Introduction to gene expression microarray data analysis

Outline

- Brief introduction:
 - Technology and data.
 - Statistical challenges in data analysis.
- Preprocessing data normalization and transformation.
- Useful Bioconductor packages.

A short history

- Evolved from Southern blotting, which is a procedure to detect and quantify a specific DNA sequence.
- Gene expression microarray can be thought as parallelized Southern blotting experiments.
- First influential paper: Schena *et al.* (1995) *Science*.
 - study the expression of 45 Arabidopsis genes.
- Very popular for the past 25+ years. Searching "gene expression microarray" on PubMed returns 100,000+ hits.

Still microarray?

- Microarray is still widely used because of lower costs, easier experimental procedure and more established analysis methods.
- Similar problems are presented in newer technologies such as RNA-seq, and similar statistical techniques can be borrowed.

Introduction to GE microarray technology and design

Goal: measure mRNA abundance

Gene expression microarray design

- A collection of DNA spot on a solid surface.
- Each spot contains many copies of the same DNA sequence (called "probes").
 - Probe sequences are designed to target specific genes.
- A gene with part of its sequence complementary to a probe will stick to that probe (hybridization).
 - The amount of hybridization on each probe measures the amount of mRNA for its target gene.

Experimental procedure

Available platforms

- Affymetrix
- Agilent
- Nimblegene
- Illumina
- ABI
- Spotted cDNA

Affymetrix Gene expression arrays

The Affymetrix platform is one of the most widely used.

http://www.affymetrix.com/

Affymetrix GeneChip array design

Use U133 system for illustration:

- Around 20 probes per gene.
- Not necessarily evenly spaced: sequence property matters.
- The probes are located at random locations on the array to average out the effects of the surface.

One-color vs. two-color arrays

Cancer Cells	Normal Cells
RNA I	solation
Rev	verse criptase
Lab	eling
CDNA "Red Flourescent" Probes	cDNA "Green Fluorescent" Probes
Combi	ne Targets
Hybridize to Microarray	
C3.	

- Two-color (two-channel) arrays hybridize two samples on the same array with different colors (red and green).
 - Each spot produce two numbers.
 - Agilent, Nimblegen
- One-color (single-channel) arrays hybridize one sample per array.
 - Easier when comparing multiple groups.
 - Have to use twice as many arrays.
 - Affymetrix, Illumina.

Data from microarray

- Data are fluorescent intensities:
 - extracted from the images with artifacts (e.g., cross-talk) removed, which Involves many statistical methods.
 - Final data are stored in a matrix: row for probes, column for samples.
 - For each sample, each probe has one number from one-color arrays and two numbers for twocolor arrays.

	sample1	sample2	sample3	sample4
1007_s_at	8.575758	8.915618	9.150667	8.967870
1053_at	6.959002	7.039825	6.898245	7.136316
117_at	7.738714	7.618013	7.499127	7.610726
121_at	10.114529	10.018231	10.003332	9.809068
1255 <u>g</u> at	5.056204	4.759066	4.629297	4.673458
1294_at	8.009337	7.980694	8.343183	8.025335
1316_at	6.899290	7.045843	6.976185	7.063050
1320_at	7.218898	7.600437	7.433031	7.201984
1405_i_at	6.861933	6.042179	6.165090	6.200671
1431_at	5.073265	5.114023	5.159933	5.063821

Microarray data measure the "relative" levels of mRNA abundance

- Expression levels for **different genes on the same array** are not directly comparable.
- Expression levels for the same genes from different arrays can be compared, after proper normalization.
- All statistical inferences are for relative expressions, e.g., "the expression of gene X is higher in caner compared to normal".

Statistical challenges

- Data normalization: remove systematic technical artifacts.
 - Within array: variations of probe intensities are caused by:
 - cross-hybridization: probes capture the "wrong" target.
 - probe sequence: some probes are "sticker".
 - others: spot sizes, smoothness of array surface, etc.
 - Between array: intensity-concentration response curve can be different from different arrays, caused by variations in sample processing, image reader, etc.
- Summarization of gene expressions:
 - Summarize values for multiple probes on the same gene to one number.
- Differential expression detection:
 - Find genes expressed differently between different experimental conditions, e.g., cases and controls.

Gene expression microarray data normalization

Normalization

- Artifacts are introduced at each step of the experiment:
 - Sample preparation: PCR effects.
 - Array itself: array surface effects, printing-tip effects.
 - Hybridization: non-specific binding, GC effects.
 - Scanning: scanner effects.
- Normalization is necessary before any analysis to ensure differences in intensities are due to differential expression, not artifacts.

