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Course outline
• 8-9:15: Intro and data preprocessing. 
• 9:15-9:45: Lab: preprocessing and visualization.
• 10-11:15: Normalization, batch effect, imputation, DE, 

simulator.
• 11:15-12: Lab: Normalization, batch effect, imputation, 

DE, simulator
• 12-1: lunch break
• 1-2: Clustering and pseudotime construction
• 2-2:30: Lab: Clustering and pseudotime construction
• 2:45–3:30: Supervised cell typing & related single cell data 

sources
• 3:30-4: Lab: supervised cell typing.
• 4:15-5: scRNA-seq in cancer



• Statistical models for scRNA-seq data
• Data preprocessing 
– Normalization
– Batch effect correction
– Imputation

• Differential expression
• Data simulator
• Sample size calculator

Outline for this session



Review: data model for bulk RNA-seq

• The most common model is the gene-wise gamma-
Poisson (negative binomial) distribution:

• NB is over-dispersed Poisson: 
- Poisson:
- NB: 
- Dispersion parameter ! approximates the squared 

coefficient of variation:

Yij | λi ~ Poisson(λi ), λi ~Gamma(α,β)
Yij ~ NB(α,β)
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2010; Robinson and Smyth, 2007; Hardcastle and Kelly, 2010). The variance from a NB

distribution depends on the mean µ in the relationship:

var = µ+ µ2⇥ (1.1)

where the first term represents variance due to Poisson sampling error and the second

term represents variance due to variation between biological replicates. The parameter

⇥ is referred to as the dispersion parameter. Notice that ⇥ is the reciprocal of the shape

parameter in the Gamma distribution, thus is the squared coefficient of variation (CV).

Therefore, ⇥ represents the variation of a gene’s expression relative to its mean.

Most statisticians agree that the over-dispersion problem needs to be addressed. The

difference is how the dispersion is modeled, estimated and used in inference. Robinson

and Smyth (2008) assumes a common dispersion for all genes and uses information from

all genes to estimate a global ⇥. This stabilizes the estimation for ⇥ but a common disper-

sion means identical CV for all genes, while it is known that some genes are more tightly

controlled (for example, housekeeping genes) and other genes vary much more relative

to their means (for example, immune-modulated and stress-induced genes (Pritchard

and others, 2001)). The gene specific biological variation is reproducible across tech-

nologies (Hansen and others, 2011) and is not reflected by a common dispersion. As a

result, genes that are naturally more variable are more likely to be reported as DE due

to an underestimate of their dispersion. Anders and Huber (2010) introduce DESeq, an-

other method based on the NB model. Instead of assuming the second term in Equation

1.1 to be proportional to µ2 with a dispersion ⇥, they let the variance be a smooth func-

tion of the mean (with proper offset accounting for sequencing depth). However, their

model still assumes that conditioning on the mean expression, the variance is constant.
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“over-dispersion” problem since even non-differentially expressed genes show variation

greater than expected by Poisson.

A common model to address the over-dispersion problem is the Negative Binomial

(NB) model. The NB model is a Gamma-poisson mixture and can be interpreted as the

following: the Gamma distribution models the unobserved true expression levels in each

biological sample, and conditioning on the expression level, the measurement from the

sequencing machine follows a Poisson distribution (Anders and Huber, 2010; Robinson

and Smyth, 2007; Hardcastle and Kelly, 2010). The variance from a NB distribution

depends on the mean in the relationship:

var = µ + µ2⇥ (1.1)

where the first term reprents variance due to poisson sampling error and the second

term represents variance due to variation between biological replicates. The parameter

⇥ is referred to as the dispersion parameter. Notice that ⇥ is the inverse of the shape

parameter in the Gamma distribution, thus is the squared coefficient of variation. This

is crucial in the context of gene expression, because although expression is a stochastic

phenomenon and under constant regulation, the biological system is also robust and

thus the CV is usually small between replicates. Based on RNA-seq data from human

populations (Cheung and others, 2010), we observed that 70% of the genes having CV

less than 0.5. CV in inbred animal models or established cell lines are likely even lower.

HAO: do we have the log(phi.hat) from high counts and can we show that it looks

somewhat normal? This can be our motivation for using a lognormal prior.

Most statisticians agree that the over-dispersion problem needs to be addressed. The

difference is how the dispersion is modeled, estimated and used in inference. Robinson

BIOS 560R: Advanced Statistical Computing

Fall 2012 Homework 3

Due 10/18/2012 at 4pm before the class

Hidden Markov model (HMM) is useful for modeling financial time series data such as

the stock prices. In this homework we will practice using HMM to model the daily price of

QQQ, and use the modeling results for prediction. PowerShares QQQ is an ETF tracking

the Nasdaq 1000 Index. Its price is highly indicative of the overall stock market.

Its adjusted daily closing prices from Mar 10th, 1999 to Oct 1st, 2012 can be obtained

from the class website.

� = var�µ
µ2 ⇡ var

µ2

Note the

However the daily prices For example, the stock prices

1



Data model for scRNA-seq

• The data distribution is more complex than 
bulk RNA-seq due to 
– Mixture of cell types
– Drop out 

• Often-used statistical models
– Gene-wise: zero-inflated model, mixture model
– Cell-wise: Dirichlet-multinomial.  



Gene-wise modeling
• Many expressions follow multi-modal distribution. 

• Most methods use mixture of distributions:
– SCDE (Kharchenko et al., 2014): a mixture of NB and 

Poisson.

– MAST (Finak et al., 2015): a generalized linear hurdle 
model.

– SC2P (Wu et al. 2018): a mixture of zero-inflated Poisson 
(ZIP) and lognormal-Poisson. 

• Recent discussions about the presence of zero-
inflation: whether it’s caused by UMI or droplet. 
– Cao et al. 2020 Nat Biotech; Svensson 2020 Nat Biotech. 



Cell-wise modeling
• Counts for cells in one cell type follow Dirichlet-

multinomial distribution 
– Counts for each cell follow a multinomial distribution
– The MN means follow Dirichlet cross cells in the same cell 

type. 
• For multiple cell types, the counts follow a mixture of 

Dirichlet-multinomial. 
• Used more often in cell clustering methods (DIMM-

SC, BAMM-SC).



Data normalization
• scRNA-seq is very noisy. 
• Spike-in data is usually available. 
– Spike-ins from the external RNA Control Consortium 

(ERCC) panel contains 92 synthetic spikes based on 
bacterial genome with known expression level. 

• UMI is helpful for removing amplification noise. 
• A combination of spike-in and UMI can potentially be 

used for data normalization.
• Simple normalization (such as by sequencing depth) 

for bulk RNA-seq can be applied, e.g., TPM or FPKM. 



Lun et al. Genome Biology  (2016) 17:75 
DOI 10.1186/s13059-016-0947-7

METHOD Open Access

Pooling across cells to normalize
single-cell RNA sequencing data with many
zero counts
Aaron T. L. Lun1*, Karsten Bach2 and John C. Marioni1,2,3*

Abstract
Normalization of single-cell RNA sequencing data is necessary to eliminate cell-specific biases prior to downstream
analyses. However, this is not straightforward for noisy single-cell data where many counts are zero. We present a
novel approach where expression values are summed across pools of cells, and the summed values are used for
normalization. Pool-based size factors are then deconvolved to yield cell-based factors. Our deconvolution approach
outperforms existing methods for accurate normalization of cell-specific biases in simulated data. Similar behavior is
observed in real data, where deconvolution improves the relevance of results of downstream analyses.

Keywords: Single-cell RNA-seq, Normalization, Differential expression

Background
Single-cell RNA sequencing (scRNA-seq) is a powerful
technique that allows researchers to characterize the gene
expression profile of single cells. From each cell, mRNA
is isolated and reverse-transcribed into cDNA, which is
amplified and subjected to massively parallel sequenc-
ing [1]. The sequencing reads are mapped to a reference
genome, such that the number of reads mapped to each
gene can be used to quantify its expression. Alternatively,
transcript molecules can be counted directly using unique
molecular identifiers (UMIs) [2]. Count data can be ana-
lyzed to identify new cell subtypes and to detect highly
variable or differentially expressed (DE) genes between
cell subpopulations. This type of single-cell resolution is
not possible with bulk RNA sequencing of cellular pop-
ulations. However, the downside is that the counts often
contain high levels of technical noise with many dropouts,
i.e., zero or near-zero values. This is due to the pres-
ence of low amounts of RNA per cell, which decreases
the efficiency with which transcripts can be captured
and processed prior to sequencing. Moreover, the capture

*Correspondence: aaron.lun@cruk.cam.ac.uk; marioni@ebi.ac.uk
1Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka
Shing Centre, Robinson Way, CB2 0RE, Cambridge, UK
2EMBL European Bioinformatics Institute, Wellcome Genome Campus,
Hinxton, CB10 1SD, Cambridge, UK
Full list of author information is available at the end of the article

efficiency often varies from cell to cell, such that counts
cannot be directly compared between cells.
Normalization of the scRNA-seq counts is a critical

step that corrects for cell-to-cell differences in capture
efficiency, sequencing depth, and other technical con-
founders. This ensures that downstream comparisons of
relative expression between cells are valid. Two broad
classes of methods for scaling normalization are available:
those using spike-in RNA sets and those using the counts
from the profiled cellular RNA. In the former, the same
quantity of spike-in RNA is added to each cell prior to
library preparation [1]. Any difference in the coverage of
the spike-in transcripts must be caused by differences in
capture efficiency, amplification bias, or sequencing depth
between cells. Normalization is then performed by scaling
the counts to equalize spike-in coverage between cells. For
the methods using cellular counts, the assumption is that
most genes are not DE across the sampled cells. Counts
are scaled so that there is, on average, no fold-difference in
expression between cells for the majority of genes. This is
the underlying concept of commonly used methods such
as DESeq [3] and trimmed mean ofM values (TMM) nor-
malization [4]. An even simpler approach involves scaling
the counts to remove differences in library sizes between
cells, i.e., library size normalization.
The type of normalization that can be used depends on

the characteristics of the data set. In some cases, spike-in

© 2016 Lun et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.
org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

• Works for data without spike-in.
• The goal is to estimate a size factor for each cell. 
• The idea is to normalize on summed expression 

values from pools of cells – it’s more stable than 
using individual cell. 

• Bioconductor package scran.
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Fig. 2 Illustration of the effect of removing stochastic zeroes (black) from the distribution of ratios across all genes. Distributions are shown for cells
with a small and b large θj . The estimated median ratio (dashed) is increased beyond the true median (full) upon removal of zeroes, which results in
overestimation of the size factor for the cell. This effect is more pronounced for cells with small θj that have greater numbers of zeroes, compared to
cells with large θj where the estimated and true medians are more similar

of an arbitrary set of cells Sk . Define Vik as the sum of Zij
across all cells in Sk , which has an expectation of

E(Vik) = λi0
∑

j∈Sk

θjt−1
j .

The observed values of Vik across all genes constitute an
overall expression profile for the pool of cells correspond-
ing to Sk . Also define Ui as the mean of Zij across all N
cells in the entire data set, which has an expectation of

E(Ui) = λi0N−1 ∑

j∈S0

θjt−1
j

where S0 refers to the set of all cells in the data
set. The observed values of Ui across all genes rep-
resent the expression profile for an averaged reference
pseudo-cell.
The cell pool k is then normalized against this reference

pseudo-cell. Define Rik as the ratio ofVik toUi for the non-
DE gene i. The expectation of Rik represents the true size
factor for the pooled cells in Sk , and is written as

E(Rik) ≈ E(Vik)
E(Ui)

=
∑

Sk θjt−1
j

N−1 ∑
S0 θjt−1

j
=

∑
Sk θjt−1

j
C (1)

Fig. 3 Schematic of the deconvolution method. All cells in the data set are averaged to make a reference pseudo-cell. Expression values for cells in
pool A are summed together and normalized against the reference to yield a pool-based size factor θA . This is equal to the sum of the cell-based
factors θj for cells j = 1–4 and can be used to formulate a linear equation. (For simplicity, the tj term is assumed to be unity here.) Repeating this for
multiple pools (e.g., pool B) leads to the construction of a linear system that can be solved to estimate θj for each cell j



• Basic idea: one normalization factor per cell 
doesn’t fit all genes. 

