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Course outline
• 8-9:15: Intro and data preprocessing. 
• 9:15-9:45: Lab: preprocessing and visualization.
• 10-11:15: Normalization, batch effect, imputation, DE, simulator.
• 11:15-12: Lab: Normalization, batch effect, imputation, DE, simulator

• 12-1: Lunch break

• 1-2: Clustering and pseudotime construction
• 2-2:30: Lab: Clustering and pseudotime construction
• 2:45–3:30: Supervised cell typing & related single cell data sources
• 3:30-4: Lab: supervised cell typing. 
• 4:15-5: scRNA-seq in cancer



• Background
– Motivation 
– Assumptions and challenges

• Cell type annotation
– Existing methods
– Performance comparisons and considerations

• Obtain existing single cell datasets
• Data integration

Outline for this session



Example scRNA-seq analysis workflow

involved in the biological interpretation and annota-
tion of the results. Finally, we discuss how clustering 
approaches are likely to evolve over the coming years.

What clustering strategies are available?
Many clustering algorithms are generic in the sense that 
they can be applied to any type of data that are equipped 
with a measure of distance between data points. Owing 
to the large number of genes assayed in scRNA- seq, 
that is, the high dimensionality, distances between data 
points (that is, cells) become similar, which is known 
as the ‘curse of dimensionality’19. Consequently, differ-
ences in distances tend to be small and thus not relia-
ble for identifying cell groups (FIG. 2). The application 
of feature selection and/or dimensionality reduction (FIG. 1) 
may reduce the noise and speed up calculations. Feature 
selection involves identifying the most informative 
genes, for example, the ones with the highest variance20, 
whereas dimensionality reduction, for example, prin-
cipal component analysis (PCA), projects data into a 
lower dimensional space. Many tools use variants of the 
standard methods: SC3 uses a small subset of principal 
components and pcaReduce applies PCA iteratively. 
Subsequently, distances are calculated in the lower 

dimensional space or by using only the selected genes. 
There are several different choices available, including 
Euclidean distance, cosine similarity, Pearson’s correla-
tion and Spearman’s correlation. The main advantage of 
the three latter measures is their scale invariance, that is, 
they consider relative differences in values, making them 
more robust to library or cell size differences.

Diverse types of clustering methods are availa-
ble (FIG. 3). The most popular clustering algorithm is  
k- means (FIG. 3b), which iteratively identifies k cluster 
centres (centroids), and each cell is assigned to the closest  
centroid. The standard method for k- means, known as 
Lloyd’s algorithm21, has the advantage of scaling linearly 
with the number of points, which means that it can be 
applied to large data sets. However, Lloyd’s algorithm 
is greedy, and the method is not guaranteed to find the 
global minimum. These drawbacks can be overcome 
by repeated application of k- means using different 
initial conditions or upstream processing and finding 
the consensus, as performed by SC3 (REF.22). Another 
disadvantage of k- means is its bias towards identify-
ing equal- sized clusters, which may result in rare cell 
types being hidden among a larger group. To overcome 
these issues, RaceID23 augments k- means with outlier 
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Fig. 1 | Example data analysis workflow for scRNA- seq. Overview of the workflow for the computational analysis of 
single- cell RNA sequencing (scRNA- seq) data leading up to unsupervised clustering. First, unreliable cells (and possible 
doublets) are removed through quality control. The cleaned data set is then normalized to correct for differences in read 
coverage and other technical confounders. Feature selection and dimensionality reduction isolate the most informative 
genes and strongest signals from background noise, respectively. Cell–cell distances are then calculated in the lower 
dimensional space and used to either construct a cell–cell distance graph or used directly by clustering algorithms to 
assign cells to clusters. Some methods will compute the distances before the dimensionality reduction. CPM, counts per 
million; CV, coefficient of variation; PC, principal component; RLE, relative log expression.

Feature selection
A collection of statistical 
approaches that identify and 
retain only variables that are 
most relevant to the underlying 
structure of the data set.

