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Course outline
• 8-9:15: Intro and data preprocessing. 
• 9:15-9:45: Lab: preprocessing and visualization.
• 10-11:15: Normalization, batch effect, imputation, DE, 

simulator.
• 11:15-12: Lab: Normalization, batch effect, imputation, 

DE, simulator
• 12-1: lunch break
• 1-2: Clustering and pseudotime construction
• 2-2:30: Lab: Clustering and pseudotime construction
• 2:45–3:30: Supervised cell typing & related single cell data 

sources
• 3:30-4: Lab: supervised cell typing.
• 4:15-5: scRNA-seq in cancer



Other useful resources

• https://github.com/theislab/single-cell-
tutorial/

• https://scrnaseq-
course.cog.sanger.ac.uk/website/index.html

• https://broadinstitute.github.io/2019_scWork
shop/

https://github.com/theislab/single-cell-tutorial/
https://scrnaseq-course.cog.sanger.ac.uk/website/index.html
https://broadinstitute.github.io/2019_scWorkshop/


• Background
– Scientific motivation 
– Technology
– UMI

• Pre-processing: Alignment, QC, GE 
quantification

• Data visualization: tSNE, UMAP

Outline for this session



Background
• Most of the biological experiments are performed on 

“bulk” samples, which contains a large number of 
cells (millions).

• The “bulk” data measure the average signals (gene 
expression, TF binding, methylation, etc.) of many 
cells.

• The bulk measurement ignores the inter-cellular 
heterogeneities: 
– Different cell types.
– Variation among the same cell type. 



Single cell biology
• The study of individual cells.
• The cells are isolated from multi-cellular 

organism. 
• Experiment is performed for each cell 

individually. 
• Provides more detailed, higher resolution 

information.
• High-throughput experiments on single cell is 

possible.



Single cell sequencing

• Different types of sequencing at the single-cell 
level:
– DNA-seq
– ATAC-seq, ChIP-seq
– BS-seq
– RNA-seq
– Multi-omics

• Very active research field in the past few years. 



Basic experimental procedure

• Isolation of single cell. Techniques include
– Laser-capture microdissection (LCM)
– Fluorescence-activated cell sorting (FACS)
– Microfluidics

• Open the cell and obtain DNA/mRNA/etc.
• PCR amplification to get enough materials.
• Perform sequencing.



Single cell RNA-seq (scRNA-seq)

• The most active in the single cell field. 
• Scientific goals:
– Composition of different cell types in complex tissues. 
– New/rare cell type discovery.
– Gene expression, alternative splicing, allele specific 

expression at the level of individual cells.
– Transcriptional dynamics (pseudotime construction).  
– Above can be investigated and compared spatially, 

temporally, or under different biological condition. 



Figure source: Wikipedia



Technologies by cell 
capturing method

• Plate-based methods: Smart-Seq/Smart-Seq2, 
CEL-seq:
– Sort cells into the wells on a multi-well plate. 

– Lower throughput (in terms of number of cells). 

– High sequencing depth

– Can be combined with FACS for cell sorting. 

– Better at detecting low expression genes

– Good for isoform analysis, allele specific 
expression



Microwell plates

Figure source: wikipedia



• Droplet-based methods: Drop-seq, inDrop, 10x 
genomics
– Put each cell in a nanoliter droplet with a bead.
– Each droplet is a reactor for PCR.
– Each bead has a unique barcode, so all beads can be 

pooled and sequenced together.
– Much higher throughput in terms of number of cells.
– Lower sequencing depth. 
– Good for identifying cell subpopulations. 



Figures: Macosko et al. 2015, Potter SS. 2018



Technologies over the years
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each requiring different strategies for adaptor addition. PCR 
amplification requires the addition of adaptor sequences at 
both ends of the double-stranded cDNA. Most techniques use 
the poly(A) tail of the mRNA to generate the first strand of 
cDNA, by initiating RT using a poly(T)-oligonucleotide that 
also contains a universal adaptor sequence. The second adaptor 
can then be incorporated during the cDNA-amplification step 
via several different strategies. In the homopolymer tailing 
approach, a transferase adds a poly(A) tail to the 3′ end of 
the first-strand cDNA. Subsequently, a poly(T) primer with 
a different universal anchor is incorporated into the second 
strand. The two different adaptor sequences are then used for 
PCR amplification. This protocol was first applied to single-cell 
analysis in 2002 (ref. 30) and eventually was adapted for use with 
microarrays15,16 and scRNA-seq18. Although long cDNAs have 
been transcribed by this approach18, a drawback of the method 
is the reduction of 5′ transcript coverage owing to premature 
termination of the RT. Template-switching PCR is an alternative 
strategy that ensures the full transcription of the RNA. This 
method is based on the intrinsic ability of the transcriptases 
of the Moloney murine leukemia virus to add a small number 
of nucleotides (mostly cytosines) when the RT reaches the 
end of the mRNA31. The addition of a helper oligonucleotide 
containing complementary nucleotides and the second adaptor 
allows the polymerase to automatically initiate second-strand 
synthesis without requiring homopolymer tailing. In the 
single-cell tagged reverse-transcription sequencing (STRT-seq) 
method24, full-length cDNA is amplified by template switching, 

reagent volumes and consumable costs9,28 facilitated by the 
introduction of microfluidic technologies, random capture 
methods and in situ barcoding (Fig. 1a). In this Perspective 
we focus on solutions for three key challenges: untargeted 
amplification of whole transcriptomes from single cells, automatic 
isolation of cells and the ability to process many cells in parallel.