• Relationships of read counts and sequencing 
depths vary and depend on the expression 
levels. 
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major bias in scRNA-seq data that has not been recognized and 
reported in previous studies. Specifically, scRNA-seq data show 
systematic variation in the relationship between transcript-specific 
expression and sequencing depth (which we refer to as the count– 
depth relationship) that is not accommodated by a single scale factor 
common to all genes in a cell (Fig. 1 and Supplementary Fig. 1).  
Global scale factors adjust for a count–depth relationship that is 
assumed to be common across genes. When this relationship is not 
common across genes, normalization via global scale factors leads 
to overcorrection for weakly and moderately expressed genes and, in 
some cases, undernormalization of highly expressed genes (Fig. 1).

To address this, SCnorm uses quantile regression to estimate 
the dependence of transcript expression on sequencing depth for 
every gene. Genes with similar dependence are then grouped, and 
a second quantile regression is used to estimate scale factors within 
each group. Within-group adjustment for sequencing depth is then 
performed using the estimated scale factors to provide normal-
ized estimates of expression. Although SCnorm does not require 
experimental RNA spike-ins, performance may be improved if 
spike-ins that span the range of expression observed in endog-
enous genes are available (Supplementary Note 1).

We evaluated SCnorm and compared it with MR3, transcripts 
per million (TPM)7, scran5, SCDE8, and BASiCS6 using simulated 
and case study data. In the first simulation (SIM I), two scenarios 
are considered where the number of gene groups having different 
count–depth relationships (K) is set to one (to mimic a bulk experi-
ment) or four (Supplementary Fig. 2). Each simulated data set con-
tains two conditions, the second condition having approximately 
four times as many reads as the first; 20% of the genes are defined 
to be differentially expressed (DE). Prior to normalization, counts 
in the second condition will appear four times higher on average 
given the increased sequencing depth. If normalization for depth 
is effective, fold-change estimates should be near one, and only 
simulated DE genes should appear to be DE. When K = 1, with the 
exception of TPM, fold-change estimates are consistently robust 
among methods (Supplementary Fig. 2a), and all normalization 
methods provide data that result in high sensitivity and specifi-
city for identifying DE genes (Supplementary Fig. 2b). However, 
when K = 4, only SCnorm maintains good operating characteristics, 
whereas approaches based on global scale factors overestimate fold 
changes for weakly to moderately expressed genes on account of 
overcorrection of sequencing depth (Supplementary Fig. 2c,d).

In the second simulation (SIM II) counts are generated as in 
Lun et al.5, following their simulation study scenarios 1, 2, 3, and 
4. Briefly, scenario 1 contains no DE genes; scenarios 2, 3, and 4 
contain moderate DE, strong DE, and varying magnitudes of DE 
genes, respectively. We found that SCnorm is similar to scran with 

SCnorm: robust 
normalization of  
single-cell RNA-seq data
Rhonda Bacher1,5  , Li-Fang Chu2,5, Ning Leng2,  
Audrey P Gasch3, James A Thomson2, Ron M Stewart2, 
Michael Newton1,4   & Christina Kendziorski4

The normalization of RNA-seq data is essential for accurate 
downstream inference, but the assumptions upon which 
most normalization methods are based are not applicable  
in the single-cell setting. Consequently, applying existing 
normalization methods to single-cell RNA-seq data introduces 
artifacts that bias downstream analyses. To address this, we 
introduce SCnorm for accurate and efficient normalization of 
single-cell RNA-seq data.

Methods used to quantify mRNA abundance introduce sys-
tematic sources of variation that can obscure signals of interest. 
Consequently, an essential first step in most mRNA-expression 
analyses is normalization, whereby systematic variations are 
adjusted to make expression counts comparable across genes and/ 
or samples. Within-sample normalization methods adjust for gene-
specific features, such as GC content and gene length, to facilitate 
comparisons of a gene’s expression within an individual sample; 
whereas between-sample normalization methods adjust for sample-
specific features, such as sequencing depth, to allow for compari-
sons of a gene’s expression across samples1. In this work, we present 
a method for between-sample normalization, although we note 
that the R implementation of our method, R/SCnorm, also allows 
gene-specific features to be adjusted (Supplementary Software 
and http://www.biostat.wisc.edu/~kendzior/SCNORM/).

A number of methods are available for between-sample nor-
malization in bulk RNA-seq experiments2,3. Most of these meth-
ods calculate global scale factors (one factor is applied to each 
sample, and this same factor is applied to all genes in the sample) 
to adjust for sequencing depth. These methods demonstrate excel-
lent performance in bulk RNA-seq, but they are compromised in 
the single-cell setting because of an abundance of zero-expression 
values and increased technical variability4.

Recent methods have been developed specifically for single-cell 
RNA-seq (scRNA-seq) normalization5,6. Like bulk methods, they cal-
culate global scale factors, and therefore they cannot accommodate a  

1Department of Statistics, University of Wisconsin–Madison, Madison, Wisconsin, USA. 2Morgridge Institute for Research, Madison, Wisconsin, USA. 3Laboratory 
of Genetics, University of Wisconsin–Madison, Madison, Wisconsin, USA. 4Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, 
Madison, Wisconsin, USA. 5These authors contributed equally to this work. Correspondence should be addressed to C.K. (kendzior@biostat.wisc.edu).
RECEIVED 22 AUGUST 2016; ACCEPTED 22 MARCH 2017; PUBLISHED ONLINE 17 APRIL 2017; DOI:10.1038/NMETH.4263
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major bias in scRNA-seq data that has not been recognized and 
reported in previous studies. Specifically, scRNA-seq data show 
systematic variation in the relationship between transcript-specific 
expression and sequencing depth (which we refer to as the count– 
depth relationship) that is not accommodated by a single scale factor 
common to all genes in a cell (Fig. 1 and Supplementary Fig. 1).  
Global scale factors adjust for a count–depth relationship that is 
assumed to be common across genes. When this relationship is not 
common across genes, normalization via global scale factors leads 
to overcorrection for weakly and moderately expressed genes and, in 
some cases, undernormalization of highly expressed genes (Fig. 1).

To address this, SCnorm uses quantile regression to estimate 
the dependence of transcript expression on sequencing depth for 
every gene. Genes with similar dependence are then grouped, and 
a second quantile regression is used to estimate scale factors within 
each group. Within-group adjustment for sequencing depth is then 
performed using the estimated scale factors to provide normal-
ized estimates of expression. Although SCnorm does not require 
experimental RNA spike-ins, performance may be improved if 
spike-ins that span the range of expression observed in endog-
enous genes are available (Supplementary Note 1).

We evaluated SCnorm and compared it with MR3, transcripts 
per million (TPM)7, scran5, SCDE8, and BASiCS6 using simulated 
and case study data. In the first simulation (SIM I), two scenarios 
are considered where the number of gene groups having different 
count–depth relationships (K) is set to one (to mimic a bulk experi-
ment) or four (Supplementary Fig. 2). Each simulated data set con-
tains two conditions, the second condition having approximately 
four times as many reads as the first; 20% of the genes are defined 
to be differentially expressed (DE). Prior to normalization, counts 
in the second condition will appear four times higher on average 
given the increased sequencing depth. If normalization for depth 
is effective, fold-change estimates should be near one, and only 
simulated DE genes should appear to be DE. When K = 1, with the 
exception of TPM, fold-change estimates are consistently robust 
among methods (Supplementary Fig. 2a), and all normalization 
methods provide data that result in high sensitivity and specifi-
city for identifying DE genes (Supplementary Fig. 2b). However, 
when K = 4, only SCnorm maintains good operating characteristics, 
whereas approaches based on global scale factors overestimate fold 
changes for weakly to moderately expressed genes on account of 
overcorrection of sequencing depth (Supplementary Fig. 2c,d).

In the second simulation (SIM II) counts are generated as in 
Lun et al.5, following their simulation study scenarios 1, 2, 3, and 
4. Briefly, scenario 1 contains no DE genes; scenarios 2, 3, and 4 
contain moderate DE, strong DE, and varying magnitudes of DE 
genes, respectively. We found that SCnorm is similar to scran with 
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The normalization of RNA-seq data is essential for accurate 
downstream inference, but the assumptions upon which 
most normalization methods are based are not applicable  
in the single-cell setting. Consequently, applying existing 
normalization methods to single-cell RNA-seq data introduces 
artifacts that bias downstream analyses. To address this, we 
introduce SCnorm for accurate and efficient normalization of 
single-cell RNA-seq data.

Methods used to quantify mRNA abundance introduce sys-
tematic sources of variation that can obscure signals of interest. 
Consequently, an essential first step in most mRNA-expression 
analyses is normalization, whereby systematic variations are 
adjusted to make expression counts comparable across genes and/ 
or samples. Within-sample normalization methods adjust for gene-
specific features, such as GC content and gene length, to facilitate 
comparisons of a gene’s expression within an individual sample; 
whereas between-sample normalization methods adjust for sample-
specific features, such as sequencing depth, to allow for compari-
sons of a gene’s expression across samples1. In this work, we present 
a method for between-sample normalization, although we note 
that the R implementation of our method, R/SCnorm, also allows 
gene-specific features to be adjusted (Supplementary Software 
and http://www.biostat.wisc.edu/~kendzior/SCNORM/).

A number of methods are available for between-sample nor-
malization in bulk RNA-seq experiments2,3. Most of these meth-
ods calculate global scale factors (one factor is applied to each 
sample, and this same factor is applied to all genes in the sample) 
to adjust for sequencing depth. These methods demonstrate excel-
lent performance in bulk RNA-seq, but they are compromised in 
the single-cell setting because of an abundance of zero-expression 
values and increased technical variability4.

Recent methods have been developed specifically for single-cell 
RNA-seq (scRNA-seq) normalization5,6. Like bulk methods, they cal-
culate global scale factors, and therefore they cannot accommodate a  
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Figure 1: For each gene, median quantile regression was used to estimate the count-
depth relationship before normalization and after normalization via MR for the H1 bulk 
RNA-seq data set (panels (a) – (d)) and the DEC scRNA-seq data set (panels (e)-(h)).  
Panel (a) shows log-expression vs. log-depth and estimated regression fits for three genes 
having low, moderate, and high expression defined as median expression among non-
zero un-normalized measurements in the 10th-20th quantile, 40th-50th quantile, and 80th-90th 
quantile, respectively. Panel (b) shows densities of slopes within each of ten equally 
sized gene groups where a gene’s group membership is determined by its median 
expression among non-zero un-normalized measurements. Panels (c) and (d) show the 
same data as panels (a) and (b), respectively, but here the data are normalized via MR. 
Panels (e)-(h) are structurally identical to (a)-(d) for the DEC scRNA-seq data set.  
Qualitatively similar results are observed if slopes are calculated via generalized linear 
models (Supplementary Section S3 and Supplementary Figure S1).  
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SCnorm Solution

• Uses quantile regression to estimate the 
dependence of read counts on sequencing 
depth for every gene. 

• Genes with similar dependence are then 
grouped, and a second quantile regression is 
used to estimate scale factors within each 
group.

• Bioconductor package SCnorm. 



Batch effect

• Batch effect in scRNA-seq can be severe.
• Can be difficult to randomize the design, i.e., 

batch is confounded with individual, so it 
causes trouble for analyzing data from 
multiple individuals (more on this later). 

• Bulk data method such as Combat doesn’t 
work well.



Batch effect correction methods

• The cells are from different cell types, which 
complicates the problem. 

• Most methods are developed for cell 
clustering, i.e., jointly perform batch 
correction and cell clustering. 

• The goal is to minimize the impact of batch 
effects on cell clustering.
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Recent technological advances1 enable unbiased single-cell 
transcriptional profiling of thousands of cells in one experi-
ment. Projects such as the Human Cell Atlas2 (HCA) and 

Accelerating Medicines Partnership3–5 exemplify the growing body 
of reference datasets of primary human tissues. While individual 
experiments incrementally expand our understanding of cell types, 
a comprehensive catalog of healthy and diseased cells will require 
the ability to integrate multiple datasets across donors, studies and 
technological platforms. Moreover, in translational research, joint 
analyses across tissues and clinical conditions will be essential to 
identify disease-expanded populations. Since meaningful biologi-
cal variation in single-cell RNAseq datasets from different studies 
is often confounded by data source6, investigators have developed 
unsupervised multi-dataset integration algorithms7–10. These meth-
ods embed cells from diverse experimental conditions and biologi-
cal contexts into a common reduced dimensional embedding to 
enable shared cell-type identification across datasets.

