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Outline

* Introduction.
— Biological motivations
— experimental procedures.
— Information provided by RNA-seq data.

* Analyses of RNA-seq data: methods and useful
software tools.

— Data summarization and normalization.
— Differential expression.
— Other issues: alternative splicing and isoform expression.
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Measuring mRNA abundance

* Using gene expression microarray:
— Probes are designed to target genes.

— mRNA are converted to cDNA, labeled by dyes, hybridized to
microarray (cDNA are attached to probes with complementary
seguences).

— High gene expression -> more cDNA -> corresponding probes
have higher fluorescent intensities.
* Using RNA-seaq:
— Sequence the cDNA, then align all reads.

— High gene expression -> more cDNA -> more reads aligned to
the genes.

— Different from microarrays: hybridization is replaced by
sequencing.



RNA-seq experiment

. Extract RNA from
samples.

. Generate cDNA.

. Fragmentation (cut cDNA
into small pieces), then
select the fragments with
certain lengths.

. Sequence the fragmented
cDNA.

Magnetically isolate
and wash beads

Fragment and/or Reverse Transcribe

Fragmentation (if not done already),
size selection, and sequence

lllumina Solexa, Roche 454, or ABI SOLID
Graphic shown here is lllumina



Beyond gene expressions

 RNA-seq provide much more information than gene
expression microarrays. In additional to gene
expressions, it provides information for:
— alternative splicing
— structural changes of genes: gene fusion.
— new genes/exons.
— splicing efficiency (Bai et al. 2013, PNAS).

— RDD: RNA-DNA difference (Li et al. 2011, Science): very
controversial!



Method and software for
RNA-seq data analysis



RNA-seq data analyses

RNA-seq data: sequence reads.
First step: alighment to the reference genome.
Information used for different tasks:

— expression: read counts in genes/exons.

— alternative splicing: read counts and junction reads.

— gene fusion: distances between paired reads from “paired-
end” sequencing.

We will focus on expression analysis in this lecture.



Gene expression analysis

* Biological motivation is the same as gene expression
microarrays: compare the expression of genes

between different samples.
* Steps:
— summarization: get a number for each gene to represent
its expression level.

— normalization: remove technical artifacts so that data from
different samples are comparable.

— differential expression detection: gene by gene statistical
test.



Summarization of read counts

From RNA-seq, the alignment result gives the chromosome/
position of each aligned read.

For a gene, there are reads aligned to the gene body. How to
summarized them into a number for the expression?

Easiest: simply count the number, then normalized by gene
lengths and total number of reads in the experiment — RPKM
(reads per kilo-bp per million reads). Mortazavi et al. (2008),
Nature Method.



Artifacts in the reads distribution

* The reads are NOT uniformly distributed within gene bodies.
It affects by many things such as the sequence composition,
chromatin structure, etc.
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Weighted sum (Hensen et al. 2010 NAR)

Discovered that reads from lllumina has a 7-bp motif at
beginning: there are more reads started with certain 7-bp due
to technical artifacts (the random priming bias).

Down-weight the reads started with the motif.
29 R
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— w(h): weights for reads starting with heptamer h.
— f)hep:l.: observed distribution of heptamers starting at position i.



Results: reweighting increase uniformity
of read distribution within gene body
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Model the read counts as a function of
base compositions (Li et al. 2010 GB)

Log-linear model: for nucleotide j of gene |,
— n;: number of reads starting at this position.

— W;: true expression of the gene.

— wy: sequence biases at this position.

), and

Model: let p;=p;*w i

K

log(u;) = v; + a+2 2 SenI by = 1)

k=1 he{A,C,G}

Non-linear model: MART (multiple additive
regression trees).

j» assume n; [y, ~ Poisson(u



Results

e Results from the (linear or non-linear) model are estimated

gene expression.

 Comparing the correlation with microarray data, MART
model is better than using sum:

Table 4: Spearman's rank correlation coefficients in mouse embryoid bodies

Fold change bin SCC by uniform model SCC by our MART model Relative improvement
(1.00, 1.09) 0.465 0.466 0.1%
(1.09,1.19) 0.437 0.444 1.4%
(1.19,1.33) 0.413 0.434 5.1%
(1.33,1.53) 0.481 0.520 8.2%
(1.53,4.82) 0.389 0.490 26.0%

SCC: Spearman's rank correlation coefficient.



More complicated likelihood approach

* Roberts et al. (2011) GB:
— Denote the transcript abundance by p.
— Focus on relative expressions: ) ;cp0or =1
— Whole data likelihood:
L) - (H ﬁ) (H ( [T Yo pep Heestele (nf))))

geG 8€G \feF:feg teg

— Maximize the likelihood using iterative methods
and obtain the estimates of relative expression.



Summary

Sequence reads are not uniformly distributed within
gene body.

The distribution is highly dependent on sequence
compositions.
Read count summarization is still an open problem:

— Proposed methods didn’t provide convincing performance
iImprovements.



Data normalization

Data from different samples need to be normalized
so that they are comparable.

Most important — sequencing depth: sample with
more total counts will have more counts in each

gene on average.