Untargeted amplification of whole transcriptomes from 
single cells
For successful signal detection with RNA-seq, on the order of 
0.1–1.0 µg of total RNA is needed (see, for example, information 
from the Truseq and NEBNext kits: https://support.illumina.
com/sequencing/sequencing_kits/truseq_rna_sample_prep_kit/
input_req.html; https://www.neb.com/faqs/2012/11/19/what-is-
the-starting-material-i-need-to-use-when-preparing-libraries-
using-the-nebnext-ultra-dire). The amount of RNA present in 
a single cell is limited, and ranges from 1–50 pg depending on 
cell type29. One way to overcome this problem is to convert RNA 
from a single cell into cDNA and amplify it before a sequencing 
library is created. (DNA-sequencing kits typically require on the 
order of 1 ng of DNA; see, for example, https://support.illumina.
com/sequencing/sequencing_kits/nextera_xt_dna_kit/input_req.
html). For this to be achieved, adaptor sequences need to be added 
to all mRNA transcripts. Delivery of these adaptors without pre-
specification of target sequences of particular genes was the main 
technical challenge in early single-cell RNA studies.

Amplification of cDNA can be exponential, by PCR 
amplification, or linear, via multiple rounds of IVT, with 

Figure 1 | Scaling of scRNA-seq experiments. (a) Key technologies that have allowed jumps in experimental scale. A jump to ~100 cells was enabled by 
sample multiplexing, and then a jump to ~1,000 cells was achieved by large-scale studies using integrated fluidic circuits, followed by a jump to several 
thousands of cells with liquid-handling robotics. Further orders-of-magnitude increases bringing the number of cells assayed into the tens of thousands were 
enabled by random capture technologies using nanodroplets and picowell technologies. Recent studies have used in situ barcoding to inexpensively reach the 
next order of magnitude of hundreds of thousands of cells. (b) Cell numbers reported in representative publications by publication date. Key technologies are 
indicated. A full table with corresponding numbers is available as Supplementary Table 1.
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Unique molecule identifier (UMI) 
NM 2014
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on ES cells, and hypothalamic and cortical primary neurons). During 
reverse transcription, each cDNA molecule was tagged with a  
5-bp random sequence serving as UMI (Fig. 1a and 
Supplementary Fig. 2). We counted cDNA molecules by enu-
merating the total number of distinct UMIs aligned to each posi-
tion (Fig. 1b). Mouse embryonic fibroblasts and damaged ES cells 
were removed on the basis of criteria established after sequencing 
(Supplementary Note).

UMIs will reflect molecule counts only if the number of distinct 
labels is substantially larger than the typical number of identical 
molecules. Approximately 105–106 mRNA molecules are present 
in a typical single mammalian cell, and up to 10,000 different 
genes may be expressed. However, many genes are expressed from 
multiple promoters (Supplementary Fig. 3) or have promoters 
with diffuse transcription start sites (Supplementary Fig. 4),  
so that the number of identical mRNA molecules is expected to 
be <100 for most genes. We therefore expected our 5-bp UMI, 
capable of distinguishing up to 1,024 molecules, to be sufficient. 
To confirm this, we determined the number of distinct UMIs that 
we could observe for each unique combination of sample barcode 
(i.e., cell) and genomic position (Fig. 1c). As expected, the vast 
majority of cases were represented by only a small number of 
UMIs (corresponding to a small number of cDNA molecules), 
and we did not find a single case of a fully saturated position.  
To obtain more accurate estimates of molecule counts at high 
expression levels, we corrected for the collision probability of 
UMIs (see Online Methods).

To ensure that successfully generated cDNA molecules are 
sequenced, it is crucial to sequence to a sufficient depth after 
amplification. We typically observed each UMI multiple times 
(Fig. 1b). Across all genes, the average number of reads per mol-
ecule was nine, with a distribution consistent with oversampling 
of most molecules (Supplementary Fig. 5).

To further demonstrate that UMIs labeled individual cDNA 
molecules, we examined genes containing a heterozygous single 
nucleotide polymorphism (SNP). If UMIs worked as intended, 
each UMI would be derived from a single molecule and therefore 
from a single allele. As a consequence, all reads derived from 
this UMI would carry the same allele. Indeed, the observed allele 
distribution confirmed that UMIs had correctly labeled single 
cDNA molecules derived from single alleles (Fig. 1d). In total, 
we found 47 informative SNPs, of which all showed the expected 
monoallelic pattern across UMIs.

To improve cDNA synthesis efficiency, we implemented our 
protocol on a commercially available microfluidic platform 
(Fluidigm C1 AutoPrep) and carefully optimized the conditions 
for this device (Online Methods). To directly measure the effi-
ciency of reverse transcription, we introduced a known number 

Quantitative single-cell 
RNA-seq with unique 
molecular identifiers
Saiful Islam1, Amit Zeisel1, Simon Joost2,  
Gioele La Manno1, Pawel Zajac1, Maria Kasper2,  
Peter Lönnerberg1 & Sten Linnarsson1

Single-cell RNA sequencing (RNA-seq) is a powerful tool to 
reveal cellular heterogeneity, discover new cell types and 
characterize tumor microevolution. However, losses in cDNA 
synthesis and bias in cDNA amplification lead to severe 
quantitative errors. We show that molecular labels—random 
sequences that label individual molecules—can nearly 
eliminate amplification noise, and that microfluidic sample 
preparation and optimized reagents produce a fivefold 
improvement in mRNA capture efficiency.