Here, we introduce Harmony, an algorithm for robust, scalable 
and flexible multi-dataset integration to meet four key challenges of 
unsupervised scRNAseq joint embedding: scaling to large datasets, 
identification of both broad populations and fine-grained subpopu-
lations, flexibility to accommodate complex experimental design, 
and the power to integrate across modalities. We apply Harmony 
to a diverse range of examples, including cell lines, peripheral blood 
mononuclear cells (PBMCs) assayed with different technologies, 
a meta-analysis of pancreatic islet cells from multiple donors and 
studies, longitudinal samples from mouse embryogenesis, and 
cross-modality integration of scRNA-seq data with spatial tran-
scriptomics data. Harmony is available as an R package on github 
(https://github.com/immunogenomics/harmony), with functions 
for standalone and Seurat7 pipeline analyses.

Results
Harmony iteratively learns a cell-specific linear correction func-
tion. Harmony begins with a low-dimensional embedding of cells, 
such as principal components analysis (PCA), (Supplementary Note 
1 and Methods). Using this embedding, Harmony first groups cells 
into multi-dataset clusters (Fig. 1a). We use soft clustering to assign 
cells to potentially multiple clusters, to account for smooth transi-
tions between cell states. These clusters serve as surrogate variables, 
rather than to identify discrete cell types. We developed a new soft 
k-means clustering algorithm that favors clusters with cells from 
multiple datasets (Methods). Clusters disproportionately containing 
cells from a small subset of datasets are penalized by an information 
theoretic metric. Harmony allows for multiple different penalties to 
accommodate multiple technical or biological factors, such as dif-
ferent batches and tissue sources. Soft clustering preserves discrete 
and continuous topologies while avoiding local minima that might 
result from maximizing representation too quickly across multiple 
datasets. After clustering, each dataset has cluster-specific centroids 
(Fig. 1b) that are used to compute cluster-specific linear correction 
factors (Fig. 1c). Since clusters correspond to cell types and states, 
cluster-specific correction factors correspond to individual cell-type 
and cell-state specific correction factors. In this way, Harmony learns 
a simple linear adjustment function that is sensitive to intrinsic cel-
lular phenotypes. Finally, each cell is assigned a cluster-weighted 
average of these terms and corrected by its cell-specific linear factor 
(Fig. 1d). Since each cell may be in multiple clusters, each cell has 
a potentially unique correction factor. Harmony iterates these four 
steps until cell cluster assignments are stable.

Quantifying performance in cell-line data. We first assessed 
Harmony using three carefully controlled datasets, to evaluate  
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The emerging diversity of single-cell RNA-seq datasets allows for the full transcriptional characterization of cell types across a 
wide variety of biological and clinical conditions. However, it is challenging to analyze them together, particularly when datasets 
are assayed with different technologies, because biological and technical differences are interspersed. We present Harmony 
(https://github.com/immunogenomics/harmony), an algorithm that projects cells into a shared embedding in which cells group 
by cell type rather than dataset-specific conditions. Harmony simultaneously accounts for multiple experimental and biological 
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mouse embryogenesis datasets and the integration of scRNA-seq with spatial transcriptomics data.
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performance on both integration (mixing of datasets) and accu-
racy (no mixing of cell types). Perfect integration can be achieved 
by mixing all cells, regardless of cellular identity. Similarly, high 
accuracy can be achieved by partitioning cells into broad clusters 
without mixing datasets in small neighborhoods. In this situation, 
broad cellular states are defined, but fine-grained cellular substates 
and subtypes are confounded by the originating dataset. To quantify 
integration and accuracy of this embedding, we defined an objective 
metric: the local inverse Simpson’s Index (LISI, see Methods) in the 
local neighborhood of each cell. To assess integration, we employ 
‘integration LISI’ (iLISI, see Fig. 2a), which defines the effective 
number of datasets in a neighborhood. Neighborhoods represented 
by only a single dataset get an iLISI of 1, while neighborhoods with 
an equal number of cells from two datasets get an iLISI of 2. Note 
that even under ideal mixing, if the datasets have different numbers 
of cells, iLISI would be less than 2. To assess accuracy, we use ‘cell-
type LISI’ (cLISI, see Fig. 2b), the same mathematical measure, but 
applied to cell type instead of dataset labels. Accurate integration 
should maintain a cLISI of 1, reflecting a separation of unique cell 
types throughout the embedding. An erroneous embedding would 
include neighborhoods with a cLISI of 2, indicating that neighbors 
have two different types of cell.

We begin with three datasets from two cell lines: (1) pure Jurkat, 
(2) pure 293T and (3) a 50/50 mix11. These datasets are ideal for 
illustration and for assessment, as each cell can be unambiguously 
labeled Jurkat or 293T (Supplementary Fig. 1a). A thorough inte-
gration would mix the 1,799 Jurkat cells from the mixture dataset 
with 3,255 cells from the pure Jurkat dataset and the 1,565 293T 
cells from the mixture dataset with the 2,859 from the pure 293T 
dataset. Thus, we expect the average iLISI to range from 1, reflect-
ing no integration, to 1.8 (= 1/[(1,799/(1,799 + 2,859))2 + (3,255/
(1,799 + 3,255))2]) for Jurkat cells and 1.5 (= 1/[(1,565/
(1,565 + 2,859))2 + (2,859/(1,565 + 2,859))2]) for 293T cells, reflect-
ing maximal accurate integration. Application of a standard PCA 
pipeline followed by UMAP embedding demonstrates that the 
cells group broadly by dataset and cell type. This is both visually 
apparent and quantified (Fig. 2c,d) with high accuracy reflected 
by a low cLISI (median iLISI 1.00, 95% confidence interval (CI) 
[1.00, 1.00]). However, the iLISI (median iLISI 1.01, 95% CI [1.00, 
1.61]) is also low, reflecting imperfect integration and ample struc-
ture within each cell type reflecting the dataset of origin. After 

Harmony, cells from the 50/50 dataset are appropriately mixed into 
the pure datasets (Fig. 2e). The increased iLISI (median iLISI 1.59, 
95% CI [1.27, 1.97]) reflects the mixing of datasets, while the low 
cLISI (Fig. 2f, median iLISI 1.00, 95% CI [1.00, 1.02]) reflects the 
accurate separation of Jurkat from 293T cells. iLISI and cLISI pro-
vide a quantitative way to compare the integration and accuracy of 
multiple algorithms. We repeated the integration and LISI analy-
ses with MNN Correct, BBKNN, MultiCCA and Scanorama and 
showed that they produced embeddings with statistically inferior 
integration (Supplementary Results, Fig. 1b and Table 1).

This benchmark demonstrates the two key metrics for assess-
ing mixing and accuracy and shows that Harmony performs well 
on both metrics in a well-controlled analysis of cell-line datasets. 
A potential pitfall of LISI is that it is sensitive to datasets of vastly 
different sizes. In such a situation, most neighborhoods can be 
dominated by a single dataset and LISI values become difficult to 
interpret (Supplementary Note 2).

Harmony scales to large data. We evaluated Harmony’s compu-
tational performance, measuring both total runtime and maxi-
mum memory usage. To demonstrate Harmony’s scalability versus 
other methods, we downsampled HCA data12 (528,688 cells from 
16 donors and two tissues) to create five benchmark datasets with 
500,000, 250,000, 125,000, 60,000 and 30,000 cells. We reported 
the runtime and memory (Supplementary Tables 2 and 3) for 
all benchmarks. Harmony runtime scaled well for all datasets  
(Fig. 3a), ranging from 4 min on 30,000 cells to 68 min on 500,000 
cells, 30 to 200 times faster than MultiCCA and MNN Correct.  
The runtimes for Harmony, BBKNN and Scanorama were com-
parable for datasets with up to 125,000 cells. Harmony required 
dramatically less memory (Fig. 3b) compared to other algorithms: 
only 0.9 gigabytes (GB) on 30,000 cells and 7.2 GB on 500,000 cells. 
At 125,000 cells, Harmony required 30–50 times less memory 
than Scanorama, MNN Correct and Seurat MultiCCA; these other 
methods could not scale beyond 125,000 cells. Harmony returned 
substantially more integrated embeddings (Fig. 3c) than did other 
competing algorithms (Supplementary Results), allowing for the 
identification of shared cell types (Fig. 3d) across tissues and 
donors. These results demonstrate that Harmony is computation-
ally efficient and capable of analyzing even large datasets (105–106 
cells) on personal computers.
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Fig. 1 | Overview of Harmony algorithm. PCA embeds cells into a space with reduced dimensionality. Harmony accepts the cell coordinates in this reduced 
space and runs an iterative algorithm to adjust for dataset specific effects. a, Harmony uses fuzzy clustering to assign each cell to multiple clusters, while 
a penalty term ensures that the diversity of datasets within each cluster is maximized. b, Harmony calculates a global centroid for each cluster, as well 
as dataset-specific centroids for each cluster. c, Within each cluster, Harmony calculates a correction factor for each dataset based on the centroids. 
d, Finally, Harmony corrects each cell with a cell-specific factor: a linear combination of dataset correction factors weighted by the cell’s soft cluster 
assignments made in step a. Harmony repeats steps a to d until convergence. The dependence between cluster assignment and dataset diminishes with 
each round. Datasets are represented with colors, cell types with different shapes.
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Large-scale single-cell RNA sequencing (scRNA-seq) data sets 
that are produced in different laboratories and at different 
times contain batch effects that may compromise the 
integration and interpretation of the data. Existing scRNA-seq 
analysis methods incorrectly assume that the composition of 
cell populations is either known or identical across batches.  
We present a strategy for batch correction based on the 
detection of mutual nearest neighbors (MNNs) in the  
high-dimensional expression space. Our approach does 
not rely on predefined or equal population compositions 
across batches; instead, it requires only that a subset of the 
population be shared between batches. We demonstrate the 
superiority of our approach compared with existing methods 
by using both simulated and real scRNA-seq data sets. Using 
multiple droplet-based scRNA-seq data sets, we demonstrate 
that our MNN batch-effect-correction method can be scaled to 
large numbers of cells.

The decreasing cost of scRNA-seq experiments1–4 has encouraged the 
establishment of large-scale projects such as the Human Cell Atlas, 
which profile the transcriptomes of thousands to millions of cells. 
For such large studies, logistical constraints inevitably dictate that 
data be generated separately i.e., at different times and with different 
operators. Data may also be generated in multiple laboratories using 
different cell dissociation and handling protocols, library-preparation 
technologies and/or sequencing platforms. All of these factors result 
in batch effects5,6, in which the expression of genes in one batch dif-
fers systematically from that in another batch. Such differences can 
mask underlying biology or introduce spurious structure in the data; 
thus, to avoid misleading conclusions, they must be corrected before 
further analysis.

Most existing methods for batch correction are based on linear 
regression. The limma package provides the removeBatchEffect func-
tion7, which fits a linear model containing a blocking term for the 
batch structure to the expression values for each gene. Subsequently, 

the coefficient for each blocking term is set to zero, and the expres-
sion values are computed from the remaining terms and residuals, 
thus yielding a new expression matrix without batch effects. The 
ComBat method8 uses a similar strategy but performs an additional 
step involving empirical Bayes shrinkage of the blocking coefficient 
estimates. This procedure stabilizes the estimates in the presence of 
limited replicates by sharing information across genes. Other meth-
ods, such as RUVseq9 and svaseq10, are also frequently used for batch 
correction, but their focus is primarily on identifying unknown fac-
tors of variation, for example, those due to unrecorded experimental 
differences in cell processing. After these factors are identified, their 
effects can be regressed out as described previously.