Dimensionality reduction
A collection of statistical 
approaches that reduces the 
number of variables in a data 
set. It often refers specifically 
to methods that recombine the 
original variables into a new set 
of non- redundant variables. 
Dimensionality reduction can 
help in identifying important 
patterns and reducing the 
amount of computations 
needed.

Greedy
An algorithm that, at each 
step, chooses the option that 
leads to the greatest reduction 
of the cost function. Greedy 
algorithms are often fast, but 
they may fail to find the 
optimal solution.
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Motivation

• Another paradigm to identify cell type.
• Cell clustering (unsupervised): 

– Cluster cells to multiple clusters (unsupervised). then assign cell 
type for each cluster.  - laborious, lack of reproducibility

• Cell type assignment (supervised):
– Directly assign each cell to a cell type.
– Requires some training data (supervised) or marker gene info. 
– Potentially work better for data from multiple samples.
– Can incorporate the hierarchy in cell types.
– Cannot identify new cell types (restricted to the known cell 

types in the reference).  



Cell type annotation
• Require the input of marker gene information
– DigitalCellSorter (BMC bioinfo, 2019)
– Garnett (Nature methods, 2019)
– CellAssign (Nature methods, 2019)
– SCINA (Genes, 2019)
– scSorter (Genome Biology, 2021)

• Pre-train a classifier using scRNA-seq training data with 
generic machine learning methods: SVM, LDA, RF, kNN, 
RF 
– Scmap (Nature methods, 2018)
– CHETAH (NAR, 2019)
– CaSTLe (PloS One, 2018)
– scPred (Genome Biology, 2019)



Cell type annotation (continue)

• Use either sc or bulk RNA-seq as reference
– singleR (Nat Immunol, 2019)

• A comparison paper: Abdelaal et al. (2019, 
GB)

• Annotation performance is a trade-off 
between accuracy and un-assigned rate



Abdelaal et al. (2019, GB)



Cell type annotation
• Require the input of marker gene information
– Garnett (Nature methods, 2019)
– scSorter (Genome Biology, 2021)

• Pre-train a classifier using scRNA-seq training 
data with generic machine learning methods: 
SVM, LDA, RF, kNN, RF
– Scmap (Nature methods, 2018)
– CHETAH (NAR, 2019)

• Use either sc or bulk RNA-seq as reference
– singleR (Nat Immunol, 2019)



Garnett



Garnett



Available pre-trained classifier for 
Garnett



Example code for Garnett
marker_file_path <- system.file("extdata", "pbmc_test.txt", package = 
"garnett") 
pbmc_classifier <- train_cell_classifier(cds = pbmc_cds, 

marker_file = marker_file_path, 
db=org.Hs.eg.db, 
cds_gene_id_type = "SYMBOL", 
num_unknown = 50, 
marker_file_gene_id_type = "SYMBOL")

pbmc_cds <- newCellDataSet(as(mat, "dgCMatrix"), 
phenoData = pd, 
featureData = fd) # generate size factors for normalization 

pbmc_cds <- estimateSizeFactors(pbmc_cds)
pbmc_cds <- classify_cells(pbmc_cds, 

pbmc_classifier, 
db = org.Hs.eg.db, 
cluster_extend = TRUE, 
cds_gene_id_type = "SYMBOL") 

https://cole-trapnell-lab.github.io/garnett/docs/#2-classifying-your-cells



scSorter
• Given marker genes, 

their exact 
expression levels are 
not assumed known, 
and no reference 
dataset is used.