RNA-seq has become the method of choice for transcriptome 
analysis in tissues1–3 and in single cells4–7. The two main chal-
lenges in single-cell RNA-seq are the efficiency of cDNA synthe-
sis (which sets the limit of detection) and the amplification bias 
(which reduces quantitative accuracy). Published protocols have 
been reported to have limits of detection of between five and 
ten mRNA molecules5–7, corresponding to a capture efficiency 
of around 10%, and all current methods use amplification, either 
by PCR or by in vitro transcription.

To correct for amplification bias, we8 and others9–11 have 
described how molecules can be directly counted through the use 
of unique molecular identifiers (UMIs). For single-cell RNA-seq, 
UMIs have been used as an internal validation control12 but have 
not yet been explored as a direct, quantitative measure of gene 
expression. Molecule counting corrects for PCR-induced artifacts 
(Supplementary Fig. 1) and provides an absolute scale of mea-
surement with a defined zero level. In contrast, standard RNA-seq 
uses relative measures such as reads per kilobase per million reads 
(RPKM), which mask differences in total mRNA content. For 
example, a gene may be ‘upregulated’ in terms of RPKM and have 
a decrease in absolute expression level if the total mRNA content 
also changes. Thus an absolute scale of measurement is crucial for 
interpreting transcriptional dynamics in single cells.

We applied molecule counting to mouse embryonic stem (ES) 
cells and used spike-in controls to monitor technical perform-
ance (similar results were obtained in independent experiments  

1Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden. 2Department of Biosciences and Nutrition, Karolinska Institutet, 
Stockholm, Sweden. Correspondence should be addressed to S.L. (sten.linnarsson@ki.se).
RECEIVED 27 SEPTEMBER; ACCEPTED 25 NOVEMBER; PUBLISHED ONLINE 22 DECEMBER 2013; DOI:10.1038/NMETH.2772



UMI

• PCR introduces nonlinear amplification bias
– Factors influencing PCR: sequence content, 

chromatin structure, etc. 
• UMIs are short sequence tag added to each 

unique mRNA molecular before PCR, for 
reducing PCR bias. 

• Number of possible UMIs = 4L, where L is the 
length of the UMI



Multiplexing

• Technology to pool many cells together for 
each sequencing lane. 

• Each cell is uniquely marked by a barcode
(short sequence tag). 

• A combination of barcode and UMI can 
quantify unique transcripts in each cell. 



UMI + barcode
• Assumption: number of identical mRNA is small 

(say, <100) for most genes. 
• Use 5-bp UMI (can mark 1024 molecules)
– When a transcript has, say, 20 mRNA molecules, the 

probability of two molecule having the same UMI is 
small. 

• Use 6-bp barcode to identify cells (up to 4096 
cells). 

• Use molecule counts instead of read counts as 
gene expression measurements.
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of External RNA Controls Consortium 
(ERCC) control RNA molecules to each 
well. Counting the resulting number of 
detected cDNA molecules, we found 
an efficiency of 48 o 5% s.d. (Fig. 2 and 
Supplementary Fig. 6), a fivefold improve-
ment over our previously published protocol5. We attribute the 
improvement both to the use of an integrated microfluidic device 
(reducing losses and minimizing background reactions) and to 
more optimized reagents, in particular the template-switching 
oligo design. Interestingly, using a separate set of optimizations, 

the recently published Smart-seq2 method achieved similarly 
improved capture effiency13, suggesting that even higher efficien-
cies could be achieved by combining the protocols.

Next, we asked how the use of UMIs affected the overall 
quantification of gene expression in single cells and controls. 

For comparison, we analyzed the same 
data sets both using UMIs (count-
ing molecules) and using reads in the  
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Figure 1 | Molecule counting using UMIs.  
(a) Overview of tagging single mRNA molecules 
with UMIs. Two cells are shown (top) containing 
mRNAs from different genes represented by 
distinct colors. UMIs are represented by colored 
boxes (middle and bottom); untagged mRNA 
molecules (gray, middle) were not reverse 
transcribed (bottom). (b) UMI alignment and 
mRNA molecule counting on a hypothetical 
example of reads aligned to Tubb2b. (c) Number 
of genomic positions that were assigned the 
given numbers of distinct UMIs. (d) UMIs 
observed in single ES cells for the Exosc1 gene, 
which contained a SNP (rs13483630). Stacked 
bars indicate the number of reads carrying each 
possible UMI sequence, colored according to the 
allele observed in the read. Four distinct UMIs 
were observed, all monoallelic. Horizontal axis 
indicates the numbers of each UMI counted. 
Ref, reference allele.
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Figure 2 | Reproducibility of molecule 
counting. (a,b) Pairwise correlation coefficients 
calculated for ERCC spike-in control RNA (a) or 
endogenous genes (b), using molecule counts 
(n = 41) and prepared with (187ds) and without 
(187ss) nine additional cycles of library PCR. 
(c) Pairwise correlation coefficients as in b but 
counting reads instead of molecules (n = 41).  
(d) Scatterplot showing the pairwise comparison  
of two wells indicated in a. Red squares and 
blue dots show comparisons within and between 
libraries, respectively. (e) Scatterplot showing 
the two cells indicated in b based on molecule 
counts. (f) Scatterplot as in e but using reads 
instead of molecules. (g) Scatterplot as in d  
but using reads instead of molecules.  
(h) Distribution of molecule counts for a single 
ERCC spike-in transcript (gray dots) compared 
with the cumulative density function of the 
Poisson distribution (red line). (i) mRNA 
capture efficiency shown as observed molecule 
counts versus number of spiked-in molecules for 
ERCC control RNA transcripts. The shaded bands 
indicate efficiencies above (dark gray) and 
below (light gray) 20%. Each red dot represents 
the average of a single ERCC RNA across 96 
wells. Similar results were obtained in one 
replicate experiment.
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on ES cells, and hypothalamic and cortical primary neurons). During 
reverse transcription, each cDNA molecule was tagged with a  
5-bp random sequence serving as UMI (Fig. 1a and 
Supplementary Fig. 2). We counted cDNA molecules by enu-
merating the total number of distinct UMIs aligned to each posi-
tion (Fig. 1b). Mouse embryonic fibroblasts and damaged ES cells 
were removed on the basis of criteria established after sequencing 
(Supplementary Note).