Existing batch-correction methods were specifically designed for 
bulk RNA-seq. Thus, their application to scRNA-seq data is based 
on the assumption that the composition of the cell population within 
each batch is identical. Any systematic differences in mean gene 
expression between batches are attributed to technical differences 
that can be regressed out. However, in practice, the population 
composition is usually not identical across batches in scRNA-seq 
studies. Even if the same cell types are present in each batch, the 
abundance of each cell type in the data set can change depending 
upon subtle differences in procedures such as cell culture or tissue 
extraction, dissociation and sorting. Consequently, the estimated 
coefficients for the batch blocking factors are not purely technical 
but contain a nonzero biological component because of differences 
in composition. Batch correction based on these coefficients would 
thus yield inaccurate representations of the cellular expression pro-
files, and the results might potentially be worse than if no correction  
were performed.

An alternative approach for data merging and comparison in the 
presence of batch effects uses a set of landmarks from a reference 
data set to project new data onto the reference11,12. The rationale for 
this approach is that a given cell type in the reference batch will be 
most similar to cells of its own type in the new batch. Such projection 
strategies can be applied by using several dimensionality-reduction 
methods, such as principal component analysis (PCA) or diffusion 
maps, or by using force-based methods such as t-distributed stochastic  
neighbor embedding (t-SNE). This strategy depends on the selec-
tion of landmark points in high-dimensional space picked from the 
reference data set, which cover all cell types that might appear in the 
later batches. However, if the new batches include cell types that fall 
outside the transcriptional space explored in the reference batch, these 
cell types will not be projected to an appropriate position in the space 
defined by the landmarks (Supplementary Note 1).
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Here, we propose a new method for removal of discrepancies 
between biologically related batches according to the presence of 
MNNs between batches, which are considered to define the most sim-
ilar cells of the same type across batches. The difference in expression 
values between cells in an MNN pair provides an estimate of the batch 
effect, which is made more precise by averaging across many such 
pairs. A correction vector is obtained from the estimated batch effect 
and applied to the expression values to perform batch correction. Our 
approach automatically identifies overlaps in population composition 
between batches and uses only the overlapping subsets for correction, 
thus avoiding the assumption of equal composition required by other 
methods. We demonstrate that our approach outperforms existing 
methods on a range of simulated and real scRNA-seq data sets involv-
ing different biological systems and technologies.

RESULTS
Matching mutual nearest neighbors for batch correction
Our approach identifies cells that have mutually similar expression 
profiles between different experimental batches or replicates. We infer 
that any differences between these cells in the high-dimensional gene 
expression space are driven by batch effects (i.e., technical differences 
induced by the operator or other experimental artifacts) and do not 
represent the underlying biology of interest. We note that our defi-
nition of a batch effect may also incorporate some signal driven by 
biological features that are not of interest (for example, intersample 
differences due to genotype). After correction, multiple batches can 
be ‘joined up’ into a single data set (Fig. 1).

The first step of our method involves global scaling of the data 
through a cosine normalization. More precisely, if Yx is the expression 
vector for cell x, we define the cosine normalization as:

Y Y
Yx

x
x

j ( )1

Subsequently, we compute the Euclidean distance between the cosine-
normalized expression profiles of pairs of cells. Calculating Euclidean 
distances on these normalized data is equivalent to using cosine dis-
tances on the original expression values (Supplementary Note 2). 
Cosine distances have been widely used for measuring cell similarities 
according to expression profiles11,13–15 and are appealing because they 
are scale independent15 and thus robust to technical differences in 
sequencing depth and capture efficiency between batches.

The next step involves identification of mutual nearest neighbors. 
Consider an scRNA-seq experiment consisting of two batches 1 and 2.  
For each cell i1 in batch 1, we find the k cells in batch 2 with the small-
est distances to i1, i.e., its k nearest neighbors in batch 2. We do the 
same for each cell in batch 2 to find its k nearest neighbors in batch 1.  
If a pair of cells from each batch is contained in each other’s set of 
nearest neighbors, those cells are considered to be mutual nearest 
neighbors (Fig. 1). We interpret these pairs as containing cells that 
belong to the same cell type or state despite being generated in dif-
ferent batches. Thus, any systematic differences in expression level 
between cells in MNN pairs should represent the batch effect.

Our use of MNN pairs involves three assumptions: (i) there is at 
least one cell population that is present in both batches, (ii) the batch 
effect is almost orthogonal to the biological subspace, and (iii) the 
batch-effect variation is much smaller than the biological-effect vari-
ation between different cell types (more detailed discussion of these 
assumptions in Supplementary Note 3). The biological subspace 
refers to a set of basis vectors that represent biological processes; the 
length of each vector is equal to the number of genes. For example, 
some of these vectors may represent the cell cycle; some vectors may 

(1)(1)

define expression profiles specific to each cell type; and other vectors 
may represent differentiation or activation states. The true expression 
profile of each cell can be expressed as the linear sum of these vectors. 
Meanwhile, the batch effect is represented by a vector of length equal 
to the number of genes, which is added to the expression profile for 
each cell in the same batch. Under our assumptions, it is straightfor-
ward to show that cells from the same population in different batches 
will form MNN pairs (Supplementary Note 4). This assumption can 
be more intuitively understood in that cells from the same population 
in different batches form parallel hyperplanes with respect to each 
other (Fig. 1). We also note that the orthogonality assumption is weak 
for a random one-dimensional batch-effect vector in high-dimen-
sional data, especially given that local biological subspaces usually 
have much lower intrinsic dimensionality than the total number of 
genes in the data set.

For each MNN pair, a pair-specific batch-correction vector is com-
puted as the vector difference between the expression profiles of the 
paired cells. Although a set of biologically relevant genes (for exam-
ple, highly variable genes) can facilitate identification of MNNs, the 
calculation of batch vectors does not need to be performed in the 
same space. Therefore, we can calculate the batch vectors for a dif-
ferent set of inquiry genes (Supplementary Note 5). A cell-specific 
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Figure 1 Schematics of batch-effect correction by MNN. (a) Batch 1 
and batch 2 in high dimensions with an almost orthogonal batch effect 
difference between them. (b) The algorithm identifies matching cell types 
by finding MNN pairs of cells (gray box). (c) Batch-correction vectors 
are calculated between the MNN pairs. (d) Batch 1 is regarded as the 
reference, and batch 2 is integrated into it by subtraction of correction 
vectors. (e) The integrated data are considered the reference, and the 
procedure is repeated for integration of any new batch.
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Abstract

Background: Large-scale single-cell transcriptomic datasets generated using different technologies contain batch-
specific systematic variations that present a challenge to batch-effect removal and data integration. With continued
growth expected in scRNA-seq data, achieving effective batch integration with available computational resources is
crucial. Here, we perform an in-depth benchmark study on available batch correction methods to determine the
most suitable method for batch-effect removal.

Results: We compare 14 methods in terms of computational runtime, the ability to handle large datasets, and
batch-effect correction efficacy while preserving cell type purity. Five scenarios are designed for the study: identical
cell types with different technologies, non-identical cell types, multiple batches, big data, and simulated data.
Performance is evaluated using four benchmarking metrics including kBET, LISI, ASW, and ARI. We also investigate
the use of batch-corrected data to study differential gene expression.

Conclusion: Based on our results, Harmony, LIGER, and Seurat 3 are the recommended methods for batch
integration. Due to its significantly shorter runtime, Harmony is recommended as the first method to try, with the
other methods as viable alternatives.

Keywords: Single-cell RNA-seq, Batch correction, Batch effect, Integration, Differential gene expression

Introduction
Technological advances in the recent years have increased
our ability to generate high-throughput single-cell gene
expression data. Single-cell data is often compiled from
multiple experiments with differences in capturing times,
handling personnel, reagent lots, equipments, and even
technology platforms. These differences lead to large vari-
ations or batch effects in the data, and can confound bio-
logical variations of interest during data integration. As
such, effective batch-effect removal is essential. Batch
effects can be highly nonlinear, making it difficult to cor-
rectly align different datasets while preserving key bio-
logical variations. To address these challenges, tools

developed for microarray data batch correction such as
ComBat [1] and limma [2] have been employed on single-
cell RNA-seq (scRNA-seq) data. However, single-cell
experiments suffer from “drop out” events due to the sto-
chasticity of gene expression, or failure in RNA capture or
amplification during sequencing [3]. This has prompted
efforts to develop workflows to handle data with such
characteristics [4–6].
A popular and successful approach, pioneered by

Haghverdi et al. [5], identifies cell mappings between
datasets and then reconstructs the data in a shared
space. The algorithm first identifies mutual nearest
neighbors (MNNs) to establish connections between two
datasets. The resulting list of paired cells (or MNNs) is
used to compute the translation vector to align the data-
sets into a shared space. The advantage of this approach
is that a normalized gene expression matrix is obtained,
which can be employed in downstream analysis.
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the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
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correct the principal component output from the previous
step. Visualization and evaluations were performed using
the batch-corrected output in PCA space.

Panorama stitching of single-cell RNA-seq data
(Scanorama)
Scanorama also seeks to correct for batch effects
through similar cells identified across batches [9]. Ap-
proximate singular value decomposition (SVD) is first
used to transform the original gene expression data into
a dimensionally reduced subspace. An approximate
nearest neighbor search is performed using hyperplane
locality sensitive hashing and random projection trees to
speed up the identification of mutually linked (i.e., near-
est neighbor) cells across batches. Unlike MNN Correct
that searches for similar cells across batch pairs to com-
pute the correction, Scanorama searches across all
batches and determines the priority of dataset merging

based on the percentage of matching cells in the batch.
Data batches are merged into panoramas using a
weighted average of vectors between local matching cells
in a fashion similar to MNN Correct. In our analysis, if
the gene expression matrix contained raw read counts,
we scaled the data by dividing the read counts by the
median value of read count sum per cell, followed by
log2 transform. If the data was already in normalized
form, we used it directly as input to the Scanorama
function. The batch correction by Scanorama was per-
formed in conjunction with the Scanpy workflow [29].
Finally, the top 20 principal components were extracted
from the corrected gene expression matrix and used as
input to the assessment methods.

Batch balanced k-nearest neighbors (BBKNN)
BBKNN is another method that first computes the k-
nearest neighbors in a dimensionally reduced principal

Table 1 Description of the 14 batch-effect correction methods
Tools Programming

language
Batch-effect-corrected output Methods Reference package version

Seurat 2 (CCA,
MultiCCA)

R Normalized canonical components
(CCs)

Canonical correlation analysis and dynamic
time warping

Butler et al. [4], Seurat
package
version 2.3.4

Seurat 3
(Integration)

R Normalized gene expression matrix Canonical correlation analysis and mutual
nearest neighbors-anchors

Stuart et al. [12], Seurat
package version 3.0.1

Harmony R Normalized feature reduction vectors
(Harmony)

Iterative clustering in dimensionally
reduced space

Korsunsky et al. [13],
Harmony version 0.99.9

MNN Correct R Normalized gene expression matrix Mutual nearest neighbor in gene
expression space

Haghverdi et al. [5], Scran
package version 1.12.0

fastMNN R Normalized principal components Mutual nearest neighbor in dimensionally
reduced space

Haghverdi et al. [5], Lun
ATL [7], Scran package
version 1.12.0

ComBat R Normalized gene expression matrix Adjusts for known batches using an
empirical Bayesian framework

Johnson et al. [1]

limma R Normalized gene expression matrix Linear model/empirical Bayes model Smyth et al. [2], limma
version 3.38.3

scGen Python Normalized gene expression matrix Variational auto-encoders neural network
model and latent space

Lotfollahi et al. [16], 2019,
scGen
version 1.0.0

Scanorama Python/R Normalized gene expression matrix Mutual nearest neighbor and panoramic
stitching

Hie et al. [9], Scanorama
version 1.4.