• Borrow information 
from non-marker 
genes



scmap

• Correlation-based cell 
label assignment

• Fast and accurate
• A correlation threshold to 

control the percentage of 
assigned cells, cells below the 
threshold are “unassigned”



scmap



Example code for scmap
sce <- SingleCellExperiment(assays = 

list(normcounts = as.matrix(trainmat)), 
colData = DataFrame(cell_type1 = trainlabel))

logcounts(sce) <- log2(normcounts(sce) + 1)
rowData(sce)$feature_symbol <- rownames(sce)
sce <- selectFeatures(sce, suppress_plot = TRUE)

sce_test <- SingleCellExperiment(assays =
list(normcounts = as.matrix(testmat)), 
colData = DataFrame(cell_type1 = testlabel))

logcounts(sce_test) <- log2(normcounts(sce_test) + 1)
rowData(sce_test)$feature_symbol <- rownames(sce_test)

sce <- indexCluster(sce)
scmapCluster_results <- scmapCluster(projection = sce_test,

index_list = list(metadata(sce)$scmap_cluster_index))



CHETAH

• First, a hierarchical 
classification tree is 
constructed from the 
reference scRNA-seq data

• Selecting the set of genes 
that best discriminates each 
reference cell type from all 
the cell types, collectively, in 
the opposite branch of the 
tree



CHETAH
• Calculate profiles score 

calculated from the position of 
input cell’s correlation within 
these two reference cell 
distributions

• The confidence score is 
calculated as the difference of 
the highest profile score in 
chosen the branch and the 
average of profile scores in the 
other branch

• Cells do not meet confidence 
threshold will be labeled as 
unassigned if the evidence runs 
out at the top of the tree, or as 
intermediate if this happens 
within the classification tree



Example code for CHETAH

sce_train <- SingleCellExperiment(assays = 

list(counts = as.matrix(trainmat)), 
colData = DataFrame(celltypes=trainlabel))

sce_test <- SingleCellExperiment(assays = 
list(counts = as.matrix(testmat)), 

colData = DataFrame(celltypes = testlabel))

#run classifier
test <- CHETAHclassifier(input = sce_test, 

ref_cells = sce_train)
test$celltype_CHETAH



• Correlation based annotation
• Allow the use of bulk or scRNA-seq data as the reference
• Has a built-in reference from Human Primary Cell Atlas





Example code for SingleR

# use pre-built reference data

library(celldex) 
hpca.se <- HumanPrimaryCellAtlasData()
library(SingleR) 
pred.hesc <- SingleR(test = hESCs, ref = hpca.se, 
assay.type.test=1, labels = hpca.se$label.main)

# build reference data by ourselves
# SingleR() expects reference datasets to be normalized and log-
transformed. 
library(scuttle) 

sceM <- logNormCounts(sceM)

sceG <- sceG[,colSums(counts(sceG)) > 0] # Remove libraries with 
no counts. sceG <- logNormCounts(sceG)
pred.grun <- SingleR(test=sceG, ref=sceM, labels=sceM$label, 
de.method="wilcox") 



Comparison of the methods

RESEARCH Open Access

A comparison of automatic cell identification
methods for single-cell RNA sequencing data
Tamim Abdelaal1,2†, Lieke Michielsen1,2†, Davy Cats3, Dylan Hoogduin3, Hailiang Mei3, Marcel J. T. Reinders1,2 and
Ahmed Mahfouz1,2*

Abstract

Background: Single-cell transcriptomics is rapidly advancing our understanding of the cellular composition of
complex tissues and organisms. A major limitation in most analysis pipelines is the reliance on manual annotations
to determine cell identities, which are time-consuming and irreproducible. The exponential growth in the number
of cells and samples has prompted the adaptation and development of supervised classification methods for
automatic cell identification.

Results: Here, we benchmarked 22 classification methods that automatically assign cell identities including single-
cell-specific and general-purpose classifiers. The performance of the methods is evaluated using 27 publicly available
single-cell RNA sequencing datasets of different sizes, technologies, species, and levels of complexity. We use 2
experimental setups to evaluate the performance of each method for within dataset predictions (intra-dataset)
and across datasets (inter-dataset) based on accuracy, percentage of unclassified cells, and computation time.
We further evaluate the methods’ sensitivity to the input features, number of cells per population, and their performance
across different annotation levels and datasets. We find that most classifiers perform well on a variety of datasets with
decreased accuracy for complex datasets with overlapping classes or deep annotations. The general-purpose support
vector machine classifier has overall the best performance across the different experiments.