UMIs will reflect molecule counts only if the number of distinct 
labels is substantially larger than the typical number of identical 
molecules. Approximately 105–106 mRNA molecules are present 
in a typical single mammalian cell, and up to 10,000 different 
genes may be expressed. However, many genes are expressed from 
multiple promoters (Supplementary Fig. 3) or have promoters 
with diffuse transcription start sites (Supplementary Fig. 4),  
so that the number of identical mRNA molecules is expected to 
be <100 for most genes. We therefore expected our 5-bp UMI, 
capable of distinguishing up to 1,024 molecules, to be sufficient. 
To confirm this, we determined the number of distinct UMIs that 
we could observe for each unique combination of sample barcode 
(i.e., cell) and genomic position (Fig. 1c). As expected, the vast 
majority of cases were represented by only a small number of 
UMIs (corresponding to a small number of cDNA molecules), 
and we did not find a single case of a fully saturated position.  
To obtain more accurate estimates of molecule counts at high 
expression levels, we corrected for the collision probability of 
UMIs (see Online Methods).

To ensure that successfully generated cDNA molecules are 
sequenced, it is crucial to sequence to a sufficient depth after 
amplification. We typically observed each UMI multiple times 
(Fig. 1b). Across all genes, the average number of reads per mol-
ecule was nine, with a distribution consistent with oversampling 
of most molecules (Supplementary Fig. 5).

To further demonstrate that UMIs labeled individual cDNA 
molecules, we examined genes containing a heterozygous single 
nucleotide polymorphism (SNP). If UMIs worked as intended, 
each UMI would be derived from a single molecule and therefore 
from a single allele. As a consequence, all reads derived from 
this UMI would carry the same allele. Indeed, the observed allele 
distribution confirmed that UMIs had correctly labeled single 
cDNA molecules derived from single alleles (Fig. 1d). In total, 
we found 47 informative SNPs, of which all showed the expected 
monoallelic pattern across UMIs.

To improve cDNA synthesis efficiency, we implemented our 
protocol on a commercially available microfluidic platform 
(Fluidigm C1 AutoPrep) and carefully optimized the conditions 
for this device (Online Methods). To directly measure the effi-
ciency of reverse transcription, we introduced a known number 

Quantitative single-cell 
RNA-seq with unique 
molecular identifiers
Saiful Islam1, Amit Zeisel1, Simon Joost2,  
Gioele La Manno1, Pawel Zajac1, Maria Kasper2,  
Peter Lönnerberg1 & Sten Linnarsson1

Single-cell RNA sequencing (RNA-seq) is a powerful tool to 
reveal cellular heterogeneity, discover new cell types and 
characterize tumor microevolution. However, losses in cDNA 
synthesis and bias in cDNA amplification lead to severe 
quantitative errors. We show that molecular labels—random 
sequences that label individual molecules—can nearly 
eliminate amplification noise, and that microfluidic sample 
preparation and optimized reagents produce a fivefold 
improvement in mRNA capture efficiency.

RNA-seq has become the method of choice for transcriptome 
analysis in tissues1–3 and in single cells4–7. The two main chal-
lenges in single-cell RNA-seq are the efficiency of cDNA synthe-
sis (which sets the limit of detection) and the amplification bias 
(which reduces quantitative accuracy). Published protocols have 
been reported to have limits of detection of between five and 
ten mRNA molecules5–7, corresponding to a capture efficiency 
of around 10%, and all current methods use amplification, either 
by PCR or by in vitro transcription.

To correct for amplification bias, we8 and others9–11 have 
described how molecules can be directly counted through the use 
of unique molecular identifiers (UMIs). For single-cell RNA-seq, 
UMIs have been used as an internal validation control12 but have 
not yet been explored as a direct, quantitative measure of gene 
expression. Molecule counting corrects for PCR-induced artifacts 
(Supplementary Fig. 1) and provides an absolute scale of mea-
surement with a defined zero level. In contrast, standard RNA-seq 
uses relative measures such as reads per kilobase per million reads 
(RPKM), which mask differences in total mRNA content. For 
example, a gene may be ‘upregulated’ in terms of RPKM and have 
a decrease in absolute expression level if the total mRNA content 
also changes. Thus an absolute scale of measurement is crucial for 
interpreting transcriptional dynamics in single cells.