MND-ResNet Python Normalized principal components Residual neural network for calibration Shaham et al. [15] updated
code to Python 3

ZINB-WaVE R Normalized feature reduction vectors
(ZINB-WaVE)/normalized gene expression
matrix

Zero-inflated negative binomial model,
extension of RUV model

Risso et al. [6], ZINB-WaVE
version 1.6.0

scMerge R Normalized gene expression matrix Stably expressed genes (scSEGs) and RUVIII
model

Lin et al. [18], scMerge
version 1.1.3

LIGER R Normalized feature reduction vectors
(LIGER)

Integrative non-negative matrix
factorization (iNMF) and joint clustering +
quantile alignment

Welch et al. [14], liger version
1.0

BBKNN Python/R Connectivity graph and normalized
dimension reduction vectors (UMAP)

Batch balanced k-nearest neighbors Polański et al. [10], bioRxiv.
BBKNN
version 1.3.2
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Fast matching mutual nearest neighbors for batch
correction (fastMNN)
The MNN Correct algorithm demonstrates the effi-
cacy of using MNNs to align data batches [5]. How-
ever, the distance computation for nearest neighbor
identification is done in the gene expression space
and thus computationally demanding. fastMNN [7] is
a newer version of MNN Correct where nearest
neighbors are determined in the PCA dimensionally

reduced space. In our analysis, we employed the Seu-
rat preprocessing workflow to first filter, normalize,
and scale the data. Based on the examples provided
by fastMNN authors, 5000 HVGs were identified and
used as input for projection into the cosine space,
followed by multi-sample PCA dimension reduction
using the multiBatchPCA function from the Scran
package [28] to obtain 50 principal components.
Finally, the fastMNN function was used to batch

Fig. 21 Efficacy and efficiency of the 14 batch-effect correction methods. a Rank sum of the assessment metrics. Methods were ranked based on
each of the ASW, ARI, LISI, and kBET metrics, and the rankings were then combined across all metrics using the rank sum approach. The height of
the ridgelines represents the rank sum scores across different datasets, with a lower rank sum score denoting better performance. Methods are
ordered from bottom to top by increasing sum of rank scores across all ten datasets. Thus, methods appearing at the bottom are the best. b
Memory usage of ten methods on dataset 8. c Runtime of 14 methods on ten datasets. Color represents log10(time in seconds), node size
represents log10(cell number)
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Other interesting methods 

ARTICLE

Deep learning enables accurate clustering with
batch effect removal in single-cell RNA-seq
analysis
Xiangjie Li1,2,3, Kui Wang1,4, Yafei Lyu1, Huize Pan5, Jingxiao Zhang2, Dwight Stambolian6, Katalin Susztak 7,
Muredach P. Reilly5, Gang Hu 1,8✉ & Mingyao Li 1✉

Single-cell RNA sequencing (scRNA-seq) can characterize cell types and states through

unsupervised clustering, but the ever increasing number of cells and batch effect impose

computational challenges. We present DESC, an unsupervised deep embedding algorithm

that clusters scRNA-seq data by iteratively optimizing a clustering objective function.

Through iterative self-learning, DESC gradually removes batch effects, as long as technical

differences across batches are smaller than true biological variations. As a soft clustering

algorithm, cluster assignment probabilities from DESC are biologically interpretable and can

reveal both discrete and pseudotemporal structure of cells. Comprehensive evaluations show

that DESC offers a proper balance of clustering accuracy and stability, has a small footprint on

memory, does not explicitly require batch information for batch effect removal, and can utilize

GPU when available. As the scale of single-cell studies continues to grow, we believe

DESC will offer a valuable tool for biomedical researchers to disentangle complex cellular

heterogeneity.
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Single-cell RNA sequencing (scRNA-seq) technology has only 
recently matured. Emerging scRNA-seq studies have trans-
formed our understanding of cell biology and human dis-

ease. An important step in scRNA-seq analysis is to identify cell  
populations or types by clustering1. Knowledge of cell types  
can reveal cellular heterogeneity across tissues, developmen-
tal stages and organisms, and improve our understanding of  
cellular and gene function in health and disease. Despite the 
unprecedented power of scRNA-seq, the high-dimensionality and 
inherited high level of technical noise are major hurdles for cell 
type identification. Popular scRNA-seq clustering methods such as 
Louvain’s method2, SIMLR3 and SC34 may perform poorly for data 
with closely related cell types or low sequencing depths. Although 
denoising methods such as SAVER5 and DCA6 can provide more 
accurate gene expression estimates and help clustering, these meth-
ods are unsupervised and cannot utilize cell-type-specific gene 
expression information.

As a large amount of well-annotated scRNA-seq datasets are 
already available, many state-of-the-art methods start to uti-
lize information in these datasets to aid cell type identification  
in new data. For example, scmap7 projects cells in a target  
dataset to a space determined by highly informative genes selected 
from a well-labelled source dataset and then assigns cell identi-
ties for cells in the target data based on their correlation with  
average cell-type-specific gene expression in the source data. 
scANVI8 is a semi-supervised variant of scVI9 that annotates  
cell types in a target dataset by leveraging any available cell state  
annotations. Moana10 trains a support-vector machine (SVM) with 
a linear kernel on principal-component-analysis-transformed- 
labelled source data, which are subsequently used to cluster 
cells in the target data. Seurat 3.0 (ref. 11) classifies cells in target  
data by finding anchor cell pairs between a well-labelled source 

dataset and the unlabelled target dataset. Both scmap and Moana 
learn cell-type-specific gene expression information only in the 
source data, but ignore useful information in the target data,  
they are therefore vulnerable to the batch effect between the source 
and target data. Although Seurat 3.0 utilizes information both  
in the source and target data through the identification of anchor 
pairs, it does not specifically utilize cell type label information in 
the source data.

An ideal approach for cell type identification should be able to 
utilize cell-type-specific gene expression information both in the 
well-labelled source data and the unlabelled target data. As the 
source and target data provide different amount of cell-type-specific 
gene expression information, it is desirable to use a data-driven 
approach to determine the contribution of each data type in  
analysis. Transfer learning, a machine learning method that focuses 
on storing knowledge gained while solving one problem and  
applying it to a different but related problem, is perfectly suited 
for this purpose. Transfer learning using supervised pretraining 
was originally proposed in a paper by Donahue and colleagues12, 
in which they showed that features extracted from a deep convo-
lutional network in a fully supervised fashion for object recogni-
tion tasks can be repurposed to novel generic tasks. Borrowing this 
idea, we developed ItClust, a supervised machine learning method 
that takes advantage of cell-type-specific gene expression informa-
tion learned from source data, to help cluster and classify cell types 
on newly generated target data. Unlike the unsupervised Louvain’s 
method2, which requires users to specify resolution to determine 
the number of clusters, ItClust is able to automatically determine 
the number of clusters in the target dataset. It also has an advantage 
over existing supervised classification methods in that cell types 
that are missing from the source data can be well separated in the 
target data.

Iterative transfer learning with neural network for 
clustering and cell type classification in single-cell 
RNA-seq analysis
Jian Hu1, Xiangjie Li2, Gang Hu! !3, Yafei Lyu1, Katalin Susztak! !4 and Mingyao Li! !1�ᅒ

Clustering and cell type classification are important steps in single-cell RNA-seq (scRNA-seq) analysis. As more and more 
scRNA-seq data are becoming available, supervised cell type classification methods that utilize external well-annotated source 
data start to gain popularity over unsupervised clustering algorithms; however, the performance of existing supervised meth-
ods is highly dependent on source data quality and they often have limited accuracy to classify cell types that are missing in the 
source data. We developed ItClust to overcome these limitations, a transfer learning algorithm that borrows ideas from super-
vised cell type classification algorithms, but also leverages information in target data to ensure sensitivity in classifying cells 
that are only present in the target data. Through extensive evaluations using data from different species and tissues generated 
with diverse scRNA-seq protocols, we show that ItClust considerably improves clustering and cell type classification accuracy 
over popular unsupervised clustering and supervised cell type classification algorithms.
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Flexible experimental designs for valid single-cell
RNA-sequencing experiments allowing batch
effects correction
Fangda Song 1, Ga Ming Angus Chan1 & Yingying Wei 1✉

Despite their widespread applications, single-cell RNA-sequencing (scRNA-seq) experiments

are still plagued by batch effects and dropout events. Although the completely randomized

experimental design has frequently been advocated to control for batch effects, it is rarely

implemented in real applications due to time and budget constraints. Here, we mathemati-

cally prove that under two more flexible and realistic experimental designs—the reference

panel and the chain-type designs—true biological variability can also be separated from batch

effects. We develop Batch effects correction with Unknown Subtypes for scRNA-seq data

(BUSseq), which is an interpretable Bayesian hierarchical model that closely follows the data-

generating mechanism of scRNA-seq experiments. BUSseq can simultaneously correct batch

effects, cluster cell types, impute missing data caused by dropout events, and detect dif-

ferentially expressed genes without requiring a preliminary normalization step. We demon-

strate that BUSseq outperforms existing methods with simulated and real data.
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Data imputation

• scRNA-seq has lots of missing data (dropout).
• Imputing the missing data help the 

downstream analyses. 
• There are a number of methods: 
– SAVER (Huang et al. 2018 Nat. Methods)
– ScImpute (Li et al. 2018 Nat. Comm.)
– MAGIC (van Dijk et al. 2018 Cell)
– SCRABBLE (Peng et al. 2019 GB) 



General strategy for imputation

• The problem is similar to a “recommendation 
system”.
– First compute the similarities among genes and 

cells.
– To impute one element, borrow information from 

similar gene/cell.
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from Single-Cell Data Using Data Diffusion
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SUMMARY

Single-cell RNA sequencing technologies suffer
from many sources of technical noise, including
under-sampling of mRNA molecules, often termed
‘‘dropout,’’ which can severely obscure important
gene-gene relationships. To address this, we devel-
oped MAGIC (Markov affinity-based graph imputa-
tion of cells), a method that shares information
across similar cells, via data diffusion, to denoise
the cell count matrix and fill in missing transcripts.
We validate MAGIC on several biological systems
and find it effective at recovering gene-gene relation-
ships and additional structures. Applied to the epithi-
lial to mesenchymal transition, MAGIC reveals a
phenotypic continuum, with the majority of cells
residing in intermediate states that display stem-
like signatures, and infers known and previously un-
characterized regulatory interactions, demonstrating
that our approach can successfully uncover regula-
tory relations without perturbations.

INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) is fast becoming one of
the most widely used technologies in biomedical investigation.
However, a vexing challenge in single-cell genomics is that the
observedexpressioncountscapturea small randomsample (typi-
cally 5%–15%) of the transcriptomeof each cell (Grün et al., 2014;
Stegle et al., 2015). In the case of lowly expressed genes, this can
lead to lack of detection of an expressed gene, a phenomenon
called ‘‘dropout.’’ This impacts the signal for every gene, leading
to loss of gene-gene relationships in the data, obscuring all but
the strongest relationships. To overcome this sparsity, most
methods aggregate cells, collapsing thousands of cells into a

small number of clusters. Alternatively, other methods aggregate
genes (e.g., principle component analysis [PCA]), creating ‘‘meta-
genes.’’ While these approaches cope with sparsity to some
extent, they lose single-cell or single-gene resolution.
To address these issues, we develop MAGIC (Markov affinity-

based graph imputation of cells), a computational approach for
recovering missing gene expression in single-cell data. MAGIC
leverages the large sample sizes in scRNA-seq (many thousands
of cells) to share information across similar cells via data
diffusion. MAGIC imputes likely gene expression in each cell,
revealing the underlying biological structure. MAGIC uses
signal-processing principles similar to those used to clarify blurry
and grainy images.We validateMAGIC on several biological sys-
tems and find it effective at recovering gene-gene relationships
and additional structures.