Easiest method: divided by the total number of
counts — RPKM.

RNA-seq normalization is more complicated than
microarray.



Data generative process for one sample

The gene read counts from RNA-seq is a sampling process.
for gene |, i=1, ..., G, let
— the true expression (number of cDNA fragments) be p..
— gene length be L. .
The probability of a read starting from gene i is: p, =L,/ Y wL,
i=1

If the total number of reads is N, the count for gene J,
denoted by Y, can be modeled as a Poisson random variable.
Let A=Np;, Y, | A, ~ Poisson(A,)

Downstream DE test between sample 1 and 2 is: H, : u,;, = u,,
which is NOT equivalent to H, : 4, = A,, without proper
normalization.



Concerns in RNA-seqg data normalization

* When comparing two samples, if the distributions of p; are
approximate the same, normalizing by N will be sufficient —
this is what RPKM does.

 However if that’s not true we will be in trouble.
— A toy example: if there are only two genes in the genome, their read
counts are 10 and 20 in one sample, and 10 and 100 in another one.
We don’ t know how to compare!
 The normalization procedure is to choose a proper “baseline”
for different samples, then normalize data to the baseline so
that the counts are comparable.



Single factor normalization methods —
One normalization factor per sample

Use total or median counts.
Bullard et al. (2010), BMC Bioinformatics:

— use counts from house keeping genes.
— use a certain quantile (75t) for all counts.

Anders et al. (2010), Genome Biology:

— median of the ratios of observed counts.

Robinson et al. (2010), Genome Biology: TMM (trimmed mean
of M values).
1. compute M (log fold changes) and A (log total counts) for all genes.

2. Discard genes with extreme M and A values, and compute a weighted
mean of M’s for the rest of genes. The weights as the inverse of the
approximate asymptotic variances.

3. Underlying assumption is that most genes are not DE.



Gene-specific normalization —
each gene has a different normalization factor

 Hansen et al. (Biostatistics 2012):

— The gene-specific biases (from GC content, gene length,
etc.) need to be considered.

Y| tgi ~ Poisson(pg ;)
p
[tgi = €XP {hz’(eg,z’) +> fz',j(Xg,j)}
j=1
true expression biases, e.g., GC content

* A conditional quantile normalization (cqn) procedure is
designed to estimate h and f, and then 0.



Summary

RNA-seq normalization is difficult!
Still an open statistical problem.

The goal is to find a proper “baseline” to normalize
data to.

Single factor methods provide comparable results.

Gene-specific normalization is promising, but be
careful of over-fitting.



Differential expression analysis

Biological motivation is the same as in gene
expression microarray: find DE genes.

Statistical test is carried gene by gene.

Usually needs multiple replicates per sample, so that
means and variances can be evaluated.

Microarray methods are not directly applicable:
continuous vs. count data, but ideas can be
borrowed.



Data generative model for
replicated RNA-seq

* For a sample with M replicates, the counts for gene i
replicate j is often modeled by following hierarchical

model: Y, | A, ~ Poisson(4,), A, ~ Gamma(a, )
* Marginally, the Gamma-Poisson compound

distribution is Negative binomial. So the counts for a
gene from multiple replicates is often modeled as

Negative binomial: v, ~ NB(a.p) -



A little more about the
NB distribution

* NB is over-dispersed Poisson:
— Poisson: var = pu
— NB: var = p+ ¢

* Dispersion parameter @ approximates the squared
coefficient of variation: ¢ = =5 ~ %5

w2 T p?

e Dispersion @ represents the biological variance.



Simple ideas for DE

* Transform data into continuous scale (e.g., by
logarithm) then use microarray methods:
— Troublesome for genes with low counts.

* For each gene, perform two group Poisson or NB test
for equal means. But:

— Number of replicates are usually small, asymptotic
theories don’t apply, so the results are not reliable.

— Like in microarray, information from all genes can be
combined to improve inferences (e.g., variance shrinkage).



DESeq (Anders et al. 2010, GB)

Counts are assumed to following NB, parameterized by mean
and variance: K; ~ NB(u;,03),

The variance is the sum of shot noise and raw variance:
oF = + 850

— —_—
shot noise raw variance

The raw variance is a smooth function of the mean: assumes

that genes with same means will have the same variances.

Hypothesis testing using exact test:

D, plab)

L p(a,b)Sp(kl-A akiB)

TN pab)




Bioconductor package DEseq

* |Inputs are:

— integer matrix for gene counts, rows for genes and
columns for samples.

— experimental design: samples for the columns.

library(DESeq)

conds=c(0,0,0,1,1,1)
cds=newCountDataSet (data, conds )
cds=estimateSizeFactors( cds )
cds=estimateVarianceFunctions( cds )
fit=nbinomTest( cds, 0, 1)
pval.DEseqg=fit.DEseqS$Spval



edgeR

From a series of papers by Robinson et al.(the same group
developed limma): 2007 Bioinformatics, 2008 Biostatistics,

2010 Bioinformatics.

Empirical Bayes ideas to “shrink” gene-specific estimations
and get better estimates for variances.