We applied molecule counting to mouse embryonic stem (ES) 
cells and used spike-in controls to monitor technical perform-
ance (similar results were obtained in independent experiments  

1Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden. 2Department of Biosciences and Nutrition, Karolinska Institutet, 
Stockholm, Sweden. Correspondence should be addressed to S.L. (sten.linnarsson@ki.se).
RECEIVED 27 SEPTEMBER; ACCEPTED 25 NOVEMBER; PUBLISHED ONLINE 22 DECEMBER 2013; DOI:10.1038/NMETH.2772
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UMI provides better measurements and 
reproducibility
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of External RNA Controls Consortium 
(ERCC) control RNA molecules to each 
well. Counting the resulting number of 
detected cDNA molecules, we found 
an efficiency of 48 o 5% s.d. (Fig. 2 and 
Supplementary Fig. 6), a fivefold improve-
ment over our previously published protocol5. We attribute the 
improvement both to the use of an integrated microfluidic device 
(reducing losses and minimizing background reactions) and to 
more optimized reagents, in particular the template-switching 
oligo design. Interestingly, using a separate set of optimizations, 

the recently published Smart-seq2 method achieved similarly 
improved capture effiency13, suggesting that even higher efficien-
cies could be achieved by combining the protocols.

Next, we asked how the use of UMIs affected the overall 
quantification of gene expression in single cells and controls. 

For comparison, we analyzed the same 
data sets both using UMIs (count-
ing molecules) and using reads in the  
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Figure 1 | Molecule counting using UMIs.  
(a) Overview of tagging single mRNA molecules 
with UMIs. Two cells are shown (top) containing 
mRNAs from different genes represented by 
distinct colors. UMIs are represented by colored 
boxes (middle and bottom); untagged mRNA 
molecules (gray, middle) were not reverse 
transcribed (bottom). (b) UMI alignment and 
mRNA molecule counting on a hypothetical 
example of reads aligned to Tubb2b. (c) Number 
of genomic positions that were assigned the 
given numbers of distinct UMIs. (d) UMIs 
observed in single ES cells for the Exosc1 gene, 
which contained a SNP (rs13483630). Stacked 
bars indicate the number of reads carrying each 
possible UMI sequence, colored according to the 
allele observed in the read. Four distinct UMIs 
were observed, all monoallelic. Horizontal axis 
indicates the numbers of each UMI counted. 
Ref, reference allele.

g

N
um

be
r 

of
 r

ea
ds

Number of reads

1

10

10,000

100

1,000

1 10 100 1,000 10,000

e

N
um

be
r 

of
 m

ol
ec

ul
es

Number of molecules

1

10

100

1,000

1 10 100 1,000

d

N
um

be
r 

of
 m

ol
ec

ul
es

Number of molecules

1

10

100

1,000

1 10 100 1,000

ERCC control RNA

a 0.95 1.0

 

187ss 187ds

18
7s

s
18

7d
s

Genes (molecules)

b

18
7s

s
18

7d
s

187ss 187ds

0.6 1.0
Genes (reads)

c

187ss 187ds

18
7s

s
18

7d
s

0.6 1.0

 

h

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Number of molecules

30 40 50 60 70
0

1

f

N
um

be
r 

of
 r

ea
ds

Number of reads

1

10

10,000

100

1,000

1 10 100 1,000 10,000

i
1–20%

20–100%

103

102

101

100

103 104102101100

10–1

Spiked molecules per cell

O
bs

er
ve

d 
m

ol
ec

ul
es

Figure 2 | Reproducibility of molecule 
counting. (a,b) Pairwise correlation coefficients 
calculated for ERCC spike-in control RNA (a) or 
endogenous genes (b), using molecule counts 
(n = 41) and prepared with (187ds) and without 
(187ss) nine additional cycles of library PCR. 
(c) Pairwise correlation coefficients as in b but 
counting reads instead of molecules (n = 41).  
(d) Scatterplot showing the pairwise comparison  
of two wells indicated in a. Red squares and 
blue dots show comparisons within and between 
libraries, respectively. (e) Scatterplot showing 
the two cells indicated in b based on molecule 
counts. (f) Scatterplot as in e but using reads 
instead of molecules. (g) Scatterplot as in d  
but using reads instead of molecules.  
(h) Distribution of molecule counts for a single 
ERCC spike-in transcript (gray dots) compared 
with the cumulative density function of the 
Poisson distribution (red line). (i) mRNA 
capture efficiency shown as observed molecule 
counts versus number of spiked-in molecules for 
ERCC control RNA transcripts. The shaded bands 
indicate efficiencies above (dark gray) and 
below (light gray) 20%. Each red dot represents 
the average of a single ERCC RNA across 96 
wells. Similar results were obtained in one 
replicate experiment.
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on ES cells, and hypothalamic and cortical primary neurons). During 
reverse transcription, each cDNA molecule was tagged with a  
5-bp random sequence serving as UMI (Fig. 1a and 
Supplementary Fig. 2). We counted cDNA molecules by enu-
merating the total number of distinct UMIs aligned to each posi-
tion (Fig. 1b). Mouse embryonic fibroblasts and damaged ES cells 
were removed on the basis of criteria established after sequencing 
(Supplementary Note).