RESULTS

The MAGIC Algorithm
MAGIC relies on structure in the data; possible cell states are
constrained by regulatory mechanisms creating interdepen-
dencies between genes (Amir et al., 2013). While data are
observed in a high dimensional measurement space, cell pheno-
types can be approximately embedded in a substantially lower
dimensional manifold. This manifold can be represented using
a nearest neighbor graph, where each node represents a cell,
and edges connect most similar cells, based upon gene expres-
sion. Nearest neighbor graphs have been used to faithfully
recover subpopulations (Levine et al., 2015; Shekhar et al.,
2016) and developmental trajectories (Bendall et al., 2014; Hagh-
verdi et al., 2015, 2016; Setty et al., 2016). However, MAGIC uses
a diffusion operator (Coifman and Lafon, 2006a) to learn the un-
derlying manifold and map cellular phenotypes to this manifold,
restoring missing transcripts in the process.
MAGIC takes an observed count matrix and recovers an

imputed count matrix representing the likely expression for
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each individual cell, based on data diffusion between similar
cells. For a given cell, MAGIC first identifies the cells that are
most similar and aggregates gene expression across these
highly similar cells to impute gene expression that corrects for
dropout and other sources of noise. However, due to data
sparsity, nearest neighbors in the raw data do not necessarily
represent the most biologically similar cells. Therefore, we use
data diffusion to construct a weighted affinity matrix represent-
ing a more faithful neighborhood of similar cells, and then use
this matrix to restore the data. With a sufficient number of cells,

this process (illustrated in Figure 1) increases weights on cells
that share similarity across a majority of biological processes.
Constructing the affinity matrix proceeds as follows: first PCA

is used as a preprocessing step, similar to other graph-based
approaches (Haghverdi et al., 2016; Setty et al., 2016; Shekhar
et al., 2016). MAGIC uses an adaptive (width) Gaussian kernel
to convert distances into affinities, so that similarity between
two cells decreases exponentially with their distance. The adap-
tive kernel serves to equalize the effective number of neighbors
for each cell, which helps recover finer structure in the data,
whereas the non-adaptive kernel collapses the data into the
densest regions (Figures S1A and S1B). From the affinity matrix,
we create a Markov transition matrix, M, representing the prob-
ability distribution of transitioning from one cell to another in a
single step.
Owing to technical noise, the ability to distinguish between

similarity due to biological correspondence versus spurious
chance is not possible. Mimicking scRNA-seq, if we randomly
subsample a fraction of the transcripts, the expression observed
across identical cells can appear dissimilar. However, these cells
likely share many neighbors, whereas spurious edges connect
cells that share few neighbors. Raising M to the power t results
in a matrix where each entry represents the probability that a
randomwalk of length t starting at cell iwill reach cell j (Figure 1v),
a process akin to diffusion. While the exponentiated Markov af-
finity matrix increases the number of cell neighbors, unlike the ef-
fect of increasing k in kNN-imputation, MAGIC does not bluntly
smooth and average over increasingly distant cells. Instead,
exponentiation refines cell affinities, increasing the weight of
similarity along axes that follow data density, thus phenotypically
similar cells have strongly weighted affinities, whereas spurious
neighbors are down-weighted.
In the imputation step, MAGIC learns from cells in each neigh-

borhood through multiplying the transition matrix by the original
data matrix (Figure 1vi), effectively restoring cells to the underly-
ing manifold. In this data diffusion process, cells share informa-
tion through local neighbors in a process that is mathematically
akin to diffusing heat through the data, where raising the diffu-
sion operator to the t-th power is akin to a t-step random walk
through the data. Exponentiation is essentially a low-pass filter
on the eigenvalues, which serves to eliminate noise dimensions
with small eigenvalues, while simultaneously learning the mani-
fold structure. While we use PCA to gain more robustness for
computing the affinity matrix, the imputation is performed using
the count matrix before PCA. Thus, while we average data
across cells, each individual cell retains a unique neighborhood,
resulting in a unique expression vector.
To select an optimal t, we consider the impact of t on the final

imputed data. We evaluate the degree of change between the
imputed data at time t and time t-1 and stop after this value sta-
bilizes. As t increases, we observe two regimes (Figures S1C and
S1D), a rapidly changing imputation regime, and after conver-
gence, a smoothing regime. In the imputation regime, the first
few steps of diffusion learn the manifold structure and remove
the noise dimensions. As t increases, we rapidly capture rela-
tions between cells that are biologically very similar, and only ap-
peared different due to collection artifacts. At larger values of t,
the structure of the data has already been recovered and

Figure 1. Steps of the MAGIC Algorithm
(i) The input data consist of amatrix of cells by genes (middle) of the data (right).

(ii) We compute a cell-by-cell distance matrix. (iii) The distance matrix is

converted to an affinity matrix (middle) using a Gaussian kernel. A graphical

depiction of the kernel function is shown (right). (iv) The affinities are normal-

ized, resulting in a Markov matrix (middle). The normalized affinities are shown

for a single point as transition probabilities (right). (v) To perform diffusion, we

exponentiate the Markov matrix to a chosen power t. (vi) We multiply the ex-

ponentiated Markov matrix (left) by the original data matrix (middle) to obtain a

denoised and imputed data matrix (right).

See also Figure S1.
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each individual cell, based on data diffusion between similar
cells. For a given cell, MAGIC first identifies the cells that are
most similar and aggregates gene expression across these
highly similar cells to impute gene expression that corrects for
dropout and other sources of noise. However, due to data
sparsity, nearest neighbors in the raw data do not necessarily
represent the most biologically similar cells. Therefore, we use
data diffusion to construct a weighted affinity matrix represent-
ing a more faithful neighborhood of similar cells, and then use
this matrix to restore the data. With a sufficient number of cells,

this process (illustrated in Figure 1) increases weights on cells
that share similarity across a majority of biological processes.
Constructing the affinity matrix proceeds as follows: first PCA

is used as a preprocessing step, similar to other graph-based
approaches (Haghverdi et al., 2016; Setty et al., 2016; Shekhar
et al., 2016). MAGIC uses an adaptive (width) Gaussian kernel
to convert distances into affinities, so that similarity between
two cells decreases exponentially with their distance. The adap-
tive kernel serves to equalize the effective number of neighbors
for each cell, which helps recover finer structure in the data,
whereas the non-adaptive kernel collapses the data into the
densest regions (Figures S1A and S1B). From the affinity matrix,
we create a Markov transition matrix, M, representing the prob-
ability distribution of transitioning from one cell to another in a
single step.
Owing to technical noise, the ability to distinguish between

similarity due to biological correspondence versus spurious
chance is not possible. Mimicking scRNA-seq, if we randomly
subsample a fraction of the transcripts, the expression observed
across identical cells can appear dissimilar. However, these cells
likely share many neighbors, whereas spurious edges connect
cells that share few neighbors. Raising M to the power t results
in a matrix where each entry represents the probability that a
randomwalk of length t starting at cell iwill reach cell j (Figure 1v),
a process akin to diffusion. While the exponentiated Markov af-
finity matrix increases the number of cell neighbors, unlike the ef-
fect of increasing k in kNN-imputation, MAGIC does not bluntly
smooth and average over increasingly distant cells. Instead,
exponentiation refines cell affinities, increasing the weight of
similarity along axes that follow data density, thus phenotypically
similar cells have strongly weighted affinities, whereas spurious
neighbors are down-weighted.
In the imputation step, MAGIC learns from cells in each neigh-

borhood through multiplying the transition matrix by the original
data matrix (Figure 1vi), effectively restoring cells to the underly-
ing manifold. In this data diffusion process, cells share informa-
tion through local neighbors in a process that is mathematically
akin to diffusing heat through the data, where raising the diffu-
sion operator to the t-th power is akin to a t-step random walk
through the data. Exponentiation is essentially a low-pass filter
on the eigenvalues, which serves to eliminate noise dimensions
with small eigenvalues, while simultaneously learning the mani-
fold structure. While we use PCA to gain more robustness for
computing the affinity matrix, the imputation is performed using
the count matrix before PCA. Thus, while we average data
across cells, each individual cell retains a unique neighborhood,
resulting in a unique expression vector.
To select an optimal t, we consider the impact of t on the final

imputed data. We evaluate the degree of change between the
imputed data at time t and time t-1 and stop after this value sta-
bilizes. As t increases, we observe two regimes (Figures S1C and
S1D), a rapidly changing imputation regime, and after conver-
gence, a smoothing regime. In the imputation regime, the first
few steps of diffusion learn the manifold structure and remove
the noise dimensions. As t increases, we rapidly capture rela-
tions between cells that are biologically very similar, and only ap-
peared different due to collection artifacts. At larger values of t,
the structure of the data has already been recovered and

Figure 1. Steps of the MAGIC Algorithm
(i) The input data consist of amatrix of cells by genes (middle) of the data (right).

(ii) We compute a cell-by-cell distance matrix. (iii) The distance matrix is

converted to an affinity matrix (middle) using a Gaussian kernel. A graphical

depiction of the kernel function is shown (right). (iv) The affinities are normal-

ized, resulting in a Markov matrix (middle). The normalized affinities are shown

for a single point as transition probabilities (right). (v) To perform diffusion, we

exponentiate the Markov matrix to a chosen power t. (vi) We multiply the ex-

ponentiated Markov matrix (left) by the original data matrix (middle) to obtain a

denoised and imputed data matrix (right).

See also Figure S1.
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• scImpute: base on Gamma-Normal mixture 
model to estimate and impute dropout values. 

• Steps:
– Learn each gene’s dropout probability in each cell 
– Impute dropout values of genes in a cell by 

borrowing information of the same gene in other 
“similar” cells, which are selected based on genes 
not severely affected by dropout events. 

ARTICLE

An accurate and robust imputation method
scImpute for single-cell RNA-seq data
Wei Vivian Li 1 & Jingyi Jessica Li 1,2

The emerging single-cell RNA sequencing (scRNA-seq) technologies enable the investigation

of transcriptomic landscapes at the single-cell resolution. ScRNA-seq data analysis is com-

plicated by excess zero counts, the so-called dropouts due to low amounts of mRNA

sequenced within individual cells. We introduce scImpute, a statistical method to accurately

and robustly impute the dropouts in scRNA-seq data. scImpute automatically identifies likely

dropouts, and only perform imputation on these values without introducing new biases to the

rest data. scImpute also detects outlier cells and excludes them from imputation. Evaluation

based on both simulated and real human and mouse scRNA-seq data suggests that scImpute

is an effective tool to recover transcriptome dynamics masked by dropouts. scImpute is

shown to identify likely dropouts, enhance the clustering of cell subpopulations, improve the

accuracy of differential expression analysis, and aid the study of gene expression dynamics.
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In single-cell RNA sequencing (scRNA-seq) studies, only 
a small fraction of the transcripts present in each cell are 
sequenced. This leads to unreliable quantification of genes 
with low or moderate expression, which hinders downstream 
analysis. To address this challenge, we developed SAVER 
(single-cell analysis via expression recovery), an expression 
recovery method for unique molecule index (UMI)-based 
scRNA-seq data that borrows information across genes and 
cells to provide accurate expression estimates for all genes.

A primary challenge in the analysis of scRNA-seq data comes 
from the low transcript capture and sequencing efficiency of cur-
rent methods. This leads to a large proportion of genes—often  
> 90%—with zero or low read counts. Although many of the 
observed zero counts reflect a true absence of expression, a consid-
erable fraction are due to technical factors. The overall efficiency 
of current scRNA-seq protocols can vary between < 1% and > 60% 
across cells, depending on the method used1.

Existing studies have adopted varying approaches to mitigate the 
noise caused by low efficiency. In differential expression and cell-
type classification, transcripts expressed in a cell but not detected 
because of technical limitations are sometimes accounted for by a 
zero-inflated count distribution model2–4. Recently, methods such 
as MAGIC5 and scImpute6 have been developed to directly estimate 
true expression levels. Both MAGIC and scImpute rely on pooling 
of the data for each gene across similar cells. However, we found 
that this can lead to oversmoothing and may remove natural cell-
to-cell stochasticity in gene expression. This stochasticity can rep-
resent biologically meaningful variation in gene expression, even 
across cells of the same type or of the same cell line7–9. In addition, 
MAGIC and scImpute do not provide a measure of uncertainty for 
their estimated values.

We developed SAVER, a method that takes advantage of gene-to-
gene relationships to recover the true expression level of each gene 
in each cell, removing technical variation while retaining biologi-
cal variation across cells (https://github.com/mohuangx/SAVER). 
SAVER uses a post-quality-control scRNA-seq dataset with UMI 
counts as input. SAVER assumes that the count of each gene in each 
cell follows a Poisson–gamma mixture, also known as a negative 
binomial model. Instead of specifying the gamma prior, we esti-
mate the prior parameters in an empirical Bayes-like approach with 
a Poisson LASSO regression, using the expression of other genes 
as predictors. Once the prior parameters are estimated, SAVER 
outputs the posterior distribution of the true expression, which 

 quantifies estimation uncertainty, and the posterior mean is used 
as the SAVER recovered expression value (Fig. 1a and Methods).