Conclusions: We present a comprehensive evaluation of automatic cell identification methods for single-cell RNA
sequencing data. All the code used for the evaluation is available on GitHub (https://github.com/tabdelaal/scRNAseq_
Benchmark). Additionally, we provide a Snakemake workflow to facilitate the benchmarking and to support the
extension of new methods and new datasets.

Keywords: scRNA-seq, Benchmark, Classification, Cell identity

Background
Single-cell RNA sequencing (scRNA-seq) provides unpre-
cedented opportunities to identify and characterize the
cellular composition of complex tissues. Rapid and con-
tinuous technological advances over the past decade have
allowed scRNA-seq technologies to scale to thousands of
cells per experiment [1]. A common analysis step in ana-
lyzing single-cell data involves the identification of cell
populations presented in a given dataset. This task is

typically solved by unsupervised clustering of cells into
groups based on the similarity of their gene expression
profiles, followed by cell population annotation by assign-
ing labels to each cluster. This approach proved very valu-
able in identifying novel cell populations and resulted in
cellular maps of entire cell lineages, organs, and even
whole organisms [2–7]. However, the annotation step is
cumbersome and time-consuming as it involves manual
inspection of cluster-specific marker genes. Additionally,
manual annotations, which are often not based on stan-
dardized ontologies of cell labels, are not reproducible
across different experiments within and across research
groups. These caveats become even more pronounced as
the number of cells and samples increases, preventing fast
and reproducible annotations.

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: a.mahfouz@lumc.nl
†Tamim Abdelaal and Lieke Michielsen contributed equally to this work.
1Leiden Computational Biology Center, Leiden University Medical Center,
Einthovenweg 20, 2333 ZC Leiden, The Netherlands
2Delft Bioinformatics Laboratory, Delft University of Technology, Van Mourik
Broekmanweg 6, 2628 XE Delft, The Netherlands
Full list of author information is available at the end of the article

Abdelaal et al. Genome Biology          (2019) 20:194 
https://doi.org/10.1186/s13059-019-1795-z





Baron Mouse and Segerstople pancreatic datasets. Fur-
ther, scVI has low performance on the deeply annotated
datasets TM (55 cell populations) and AMB92 (92 cell
populations), and kNN produces low performance for
the Xin and AMB92 datasets.
For the pancreatic datasets, the best-performing classi-

fiers are SVM, SVMrejection, scPred, scmapcell, scmapclus-
ter, scVI, ACTINN, singleCellNet, LDA, and NMC. SVM is
the only classifier to be in the top five list for all five pan-
creatic datasets, while NMC, for example, appears only in
the top five list for the Xin dataset. The Xin dataset con-
tains only four pancreatic cell types (alpha, beta, delta, and
gamma) making the classification task relatively easy for
all classifiers, including NMC. Considering the median
F1-score alone to judge the classification performance can
be misleading since some classifiers incorporate a rejec-
tion option (e.g., SVMrejection, scmapcell, scPred), by which
a cell is assigned as “unlabeled” if the classifier is not
confident enough. For example, for the Baron Human
dataset, the median F1-score for SVMrejection, scmapcell,
scPred, and SVM is 0.991, 0.984, 0.981, and 0.980, respect-
ively (Fig. 1a). However, SVMrejection, scmapcell, and scPred
assigned 1.5%, 4.2%, and 10.8% of the cells, respectively, as
unlabeled while SVM (without rejection) classified 100%
of the cells with a median F1-score of 0.98 (Fig. 1b). This

shows an overall better performance for SVM and SVMre-

jection, with higher performance and less unlabeled cells.
The CellBench 10X and CEL-Seq2 datasets represent