UMIs will reflect molecule counts only if the number of distinct 
labels is substantially larger than the typical number of identical 
molecules. Approximately 105–106 mRNA molecules are present 
in a typical single mammalian cell, and up to 10,000 different 
genes may be expressed. However, many genes are expressed from 
multiple promoters (Supplementary Fig. 3) or have promoters 
with diffuse transcription start sites (Supplementary Fig. 4),  
so that the number of identical mRNA molecules is expected to 
be <100 for most genes. We therefore expected our 5-bp UMI, 
capable of distinguishing up to 1,024 molecules, to be sufficient. 
To confirm this, we determined the number of distinct UMIs that 
we could observe for each unique combination of sample barcode 
(i.e., cell) and genomic position (Fig. 1c). As expected, the vast 
majority of cases were represented by only a small number of 
UMIs (corresponding to a small number of cDNA molecules), 
and we did not find a single case of a fully saturated position.  
To obtain more accurate estimates of molecule counts at high 
expression levels, we corrected for the collision probability of 
UMIs (see Online Methods).

To ensure that successfully generated cDNA molecules are 
sequenced, it is crucial to sequence to a sufficient depth after 
amplification. We typically observed each UMI multiple times 
(Fig. 1b). Across all genes, the average number of reads per mol-
ecule was nine, with a distribution consistent with oversampling 
of most molecules (Supplementary Fig. 5).

To further demonstrate that UMIs labeled individual cDNA 
molecules, we examined genes containing a heterozygous single 
nucleotide polymorphism (SNP). If UMIs worked as intended, 
each UMI would be derived from a single molecule and therefore 
from a single allele. As a consequence, all reads derived from 
this UMI would carry the same allele. Indeed, the observed allele 
distribution confirmed that UMIs had correctly labeled single 
cDNA molecules derived from single alleles (Fig. 1d). In total, 
we found 47 informative SNPs, of which all showed the expected 
monoallelic pattern across UMIs.

To improve cDNA synthesis efficiency, we implemented our 
protocol on a commercially available microfluidic platform 
(Fluidigm C1 AutoPrep) and carefully optimized the conditions 
for this device (Online Methods). To directly measure the effi-
ciency of reverse transcription, we introduced a known number 

Quantitative single-cell 
RNA-seq with unique 
molecular identifiers
Saiful Islam1, Amit Zeisel1, Simon Joost2,  
Gioele La Manno1, Pawel Zajac1, Maria Kasper2,  
Peter Lönnerberg1 & Sten Linnarsson1

Single-cell RNA sequencing (RNA-seq) is a powerful tool to 
reveal cellular heterogeneity, discover new cell types and 
characterize tumor microevolution. However, losses in cDNA 
synthesis and bias in cDNA amplification lead to severe 
quantitative errors. We show that molecular labels—random 
sequences that label individual molecules—can nearly 
eliminate amplification noise, and that microfluidic sample 
preparation and optimized reagents produce a fivefold 
improvement in mRNA capture efficiency.

RNA-seq has become the method of choice for transcriptome 
analysis in tissues1–3 and in single cells4–7. The two main chal-
lenges in single-cell RNA-seq are the efficiency of cDNA synthe-
sis (which sets the limit of detection) and the amplification bias 
(which reduces quantitative accuracy). Published protocols have 
been reported to have limits of detection of between five and 
ten mRNA molecules5–7, corresponding to a capture efficiency 
of around 10%, and all current methods use amplification, either 
by PCR or by in vitro transcription.

To correct for amplification bias, we8 and others9–11 have 
described how molecules can be directly counted through the use 
of unique molecular identifiers (UMIs). For single-cell RNA-seq, 
UMIs have been used as an internal validation control12 but have 
not yet been explored as a direct, quantitative measure of gene 
expression. Molecule counting corrects for PCR-induced artifacts 
(Supplementary Fig. 1) and provides an absolute scale of mea-
surement with a defined zero level. In contrast, standard RNA-seq 
uses relative measures such as reads per kilobase per million reads 
(RPKM), which mask differences in total mRNA content. For 
example, a gene may be ‘upregulated’ in terms of RPKM and have 
a decrease in absolute expression level if the total mRNA content 
also changes. Thus an absolute scale of measurement is crucial for 
interpreting transcriptional dynamics in single cells.

We applied molecule counting to mouse embryonic stem (ES) 
cells and used spike-in controls to monitor technical perform-
ance (similar results were obtained in independent experiments  
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Stockholm, Sweden. Correspondence should be addressed to S.L. (sten.linnarsson@ki.se).
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Single nucleus RNA-seq (snRNA-seq)

• Profile gene expressions in nucleus, instead of 
the whole cell
– Transcripts can be in cytoplasm and nucleus

• Useful when the cells are difficult to isolate
– Frozen tissues
– Highly connected cells such as neurons

• Analysis methods are similar.



Multi-omics single cell assays

• CITE-seq (Cellular Indexing of Transcriptomes 
and Epitopes by Sequencing)
– Jointly profile transcriptome and proteome. 

• scNMT-seq (single-cell Nucleosome, 
Methylation and Transcription sequencing)
– Jointly profile chromatin accessibility, DNA 

methylation, and transcription



Brief introduction to Bioconductor
• A collection of R packages
• The de facto language for genomic data analysis.



Functionalities
• “Bioconductor provides tools for the analysis and 

comprehension of high-throughput genomic data. 
Bioconductor uses the R statistical programming 
language, and is open source and open 
development.”