We assessed SAVER’s accuracy by comparing the distribution of 
SAVER estimates to distributions obtained by RNA fluorescence in 
situ hybridization (FISH) in data from a previous study10. In that 
study, Drop-seq was used to sequence 8,498 cells from a melanoma 
cell line. In addition, RNA FISH measurements of 26 drug-resistance 
markers and housekeeping genes were obtained across 7,000–88,000 
cells from the same cell line. After filtering, 15 genes overlapped 
between the Drop-seq and FISH datasets (Supplementary Fig. 1).

Because different cells were used for the FISH and scRNA-seq 
analyses, the estimates derived via these two approaches can be 
compared only in terms of distribution. Accurate recovery of gene 
expression distribution is important for identifying rare cell types, 
identifying highly variable genes, and studying transcriptional 
bursting. We applied SAVER to the Drop-seq data and calculated 
the Gini coefficient11, a measure of gene expression variability, for 
the FISH, Drop-seq, and SAVER results for these 15 overlapping 
genes. The Gini coefficient was shown to be a useful measure for 
identifying rare cell types and sporadically expressed genes in the 
original FISH-based study of this cell line9. Thus, accurate recovery 
of the Gini coefficient would allow the same analysis to be done 
with scRNA-seq.

For all genes, SAVER effectively recovered the FISH Gini coef-
ficient, which Drop-seq grossly overestimated (Fig. 1b). In addition, 
we were able to compare the distributions of each gene’s expression 
across cells and observed that, compared with Drop-seq, SAVER 
recovered expression distributions that matched much more closely 
to the FISH distributions (Fig. 1c and Supplementary Fig. 2). Gini 
estimates and recovered distributions obtained from MAGIC 
and scImpute did not match as well with the FISH  estimates 
(Supplementary Fig. 3a–c).

Not only is SAVER capable of recovering gene expression distri-
butions and distribution-level features, but it is also able to recover 
true biological gene-to-gene correlations that are observed in FISH 
but dampened in Drop-seq. For example, SAVER recovered the 
strong correlation between the housekeeping genes BABAM1 and 
LMNA, which was lost in the Drop-seq data (Fig. 1d). In compari-
son, the correlations derived from MAGIC results (Supplementary 
Fig. 3d) were much higher than those derived from FISH, which 
suggests that MAGIC induces spurious correlation. In contrast, 
scImpute averages the correlations, leading to biased estimates of 
the true correlation (Supplementary Fig. 3d). The fact that SAVER 

SAVER: gene expression recovery for single-cell 
RNA sequencing
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• Use gene-to-gene relationships to recover the true 
expression levels. 

• Assume gamma-Poisson (NB) for counts
• Estimate the gamma prior parameters in an empirical 

Bayes-like approach with a Poisson LASSO regression, 
using the expression of other genes as predictor. 

• The posterior mean are the imputed expression.  
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M. Huang et al.(Nat. Method 2017) propose SAVER (single-cell
analysis via expression recovery), a Poisson-Gamma (Negative
Binomial) model to recover true expressions.
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Abstract
Background: The rapid development of single-cell RNA-sequencing (scRNA-seq)
technologies has led to the emergence of many methods for removing systematic
technical noises, including imputation methods, which aim to address the increased
sparsity observed in single-cell data. Although many imputation methods have been
developed, there is no consensus on how methods compare to each other.

Results: Here, we perform a systematic evaluation of 18 scRNA-seq imputation
methods to assess their accuracy and usability. We benchmark these methods in terms
of the similarity between imputed cell profiles and bulk samples and whether these
methods recover relevant biological signals or introduce spurious noise in downstream
differential expression, unsupervised clustering, and pseudotemporal trajectory
analyses, as well as their computational run time, memory usage, and scalability.
Methods are evaluated using data from both cell lines and tissues and from both plate-
and droplet-based single-cell platforms.

Conclusions: We found that the majority of scRNA-seq imputation methods
outperformed no imputation in recovering gene expression observed in bulk RNA-seq.
However, the majority of the methods did not improve performance in downstream
analyses compared to no imputation, in particular for clustering and trajectory analysis,
and thus should be used with caution. In addition, we found substantial variability in
the performance of the methods within each evaluation aspect. Overall, MAGIC,
kNN-smoothing, and SAVER were found to outperform the other methods most
consistently.

Keywords: Gene expression, Single-cell RNA-sequencing, Imputation, Benchmark

Background
Recent advances in high-throughput technologies have been developed to measure gene
expression in individual cells [1–5]. In contrast to bulk RNA-sequencing (RNA-seq), a
distinctive feature of data measured using single-cell RNA-sequencing (scRNA-seq) is the
increased sparsity, or fraction of observed “zeros,” where a zero refers to no uniquemolec-
ular identifiers (UMIs) or reads mapping to a given gene in a cell [6–9]. These observed

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.
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Fig. 6 Overall summary of results evaluating imputation methods for scRNA-seq data. Performance of
imputation methods in all evaluation aspects: similarity between imputed single-cell and bulk profiles
(denoted as “bulk correlation”), differential expression (“differential”), unsupervised clustering (“clustering”),
trajectory inference (“trajectory”), time, memory usage, and scalability. The units of computational time (in
minutes), memory usage (in maximum resident set size of all tasks in job (MaxRSS or maximum resident set
size of all tasks in a job) in gigabytes (GB)), and scalability (w.r.t. the number of observations or cells) were all
scaled to be in [ 0, 1] to apply the same color scale. For more details on units of computational time, memory
usage and scalability, see the “Methods” section and details in Additional file 1: Figure S11. A higher score
represents a better performance. Imputation methods are ranked by averaging the scores in bulk correlation,
differential, clustering, and trajectory. No imputation is abbreviated as “no_imp”. a Performance scores and
the ranking of all imputation methods using datasets across UMI-based and plate-based (Fluidigm) protocols;
b using UMI-based data only; c using Fluidigm data only. d Practical guidelines for method users. For users
who prefer imputation accuracy (UMI-based and plate-based rows in the table), we listed methods that
perform better than no imputation for each analysis task. For each task, methods with better performance are
listed on top, and the top five methods are displayed in color. For users who prefer computational efficiency
(last row in the table), we first obtained methods that were ranked in top 50% in terms of overall time,
memory, and scalability performance. Then, for each analysis task, we retained methods that outperformed
no imputation in terms of accuracy, and we listed these methods in the table in the rank order based on their
overall accuracy performance (averaged across UMI- and plate-based platforms) in each analysis

methods strengthen large effect sizes compared to no imputation. However, if the original
expression difference is small, then most imputation methods may smooth away the small
differential signal and hence do not show clear advantage over not imputing (Fig. 3j, k).



Differential expression (DE)

• DE analysis is the most important task for bulk 
expression data (microarray or RNA-seq). 

• Popular tools:
– Microarray: limma
– Bulk RNA-seq: DESeq2, edgeR

• Important method: 
– Variance shrinkage



DE in scRNA-seq
• Considering cell types:
– Compare cross cell types: identify cell type specific genes.
– Compare the same cell type cross biological conditions.
– Need cell clustering first. 

• Method consideration:
– Traditional methods test mean changes
– The consideration and modeling of “drop-out” is important 

in scRNA-seq data. 



DE methods

• SCDE (Kharchenko et al. 2014 Nat. Methods)

• MAST (Finik et al. 2015 GB)

• SC2P (Wu et al. 2018 Bioinformatics)

• Seurat and monocle provide DE functions.

• Bulk methods (DESeq, edgeR) are sometimes 

used. 

• A comparison paper: Soneson and Robinson 

(2018) Nat. Methods



• MAST: “Model-based Analysis of Single- cell 
Transcriptomics.” 

• Bioconductor package MAST. 

METHOD Open Access

MAST: a flexible statistical framework for
assessing transcriptional changes and
characterizing heterogeneity in single-cell
RNA sequencing data
Greg Finak1†, Andrew McDavid1†, Masanao Yajima1†, Jingyuan Deng1, Vivian Gersuk2, Alex K. Shalek3,4,5,6,
Chloe K. Slichter1, Hannah W. Miller1, M. Juliana McElrath1, Martin Prlic1, Peter S. Linsley2

and Raphael Gottardo1,7*

Abstract

Single-cell transcriptomics reveals gene expression heterogeneity but suffers from stochastic dropout and
characteristic bimodal expression distributions in which expression is either strongly non-zero or non-detectable.
We propose a two-part, generalized linear model for such bimodal data that parameterizes both of these features.
We argue that the cellular detection rate, the fraction of genes expressed in a cell, should be adjusted for as a
source of nuisance variation. Our model provides gene set enrichment analysis tailored to single-cell data. It
provides insights into how networks of co-expressed genes evolve across an experimental treatment. MAST is
available at https://github.com/RGLab/MAST.

Keywords: Bimodality, Cellular detection rate, Co-expression, Empirical Bayes, Generalized linear model, Gene set
enrichment analysis

Background
Whole transcriptome expression profiling of single cells
via RNA sequencing (scRNA-seq) is the logical apex to
single cell gene expression experiments. In contrast to
transcriptomic experiments on mRNA derived from bulk
samples, this technology provides powerful multi-
parametric measurements of gene co-expression at the
single-cell level. However, the development of equally
potent analytic tools has trailed the rapid advances in
biochemistry and molecular biology, and several challenges
need to be addressed to fully leverage the information in
single-cell expression profiles.
First, single-cell expression has repeatedly been shown

to exhibit a characteristic bimodal expression pattern,

wherein the expression of otherwise abundant genes is
either strongly positive or undetected within individual
cells. This is due in part to low starting quantities of
RNA such that many genes will be below the threshold
of detection, but there is also a biological component to
this variation (termed extrinsic noise in the literature)
that is conflated with the technical variability [1–3]. We
and other groups [4–7] have shown that the proportion
of cells with detectable expression reflects both technical
factors and biological differences between samples. Re-
sults from synthetic biology also support the notion that
bimodality can arise from the stochastic nature of gene
expression [2, 3, 8, 9].
Second, measuring single cell gene expression might

seem to obviate the need to normalize for starting RNA
quantities, but recent work shows that cells scale tran-
script copy number with cell volume (a factor that af-
fects gene expression globally) to maintain a constant
mRNA concentration and thus constant biochemical re-
action rates [10, 11]. In scRNA-seq, cells of varying vol-
ume, and hence mRNA copy number, are diluted to an

* Correspondence: rgottard@fredhutch.org
†Equal contributors
1Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research
Center, Seattle, WA 98109, USA
7Public Health Sciences Division, Fred Hutchinson Cancer Research Center,
Seattle, WA 98109, USA
Full list of author information is available at the end of the article
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reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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MAST for DE

• Main ideas: 
– Use log2(TPM+1) as input data

– Both dropout probability and expression level 
depends on experimental conditions.

– Model fitting with some regularization. 

– DE is based on chi-square or Wald test. 

of interest), or does it confound the treatment effect
(does it happen to co-occur with treatment)? Regardless,
the CDR-adjusted treatment estimates are interpreted as
the change in expression due to treatment, if CDR were
held constant between the two conditions.
Two other alternative uses of the CDR are of note. It is

also possible to use CDR as a precision variable (an uncorre-
lated secondary cause) by centering the CDR within each
treatment groups, which makes the CDR measurement or-
thogonal to treatment. This would implicitly assume that
the observed changes are treatment induced, while still
modeling the heterogeneity in cell volume within each treat-
ment group. An alternative approach would be to estimate
the CDR coefficient using a set of control genes assumed to
be treatment invariant, such as housekeeping or ERCC
spike-ins [25, 26] and including it as an offset to the linear
predictors in the regression. An analogous approach is
undertaken by Buettner et. al. [26]. As noted by Hicks et al.
[27], the optimal approach to handle confounding between
technical and biological effects on the CDR is to design ex-
periments with biological replicates across multiple batches.
Finally, we note that while the methodology presented here
was developed using scRNA-seq data sets, it appears ap-
plicable to other single-cell gene expression platforms
where bimodal, conditionally normal expression patterns
are seen such as single-cell RNA-seq with unique molecu-
lar identifiers.

Methods
Data sets
Data for the MAIT study were derived from a single donor
who provided written informed consent for immune re-
sponse exploratory analyses. The study was approved by
the Fred Hutchinson Cancer Research Center institutional
review board.