Within- and between-array normalization

- Within-array: normalization at each array individually to remove array-specific artifacts.
- Between-array: to adjust the values from different arrays and put them at the same baseline, so that numbers are comparable.

Within array normalization, two-color

- Most common problem is the intensity dependent effect: log ratios of intensities from two channels depends on the total intensity.
- Most popular: loess normalization.

MA plot

- Widely used diagnostic plot for microarray data (Yang et al. 2002, *Nucleic Acids Research).*
- Also used for different types of sequencing data.
- For spot *i*, let R_i and G_i be the intensities, define:
 - $M_{i} = \log_{2}R_{i} \log_{2}G_{i}, A = (\log_{2}R_{i} + \log_{2}G_{i})/2.$
 - M measures relative expression, A measures total expression.
- Visualize relative vs. total expression dependence.

Loess normalization

- Based on the assumptions that: (1) most genes are not DE (with M=0), and (2) M and A are independent, MA plot should be flat and centered at 0.
- Normalization procedure:
 - Fit a smooth curve of M vs. A using loess, e.g., M=f(A)+ε, f(.) is smooth.
 - $M_{norm} = M f(A)$
- loess (lowess): locally weighted scatterplot smoothing.
 - method to fit a smooth curve between two variables .

Loess normalization: before and after

Within array normalization: one-color

- RMA (Robust Multi-array Average) background model (Irizarry et al. 2003, *Biostatistics*).
- Idea: observed intensity Y is composed of the true intensity S (exponentially distributed) and a random background noise B (normally distribute).
- For each array, assume:

Y = S + BSignal: $S \sim Exp(\lambda)$

Background: $B \sim N(\mu, \sigma^2)$ left-truncated at zero

Simple derivation

- Observed: *Y*; of interest: *S*.
- The idea is to predict S from Y using *E*[*S*|*Y*]:

$$E[S | Y] = \int sf(s | Y = y)ds = \int s \frac{f(s, Y = y)}{f_Y(y)}ds = \frac{1}{f_Y(y)} \int sf(s, Y = y)ds$$

- The joint: $f(s, Y = y) = f(s, B = y s) = f_s(s)f_B(y s)$
- Marginal distribution of Y $f_Y(y)$ can be derived.

An extension to consider probe sequence effects: GCRMA

 $Y_{gij} = O_{gij} + N_{gij} + S_{gij}$

 $= O_{gij} + \exp(\mu_{gij} + \varepsilon_{gij}) + \exp(s_g + \delta_g X_i + a_{gij} + b_i + \xi_{gij}).$

Here Y_{gij} is the *PM* intensity for the probe *j* in probeset *g* on array *i*, ε_{gij} is a normally distributed error that account for NSB for the same probe behaving differently in different arrays, s_g represents the baseline log expression level for probeset *g*, a_{gij} represents the signal detecting ability of probe *j* in gene *g* on array *i*, b_i is a term used to describe the need for normalization, ξ_{gij} is a normally distributed term that accounts for the multiplicative error, and δ_g is the expected differential expression for every unit difference in covariate *X*. Notice δ_g is the parameter of interest. As described by Naef and Magnasco (2003) a_{gj} is a function of α .

Wu et al. (2005) JASA

Probe sequence effects

• Probe affinity is modeled as:

$$\alpha = \sum_{k=1}^{25} \sum_{j \in \{A,T,G,C\}} \mu_{j,k} \mathbf{1}_{b_k=j} \text{ with } \mu_{j,k} = \sum_{l=0}^{3} \beta_{j,l} k^l,$$

 This kind of modeling is widely used in other microarray and sequencing data!

Summary: within array normalization

- To remove the unwanted artifacts and obtain true signals.
- Performed at each array individually.
- Both MA-plot based normalization and background error models (eg, RMA) are popular in many other data (other microarrays, ChIP-seq, RNA-seq)
 - Use loess with caution because it assumes most genes are not DE.
 - The error model (additive background, multiplicative error) is very useful.

Between array normalization

- Data from arrays (intensity values) represent mRNA quantities, but the intensity-mRNA quantities response can be different from different arrays. So a number, say, 5, on arrays 1 doesn't mean the same on array 2.
- This could be caused by:
 - Total amount of mRNA used
 - Properties of the agents used.
 - Array properties
 - Settings of laser scanners
 - etc.
- These artifacts cannot be removed by within array normalization.
- Goal: normalize so that data from different arrays are comparable!

Linear scaling method

- Used in Affymetrix software MAS:
 - Use a number of "housekeeping" genes and assume their expressions are identical across all arrays.
 - Shift and rescale all data so the average expression of these genes are the same across all arrays.