• Provides close to 2000 packages for:
– microarrays.
– second generation sequencing.
– other high-throughput assays.
– annotation.

• Most of the packages are contributed.



Bioconductor installation

• Use BiocManager::install(). 
• Basic installation: installing default (core) 

packages:
if (!requireNamespace("BiocManager")) 

install.packages("BiocManager") 
BiocManager::install() 

• Installing a specific package:
BiocManager::install("limma")



Data processing

• Preprocessing 
– QC 
– Alignment
– Expression quantification

• Normalization 
• Batch effect correction
• Imputation



scRNA-seq data preprocessing

• QC: 
– FastQC is a popular tool for checking a single sample.
– MultiQC: create a single report with interactive plots 

for multiple QC reports.
• Read trimming: 
– cutadapt (with a wrapper Trim Galore!)

• Bioconductor package “scater” provides useful 
and easy-to-use functions for QC and data 
visualization.  



Alignment and quantification

• Alignment
– Bulk RNA-seq alignment software (Tophat, STAR, 

HISAT, etc.) can be used. 
– Some commercial software, such as CellRanger for 10x 

genomics data.

• Quantification (to obtain count matrix from 
aligned reads)
– Most alignment software provide such functionality. 



Some data characteristics
• Data is very sparse (many zeros), especially for Drop-seq data. 
• Number of transcripts detected is much lower compared to 

bulk RNA-seq under the same sequencing depth.
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variation. This was not seen in the other single-cell methods and 
is perhaps attributable to the sequencing depth of these samples. 
In general, the microfluidic single-cell data had a more well-
defined relationship, with less scatter, between expression level 
and variation than the single cells measured in tubes.

Nanoliter sample preparation improves RNA-seq sensitivity
We constructed saturation curves for each preparation method by 
subsampling the raw reads from each library and determining the 
number of genes detected (Fig. 5). The number of genes detected 
with confidence (FPKM > 1) approached saturation at roughly  
2 million reads for all methods; in fact, the majority of genes were 
detected within the first 500,000 reads—and for most methods, 
>90% of all genes detected at 30 million reads were already detected 
at a sequencing depth of 2 million (Supplementary Fig. 7a).  
There was a large difference in the sensitivity of each method, 
with a wide range of saturation points. The synthetic ensemble 
experiment matched the bulk experiment generated with the 
same method (SMARTer): both reached saturation at 2 million 
sequenced reads at almost identical rates. This again suggests that 
there is less bias when performing cDNA synthesis in smaller 
reaction volumes. With less bias, low-abundance transcripts have 
better representation at lower sequencing depths, and the overall 
assay sensitivity thus improves. Further confirming this hypoth-
esis is the observation that for individual transcriptomes gener-
ated using the microfluidic platform, the average number of genes 
detected at any sequencing depth is higher than with any other 
single-cell method (Fig. 5 and Supplementary Figs. 1 and 7).

DISCUSSION
We used microfluidic automation to quantitatively compare the 
accuracy and precision of single-cell RNA-seq to qPCR. Using two 
distinct methods, each of which has different biases and sources 
of error, enabled us to estimate the absolute accuracy of single-
cell gene expression. Our study shows that single-cell RNA-seq 
can generate results that are quantitatively comparable to qPCR, 
in particular when sample preparation is done in nanoliter-scale 
reaction volumes, as in a microfluidic device. Bias that is typically 
introduced during sample preparation is reduced, and correlation 
further improves. It is not yet clear whether this bias is a funda-
mental limitation of microliter-volume amplification schemes or 
whether with further optimization, these approaches will also 
be able to yield fully accurate transcriptome measurements.  

We expect that the availability of low-bias, high-throughput  
single-cell RNA-seq will make studies of primary tissue involving  
diverse subsets of cell types and hundreds or thousands of  
individual cells routine.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Gene Expression Omnibus: GSE51254. All  
analysis was performed using custom R scripts, available for 
download at http://sourceforge.net/projects/arwu-scrnaseq/files/
C1_hiseq_analysis_for_paper_revision.R/download.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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• Bulk and aggregated single cell expressions 
have good correlation. 
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Combining single-cell data recapitulates bulk RNA profile
We created a synthetic ensemble data set by computationally 
pooling raw reads from all the single-cell RNA-seq data to mimic 
a bulk RNA-seq experiment. The correlation between the true 
bulk gene expression and the single-cell ensemble was remarkably 
high (Fig. 4a); there was little distortion as demonstrated by the 
Loess regression curve being virtually linear with a slope close 
to 1 in this regime, and the Pearson correlation coefficient was 
0.870. This analysis confirmed that an ensemble of single cells 
indeed recapitulates the bulk11. However, it is worth noting that 
the opposite is generally not true: bulk measurements cannot be 
used to accurately infer ‘typical’ single-cell expression values, nor 
can they be used to infer the variation in expression value from  
cell to cell (T.K., P.D., S.S., M.F.C. and S.R.Q., unpublished data).

