mean the same on array 2.
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* This could be caused by:

— Total amount of mMRNA used
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— Array properties
— Settings of laser scanners
— etc.

 These artifacts cannot be removed by within
array normalization.

e Goal: normalize so that data from different
arrays are comparable!



Linear scaling method

e Used in Affymetrix software MAS:

— Use a number of “housekeeping” genes and
assume their expressions are identical across all

arrays.

— Shift and rescale all data so the average
expression of these genes are the same across all

arrays.



Non-linear smoothing based

* Implemented in dChip (Li and Wong 2001,
Genome Bio.)

— Find a set of genes invariant across arrays.
— Find a “baseline” array.

— For every other array, fit a smooth curve on
expressions of invariant genes.

— Normalize based on the fitted curve.



dChip normalization
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Quantile normalization

Proposed in Bolstad et al. 2003, Bioinformatics:

* Force the distribution of all data from all arrays to be the
same, but keep the ranks of the genes.

* Procedures:
1. Create a target distribution, usually the average of all arrays.
2. For each array, match its quantiles to that of the target. To be
specific: X,.,m = F571(F;(x)):
e x:value in the chip to be normalized
* F,: distribution function in the array to be normalized
* F,: target distribution function



A simple example for quantile normalization

Gene samplel Sample?2 Sample3 Sampled

1 8 15 9 13
2 7 2 7 15
3 3 6 5 8
4 1 5 2 9
5 9 13 6 11



1. Find the Smallest Value for each sample

Gene samplel Sample?2 Sample3 Sampled

1 8 15 9 13
2 7 7 15
3 3 6 5
4 0 5 2 9
5 9 13 6 11

2. Average them

(1+2+2+8)/4=3.25



3. Replace Each Value by the Average

Gene samplel Sample?2 Sample3 Sample4

1 8 15 9 13
2 7 3.25 7 15
3 3 6 5 3.25
4 3.25 5 3.25 9
5 9 13 6 11



4. Find the Next Smallest Values, then average

Gene samplel

1

O LN

8
7

3

3.25
9

Sample?2
15
3.25
6

5
13

(3+5+5+9)/4=5.5

Sample3
9
7
5
3.25

6

Sampled

13
15
3.25

9

11

36



5. Replace Each Value by the Average

Gene samplel sample?2 sample3 sampled
1 8 15 9 13
2 7 3.25 7 15
3 6 3.25
4 3.25 3.25
5 9 13 6 11



6. Continue the process, we get the following matrix
after finishing:

Gene samplel sample?2 sample3 sampled
1 10.25 12.00 12.00 10.25
2 7.50 3.25 10.25 12.00
3 5.50 7.50 5.50 3.25
4 3.25 5.50 3.25 5.50
5 12.00 10.25 7.50 7.50

The result matrix has following properties:

 The values in each column are exactly the same.

* The ranks of genes in each column are the same as
before normalization.



Before/after QN boxplot
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Summary: between-array normalization

 Must do before comparing different arrays.
 Same problems exist in sequencing data.

* Quantile normalization is very strong and
could remove the true signals, use with

caution.



Microarray data summarization

There are multiple probes targeting a gene. The task is to
summarize the readings from these probes into one number
to represent the gene expression.

Naive methods: mean, median.

From MAS 5.0: use one-step Tukey Biweight (TBW) to obtain a
robust weighted mean that is resistant to outliers.

— Probes with intensities far away from median will have smaller weights
in the average.

dChip (Li & Wong, 2001): model based on PM-MM.



RMA summarization

.}rjy"in =‘l[jn+a'.:'n+€j";‘n,i= l,...,],j — 1.[...,],7]= 15...,}'1

log transformed PM intensities. denoted with ¥
u; representing the log scale expression level for array 7
o ; a probe affinity effect.

each probe set »

* Borrow information from multiple samples to estimate probe
effects.
 Model-fitting: Median Polish (robust against outliers)
* lteratively removing the row and column medians until convergence

* The remainder is the residual;
e After subtracting the residual, the row medians are the estimates of
the expression, and column medians are probe effects.

Irizarry et al. (2003) Biostatistics.



Bioconductor for microarray data

* There is arich collection of Bioconductor packages (hundreds)
for microarrays. In fact, Bioconductor started for microarray
analysis.

* Important ones include:

— affy: one of the earliest bioc packages. Designed for analyzing data
from Affymetrix arrays.

— oligo: preprocessing tools for many types of oligonecleotide arrays.
This is designed to replace affy package.

— limma and siggenes: DE detection using limma and SAM-t model.
— Many annotation data package to link probe names to genes.

* Data normalization and summarization can be done using
oligo package (details next lecture).



Review

* We have covered microarray analysis,
including:

— Data preprocessing: within and between array
normalization.

— Summarization.

e Next lecture:

— DE detection for microarray.