The parameter to shrink is over-dispersion (@) in NB, which
controls the within group variances.

There is no conjugate prior so a shrinkage is not
straightforward.

Used a conditional weighted likelihood approach to establish
an approximate EB estimator for @.



Bioconductor package edgeR

* Inputs are the same as DEseq: an integer matrix for
counts and column labels for design.

library(edgeR)

d = DGEList (counts=data, group=c(0,0,0,1,1,1),
lib.size=colSums(data))

d = calcNormFactors(d)

d = estimateCommonDisp(d)

d = estimateTagwiseDisp(d, trend=TRUE)

fit.edgeR = exactTest(d)

pval.edgeR = fit.edgeRS$tableS$p.value



DSS (Wu et al. 2012, Biostatistics)

Found that the shrinkage from DESeq and
edgeR are too strong.
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A hierarchical model for the data

Y,i|0, ~ Poisson(6,;s;)

Qgi\gbg ~ Gamma(,ug,k(i)v ¢g)

¢, ~ log-normal(my, 7°)

Y,i- observed counts for gene g, sample i

O, unobserved true expression for gene g, sample i
@,: dispersion (related biological variance) for gene g.
s;: library size for sample J.



Shrinkage estimation and test procedure

* Negative binomial is parameterized by mean and
dispersion, then the posterior for dispersion is:

log[p(¢g|Yyi, vgini =1, n)] o Y (o, + Vi) — no(e,) — ¢t Y log(L+ vyihy)

— log(¢y) — log(7), (4.1)

e Obtain posterior mode as the shrinkage estimate of
the dispersion.

* Wald test for two-group comparison.



Estimated dispersion

Results: estimation of dispersions
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Simulations on DE detection

a : b
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DSS Bioconductor package

* |nputs are the same as DEseq and edgeR: an integer
matrix for counts and column labels for design.

conds=c(0,0,0,1,1,1)
seqData=newSeqCountSet (X, conds)
segData=estNormFactors (segData)
segData=estDispersion(segData)
result=waldTest(segData, 0, 1)



Summary for DE test

Based on my experiences and simulation results:

— All methods provide very similar results when the dispersions
(biological variance) are small.

— DSS performs better when dispersion is large.

The methods we talked about are based on the gene counts.
DESeq and edgeR are the most popular software for that.
— DESeq2 implements similar shrinkage ideas of DSS (dispersion
shrinkage based on log-normal prior).
There are other methods perform transcript level expression
estimation and DE analysis: cufflink and cuffdiff.



Other applications of RNA-seq



Alternative splicing

e Definition: the same pre-mRNA produces different mRNA
products, through joining different exons.

— Locations where two exons join is called “junction”.

— Can be detected and quantified using exon arrays, which probes
are designed to target the junction regions.

— From RNA-seq: look at “junction reads”, which are reads
overlap two exons.

N

MRNA

Sequence reads — —



RNA-seq can detect alternative splicing patterns by analyzing
the junction reads.

The exon junctions are not in the reference genome so special
alignment methods are needed.

Usually reads are aligned to known junctions.

There are methods to detect new junctions (ab initio splicing
detection).



Using tophat

Based on bowtie, aligns RNA-Seq reads to a genome
in order to identify exon-exon splice junctions.

Runs on Linux and Mac OSX

Command:
tophat -o out dir bowtid index input.fastq

Output:
— accepted_hits.sam: read alignments in SAM format.

— junctions.bed: junction reads in BED format.



Estimate isoform expressions

e |soform: different transcripts from the same gene,
caused by alternative splicing.

e Different isoforms could have different expression
levels.

* Atoy example for a gene with 3 exons:

— It was known the gene has two isoforms: exonl+exon2,
and exonl+exon3.
— The read counts from the exons are 10, 7, 5.

— What are the expression level for the two isoforms?



Some approaches

* A Poisson model : Jiang et al. (2009) Bioinformatics.

— Underlying Poisson rate is a linear combination of isoform
expressions, then derive joint data likelihood.

— Compute MLE for the isoform expressions by maximizing
Joint likelihood through numerical methods.

e Solas: Poisson model with EM algorithm: Richard et al.
(2010) NAR.

e Cufflink Trapnell et al. (2010) NBT: a product of Bernoulli
model with multivariate normal prior, then use Bayesian
method to report maximum a posteriori (MAP).



Use cufflink

* Runs on Linux or Mac OSX
* |[nputis alignment result from tophat.

 Command:
cufflinks -o output dir accepted hits.sam



Summary for isoform expression

Mostly for known isoforms (the combination
patterns of exons).

MLE approaches for estimation.

Methods available for differential isoform
expressions/differential alternative splicing:
— Cuffdiff.

— MAT: Shen et al. (2012).
— rSeqgDiff: Shi et al. (2013).



Review

 RNA-seq provides information for:
— expression.
— Alternative splicing.
— Structural variation, e.g., gene fusion.

 Statistical problems include:
— Summarization.
— Normalization.
— differential expression testing.
— isoform expression estimation.
— differential isoform expression/alternative splicing.

 Some rooms for method developments.