MAIT cell isolation and stimulation
Cryopreserved peripheral blood mononuclear cells were
thawed and stained with Aqua Live/Dead Fixable Dead Cell
Stain and the following antibodies: CD3, CD8, CD4, CD161,
Vα7.2, CD56, and CD16. CD8+ MAIT cells were sorted as
live CD3+CD8+ CD4-CD161hiVα7.2+ cells and purity was
confirmed by post-sort fluorescence-activated cell sorting
analysis. Sorted MAIT cells were divided into aliquots and
immediately processed on a C1 Fluidigm (Fluidigm, South
San Francisco, CA) machine or treated with a combination
of IL-12 (eBioscience, San Diego, CA), IL-15 (eBioscience),
and IL-18 (MBL, Worburn, MA ) at 100 ng/mL for 24 h
followed by C1 processing.

C1 processing, sequencing, and alignment
After flow sorting, single cells were captured on the Flui-
digm C1 Single-Cell Auto Prep System (C1), lysed on
chip, and subjected to reverse transcription and cDNA

amplification using the SMARTer Ultra Low Input RNA
Kit for C1 System (Clontech, Mountain View, CA). Se-
quencing libraries were prepared using the Nextera XT
DNA Library Preparation Kit (Illumina, San Diego, CA)
according to C1 protocols (Fluidigm). Barcoded libraries
were pooled and quantified using a Qubit Fluorometer
(Thermo Scientific Life Technologies, Grand Island,
NY). Single-read sequencing of the pooled libraries was
carried out either on a HiScanSQ or a HiSeq2500 se-
quencer (Illumina) with 100-base reads, using TruSeq v3
Cluster and SBS kits (Illumina) with a target depth of
>2.5 M reads. Sequences were aligned to the UCSC Hu-
man Genome Assembly version 19, gene expression
levels quantified using RSEM [28], and TPM values
loaded into R [29] for analyses. See Additional file 1 for
more details on data processing procedures.

Time-series stimulation of mouse bone-marrow derived
dendritic cells
Processed RNA-seq data (TPM) were downloaded from
the Gene Expression Omnibus [GEO: GSE41265]. Align-
ment, pre-processing, and filtering steps have been pre-
viously described [5]. Low quality cells were filtered as
described in Shalek et al. [5].

Single-cell RNA-seq hurdle model
We model the log2(TPM+ 1) expression matrix as a two-
part generalized regression model. The gene expression rate
was modeled using logistic regression and, conditioning on
a cell expressing the gene, the expression level was modeled
as Gaussian.
Given normalized, possibly thresholded (see Additional

file 1), scRNA-seq expression Y = [yig], the rate of expression
and the level of expression for the expressed cells are mod-
eled conditionally independent for each gene g. Define the
indicator Z = [zig], indicating whether gene g is expressed in
cell i (i.e., zig= 0 if yig= 0 and zig= 1 if yig > 0). We fit logistic
regression models for the discrete variable Z and a Gaussian
linear model for the continuous variable (Y | Z= 1) inde-
pendently, as follows:

logit
!
PrðZig ¼ 1Þ

"
¼ Xi β

D
g

Pr Y ig ¼ yjZig ¼ 1
! "

¼ N Xiβ
C
g ; σ

2
g

# $

The regression coefficients of the discrete component are
regularized using a Bayesian approach as implemented in
the bayesglm function of the arm R package, which uses
weakly informative priors [30] to provide sensible estimates
under linear separation (See Additional file 1 for details).
We also perform regularization of the continuous model
variance parameter, as described below, which helps to in-
crease the robustness of gene-level differential expression
analysis when a gene is only expressed in a few cells.

Finak et al. Genome Biology  (2015) 16:278 Page 10 of 13
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have important implications in practical applications. In agree-
ment with previous evaluations, methods developed for bulk 
RNA-seq analysis did not perform worse than those specifically 
developed for scRNA-seq data, but sometimes showed a stronger 
dependence on data prefiltering.

Figure 5 summarizes performance across the main evaluation 
criteria in our study. For each evaluation aspect, each method 
was classified as ‘good’, ‘intermediate’ or ‘poor’ (Online Methods). 
Although it is difficult to capture the full complexity of the evalu-
ation in a crude categorization, the table provides a convenient 
summary of our results and can be used to select an appropri-
ate method based on the criteria that are most important for a 
specific application.

The number of cells per group ranged between 6 and 400 in 
our data sets. Although these are relatively small numbers com-
pared with the thousands of cells that can be sequenced in an 
actual experiment, DE analysis is typically used to compare sets 
of homogeneous cells (for example, from given, well-defined cell 
types), and these collections are likely to be much smaller. Thus, 
we believe that the range of sample sizes considered in our com-
parisons are relevant for real applications and that it is important 
to know how the methods perform under these circumstances.

METHODS
Methods, including statements of data availability and any associ-
ated accession codes and references, are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Figure 5 | Summary of DE method performance across all major evaluation 
criteria. Criteria and cutoff values for performance categories are available 
in the Online Methods. Methods are ranked by their average performance 
across the criteria, with the numerical encoding good = 2, intermediate = 1,  
poor = 0. NODES and SAMseq do not return nominal P values and were 
therefore not evaluated in terms of the FPR.
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scRNA-seq Data simulators
Method Model Assumption Reference

powsimR
NB (ZI-NB optional) on counts for both 

RNA-seq and scRNA-seq
Vieth et al., 2017, Bioinfo

scDesign
Gamma-normal mixture on log counts 

(same as scImpute)
Li et al., 2019, Bioinfo

Splatter (splat)
Gamma-Poisson hierarchical model on 

normalized counts (fitdistrplus)
Zappia et al., 2017, GB

POWSC 
ZIP-LNP mixture on log normalized 

counts 
Su et al., 2020, Bioinfo

scDBM
Deep generative models (Boltzmann 

Machines to the NB distribution)
Treppner et al., 2020, Preprint

scPOWER NB on gene-level counts (DESeq) Schmid et al., 2020, Preprint



Comparisons
• Based on real data.
• Estimate model 

parameters.
• Simulate the data.
• Compare between 

simulated and real 
expression matrices.
– 4 gene-wise

parameters
– 2 cell-wise

parameters.

Furthermore, we also evaluate the marginal power, which is
computed by considering genes in all strata. The marginal power is

defined as Powermarginal ¼
Pn

i¼1
RDi=

Pn

i¼1
TDi, where TD and RD repre-

sent the number of true DE genes (TD ¼ RDþ FN) with meaningful
fold change and the number of Recovered DE in each stratum. We
show the numbers for CD and TD for one simulation in Figure 3B,
C for Form I test, and Figure 3E, F for Form II test. The marginal
power for both forms is shown in Figure 3G. For Form I, the mar-
ginal power can reach 94.4% with 1000 cells. For Form II, the mar-
ginal power can reach 81.1% with 1000 cells, 90.8% if ignoring the
genes with average counts less than 10. Finally, we calculate the
overall power in Figure 3H, which combines the Form I and II DE
genes together. As expected, higher overall power is associated with
larger sample sizes. It is important to note that, the sample size here
is for one particular cell type. To get the total cell numbers required,
one should divide this number by the estimated proportion of this
cell type in the cell population.

3.3 POWSC provides recommended sample size for
cross-cell-type comparison
In addition to comparing the same cell type under different condi-
tions, another interest is to identify differences between cell types.
For that, the number of cell types and their proportions in the cell
population affect the power, in addition to the total number of cells.
POWSC provides power analysis for this situation. Again, the
Parameter Estimator acquires cell-type-specific model parameters,
and the Data Simulator produces a series of expression count matri-
ces with different numbers of total cells, each simulated dataset con-
tains a mixture of different cell types. Next, the power assessor
performs DE analysis for each pair of cell types and obtains the
stratified targeted powers.

This analysis starts a template scRNA-seq dataset as blueprint
for simulation. Here, we demonstrate the functionality using a
human brain dataset (GSE67835) as template. From this dataset,
five cell types including astrocytes, endothelial, oligodendrocytes,
microglia and neurons with proportions of 0.23, 0.08, 0.14, 0.06
and 0.49 are considered. The reported stratified targeted power is
illustrated in Figure 4: Figure 4A shows the power for Form I DE,
and Figure 4B is for Form II DE. In each plot, the columns are for
different strata and the rows are for different comparisons. For ex-
ample, astr_vs_endo means the comparison between cell types astro-
cyte and endothelial. As expected, more cells lead to improved
power for both forms of DE. Rows in Figure 4B follow similar
trends as the curves shown in Figure 3D, which implies genes with
higher expression levels are more likely to be detected as Form II
DE. Moreover, cell types with higher proportion are associated with
higher power: the power for cell type astr_vs_neur comparison is
higher than the other comparisons, since their effective sample sizes
are greater due to their higher proportions in the cell population.
These results provide detailed information for researchers to choose
a proper sample size. For example, if one wants to focus on detect-
ing the marker genes among abundant cells, the required cell num-
ber will be smaller. If, however, one wants to identify markers for a
rarer cell type, one may have to measure more cells.

We also test POWSC on a Glioblastoma (GBM) dataset
(GSE57872) to demonstrate how the power changes under differ-
ent biology contexts. This scRNA-seq dataset includes five individ-
ual tumor samples (MGH26, MGH28, MGH29, MGH30 and
MGH31). Using MGH31 as the template, we obtain four cell types
(denoted as 1–4) with the proportions of 0.66, 0.15, 0.1, and 0.09
by SC3. We find that the cell types with higher proportion lead to
higher power evaluations, consistent with the previous finding. It is
also noticeable that the stratified power (Supplementary Fig. S13)
for both forms of DE is generally lower than that in simulation
based on GSE67835. This is caused by the larger within-cell-type
gene expression variability (Supplementary Fig. S14), which makes
DE detection more challenging. In another GBM dataset
(GSE84465) which contains four patients (BT_S1, BT_S2, BT_S4
and BT_S6), we perform POWSC on BT_S1 by considering four
cell types: astrocytes (HEPACAM), endothelial (BSC), microglia
(CD45) and oligodendrocytes (GC), with proportions of 0.36,
0.25, 0.23 and 0.16. The power results from this dataset
(Supplementary Fig. S15) is more similar to that from the human
brain data in Figure 4. Thus, power analysis is case sensitive, and
scientists should be cautious about choosing proper template data.
For example, within-cell-type variability can play an essential role
in the power assessment: larger variation is indicator of relatively
lower power.

Table 2. Estimated model parameters for different biological systems

Tissue GEO accession ID # cells # genes Average sequencing depth (reads) Platform

Peripheral blood mononuclear cells GSE94820 1140 26 593 #1 M Smart-Seq2

Brain cortex tissue GSE67835 466 25 287 #2.8 M Fluidigm C1

Immune GSE65528 192 37 315 #1.1 M Hiseq-2500

Tonsil GSE70580 648 25 219 #2.3 M Smart-Seq2

Note: These estimated parameters are prestored in POWSC package.

A

B

Fig. 2. The comparison of data simulators in POWSC, scDesign and splat. Two met-
rics: (A) Median absolute deviation (MAD) and (B) Kolmogorov–Smirnov (KS) dis-
tance, are used to quantify the fidelities of a number of gene- and cell-wise
parameters from simulated data. In (A), MAD values are scaled by 10 for gene-wise
mean and 1000 for gene-wise variance for better visualization. We found in the
blueprint data (GSE29087), POWSC outperformed the other two simulators for
MEF cell type
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Sample size calculation

• Power evaluation and sample size calculation is an 
important consideration at the experimental design 
stage, and required by almost all grant applications.

• Determining scRNA-seq sample size (# of cells) is 
difficult, i.e., no closed form solution. 

• A few methods available under the context of DE, 
rely on some simulation procedures. 

• Report number of cells required in order to achieve 
certain power for DE detection.



Power evaluator 
(in the context of DE analysis)

Method Approach Notes

powsimR
Use a series of established tools:  

edgeR, limma, and DESeq2. MAST, 
BPSC, and scDD

Report stratified power by 
mean expression levels

scDesign Top 1000 genes ranked by effect 
score as reference true DE genes

Precision, recall, F1 score, 
and etc. 

POWSC Use MAST or SC2P to report two 
forms of DE genes

Stratified, marginal, and 
overall power evaluation

scPOWER Use Mkmisc package for DE genes 
and use F test for eQTLs

Overall power by 
considering both power 

from DE genes and eQTLs