an easy classification task, where the five sorted lung
cancer cell lines are quite separable [34]. All classifiers
have an almost perfect performance on both CellBench
datasets (median F1-score ≈ 1).
For the TM dataset, the top five performing classifiers

are SVMrejection, SVM, scmapcell, Cell-BLAST, and scPred
with a median F1-score > 0.96, showing that these classi-
fiers can perform well and scale to large scRNA-seq data-
sets with a deep level of annotation. Furthermore,
scmapcell and scPred assigned 9.5% and 17.7% of the cells,
respectively, as unlabeled, which shows a superior per-
formance for SVMrejection and SVM, with a higher median
F1-score and 2.9% and 0% unlabeled cells, respectively.

Performance evaluation across different annotation levels
We used the AMB dataset with its three different levels
of annotations, to evaluate the classifiers’ performance
behavior with an increasing number of smaller cell pop-
ulations within the same dataset. For AMB3, the classifi-
cation task is relatively easy, differentiating between
three major brain cell types (inhibitory neurons, esxcita-
tory neurons, and non-neuronal). All classifiers perform

Table 1 Automatic cell identification methods included in this study
Name Version Language Underlying classifier Prior knowledge Rejection option Reference

Garnett 0.1.4 R Generalized linear model Yes Yes [14]

Moana 0.1.1 Python SVM with linear kernel Yes No [15]

DigitalCellSorter GitHub version: e369a34 Python Voting based on cell type markers Yes No [16]

SCINA 1.1.0 R Bimodal distribution fitting for marker genes Yes No [17]

scVI 0.3.0 Python Neural network No No [18]

Cell-BLAST 0.1.2 Python Cell-to-cell similarity No Yes [19]

ACTINN GitHub version: 563bcc1 Python Neural network No No [20]

LAmbDA GitHub version: 3891d72 Python Random forest No No [21]

scmapcluster 1.5.1 R Nearest median classifier No Yes [22]

scmapcell 1.5.1 R kNN No Yes [22]

scPred 0.0.0.9000 R SVM with radial kernel No Yes [23]

CHETAH 0.99.5 R Correlation to training set No Yes [24]

CaSTLe GitHub version: 258b278 R Random forest No No [25]

SingleR 0.2.2 R Correlation to training set No No [26]

scID 0.0.0.9000 R LDA No Yes [27]

singleCellNet 0.1.0 R Random forest No No [28]

LDA 0.19.2 Python LDA No No [29]

NMC 0.19.2 Python NMC No No [29]

RF 0.19.2 Python RF (50 trees) No No [29]

SVM 0.19.2 Python SVM (linear kernel) No No [29]

SVMrejection 0.19.2 Python SVM (linear kernel) No Yes [29]

kNN 0.19.2 Python kNN (k = 9) No No [29]

Abdelaal et al. Genome Biology          (2019) 20:194 Page 3 of 19



Obtain existing single cell datasets

• Information from the original papers:



Obtain existing single cell datasets

• Human cell atlas (https://data.humancellatlas.org/):



Obtain existing single cell datasets

• Human cell atlas (https://data.humancellatlas.org/):



Obtain existing single cell datasets
• Website (e.g. https://hemberg-lab.github.io/scRNA.seq.datasets/)

https://hemberg-lab.github.io/scRNA.seq.datasets/


Data integration
• Integrate data from different platforms, conditions, species, 

etc.
• Similar to batch effect correction, but could be more broad
• Seurat V3: CCA (Cell, 2019)
• LIGER: Non-negative matrix factorization (Cell, 2019)
• Harmony: Shared embedding learning using a modified soft 

k-means (Nat Methods, 2019)
• scAlign: Shared embedding learning using revied 

autoencoder (Genome Biology, 2019)
• scMC: variance correction based on technical and biological 

variation (Genome Biology 2021)



Before

After

https://satijalab.org/seurat/articles/atacseq_integration_vignette.html



Seurat V3

Stuart et al. 2019, Cell



Korsunsky et al. 2019, Nat Methods



Harmony