Non-linear smoothing based

- Implemented in dChip (Li and Wong 2001, *Genome Bio*.)
 - Find a set of genes invariant across arrays.
 - Find a "baseline" array.
 - For every other array, fit a smooth curve on expressions of invariant genes.
 - Normalize based on the fitted curve.

dChip normalization

Quantile normalization

Proposed in Bolstad *et al.* 2003, *Bioinformatics*:

- Force the distribution of all data from all arrays to be the same, but keep the ranks of the genes.
- Procedures:
 - 1. Create a **target distribution**, usually the average of all arrays.
 - 2. For each array, match its quantiles to that of the target. To be specific: $x_{norm} = F_2^{-1}(F_1(x))$:
 - *x:* value in the chip to be normalized
 - F_1 : distribution function in the array to be normalized
 - *F*₂: target distribution function

A simple example for quantile normalization

Gene	sample1	Sample2	Sample3	Sample4
1	8	15	9	13
2	7	2	7	15
3	3	6	5	8
4	1	5	2	9
5	9	13	6	11

1. Find the Smallest Value for each sample

Gene	sample1	Sample2	Sample3	Sample4
1	8	15	9	13
2	7	2	7	15
3	3	6	5	8
4		5	2	9
5	9	13	6	11

2. Average them

(1+2+2+8)/4=3.25

3. Replace Each Value by the Average

Gene	sample1	Sample2	Sample3	Sample4
1	8	15	9	13
2	7	3.25	7	15
3	3	6	5	3.25
4	3.25	5	3.25	9
5	9	13	6	11

4. Find the Next Smallest Values, then average

Gene	sample1	Sample2	Sample3	Sample4
1	8	15	9	13
2	7	3.25	7	15
3	3	6	5	3.25
4	3.25	5	3.25	9
5	9	13	6	11

(3+5+5+9)/4=5.5

5. Replace Each Value by the Average

Gene	sample1	sample2	sample3	sample4
1	8	15	9	13
2	7	3.25	7	15
3	5.50	6	5.50	3.25
4	3.25	5.50	3.25	5.50
5	9	13	6	11

6. Continue the process, we get the following matrix after finishing:

Gene	sample1	sample2	sample3	sample4
1	10.25	12.00	12.00	10.25
2	7.50	3.25	10.25	12.00
3	5.50	7.50	5.50	3.25
4	3.25	5.50	3.25	5.50
5	12.00	10.25	7.50	7.50

The result matrix has following properties:

- The values in each column are exactly the same.
- The ranks of genes in each column are the same as before normalization.

Before/after QN boxplot

Summary: between-array normalization

- Must do before comparing different arrays.
- Same problems exist in sequencing data.
- Quantile normalization is very strong and could remove the true signals, use with caution.

Microarray data summarization

- There are multiple probes targeting a gene. The task is to summarize the readings from these probes into one number to represent the gene expression.
- Naïve methods: mean, median.
- From MAS 5.0: use one-step Tukey Biweight (TBW) to obtain a robust weighted mean that is resistant to outliers.
 - Probes with intensities far away from median will have smaller weights in the average.
- dChip (Li & Wong, 2001): model based on *PM-MM*.

RMA summarization

$$Y_{ijn} = \mu_{in} + \alpha_{jn} + \varepsilon_{ijn}, i = 1, \dots, I, j = 1, \dots, J, n = 1, \dots, n$$

log transformed *PM* intensities, denoted with *Y* μ_i representing the log scale expression level for array *i* α_j a probe affinity effect, each probe set *n*

- Borrow information from multiple samples to estimate probe effects.
- Model-fitting: **Median Polish** (robust against outliers)
 - Iteratively removing the row and column medians until convergence
 - The remainder is the residual;
 - After subtracting the residual, the row medians are the estimates of the expression, and column medians are probe effects.

Irizarry et al. (2003) Biostatistics.

Bioconductor for microarray data

- There is a rich collection of Bioconductor packages (hundreds) for microarrays. In fact, Bioconductor started for microarray analysis.
- Important ones include:
 - affy: one of the earliest bioc packages. Designed for analyzing data from Affymetrix arrays.
 - oligo: preprocessing tools for many types of oligonecleotide arrays.
 This is designed to replace affy package.
 - limma and siggenes: DE detection using limma and SAM-t model.
 - Many annotation data package to link probe names to genes.
- Data normalization and summarization can be done using oligo package (details next lecture).

Review

- We have covered microarray analysis, including:
 - Data preprocessing: within and between array normalization.
 - Summarization.
- Next lecture:
 - DE detection for microarray.