Next we examined variation among RNA-seq replicates by 
looking at how dispersion about the median FPKM depends on 
median gene expression for each method (Fig. 4b). In general, 
genes with low expression levels exhibited greater variation, and 
the degree of variability was gene dependent. But as expression 
level increased, the amount of variation decreased, presum-
ably because genes with high expression are also those that are 
expressed stably. Low-expression genes that were reliably detected 
with low variation among replicates were only found in bulk RNA-
seq and synthetic ensemble data sets. Interestingly, despite the 

uniform behavior of ERCC spike-ins (Supplementary Fig. 6b), 
inter-replicate variation among individual C1 single-cell data 
sets appeared to monotonically decrease with gene expression 
level; that is, low-expression genes always had a high intersample  
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• Expression levels for a gene cross cells 
sometimes show bimodal distribution. 
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Combining single-cell data recapitulates bulk RNA profile
We created a synthetic ensemble data set by computationally 
pooling raw reads from all the single-cell RNA-seq data to mimic 
a bulk RNA-seq experiment. The correlation between the true 
bulk gene expression and the single-cell ensemble was remarkably 
high (Fig. 4a); there was little distortion as demonstrated by the 
Loess regression curve being virtually linear with a slope close 
to 1 in this regime, and the Pearson correlation coefficient was 
0.870. This analysis confirmed that an ensemble of single cells 
indeed recapitulates the bulk11. However, it is worth noting that 
the opposite is generally not true: bulk measurements cannot be 
used to accurately infer ‘typical’ single-cell expression values, nor 
can they be used to infer the variation in expression value from  
cell to cell (T.K., P.D., S.S., M.F.C. and S.R.Q., unpublished data).

Next we examined variation among RNA-seq replicates by 
looking at how dispersion about the median FPKM depends on 
median gene expression for each method (Fig. 4b). In general, 
genes with low expression levels exhibited greater variation, and 
the degree of variability was gene dependent. But as expression 
level increased, the amount of variation decreased, presum-
ably because genes with high expression are also those that are 
expressed stably. Low-expression genes that were reliably detected 
with low variation among replicates were only found in bulk RNA-
seq and synthetic ensemble data sets. Interestingly, despite the 

uniform behavior of ERCC spike-ins (Supplementary Fig. 6b), 
inter-replicate variation among individual C1 single-cell data 
sets appeared to monotonically decrease with gene expression 
level; that is, low-expression genes always had a high intersample  
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were depth matched before alignment was performed. For each gene, the log2-transformed median FPKM values from the ensemble and bulk were plotted 
against each other. (b) Variation in gene expression as a function of gene expression level across sample replicates for each preparation method. 
Variation (vertical axis) is the median absolute deviation of the FPKM divided by the median FPKM (MAD/M; see Online Methods for the equation).  
For each gene, the MAD/M is plotted against the log2-transformed median FPKM value for that gene in order to visualize how variation changes with 
overall transcript abundance. Replicates for single-cell methods are biological replicates, whereas replicates for the bulk and ensemble are technical 
replicates, as each sample represents a subsampling of a pooled sample.

Wu et al. 2013 Nature Method



scRNA-seq data after processing

• A matrix of read counts: rows are genes and 
columns are cells 



A few useful R packages

• SingleCellExperiment: 
– Bioconductor package. Defines 

“SingleCellExperiment” class for storing single cell 
data: expression matrix, gene and cell 
information, etc.

• Visualization tools:
– tSNE
– UMAP



SingleCellExperiment 
• Installation:

BiocManager::install("SingleCellExperiment")

• Create SingleCellExperiment object: 

sce <- SingleCellExperiment(list(counts=counts),
colData=DataFrame(label=celllabels),
rowData=DataFrame(genenames=genenames),
metadata=list(study="GSE111111")

)

• Functions to access contents of the object: counts, rowData, 
colData, etc.



t-SNE: a useful visualization tool
• t-SNE (t-distributed stochastic neighbor embedding): 

visualize high-dimensional data on 2-/3-D map. 
• When project high-dimensional data into lower 

dimensional space, preserve the distances among 
data points. 
– Try to make the pairwise distances of points similar in high 

and low dimension.
• Has “tsne” and “Rtsne” package on CRAN.



VAN DER MAATEN AND HINTON

 

 

(a) Visualization by t-SNE.

 

 

(b) Visualization by Sammon mapping.

 

 

(c) Visualization by Isomap.

 

 

(d) Visualization by LLE.

Figure 4: Visualizations of the Olivetti faces data set.

structure of the data. The map constructed by Sammon mapping is significantly better, since it
models many of the members of each class fairly close together, but none of the classes are clearly
separated in the Sammon map. In contrast, t-SNE does a much better job of revealing the natural
classes in the data. Some individuals have their ten images split into two clusters, usually because a
subset of the images have the head facing in a significantly different direction, or because they have
a very different expression or glasses. For these individuals, it is not clear that their ten images form
a natural class when using Euclidean distance in pixel space.

Figure 5 shows the results of applying t-SNE, Sammon mapping, Isomap, and LLE to the COIL-
20 data set. For many of the 20 objects, t-SNE accurately represents the one-dimensional manifold
of viewpoints as a closed loop. For objects which look similar from the front and the back, t-SNE
distorts the loop so that the images of front and back are mapped to nearby points. For the four
types of toy car in the COIL-20 data set (the four aligned “sausages” in the bottom-left of the t-
SNE map), the four rotation manifolds are aligned by the orientation of the cars to capture the high
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Example code for t-SNE
library(Rtsne)
tsne_model_1 = Rtsne(datamatrix,  

check_duplicates=FALSE, pca=TRUE, 
perplexity=30, theta=0.5, dims=3)

tsne_out = as.data.frame(tsne_model_1$Y)

plot(tsne_out$V1, tsne_out$V2,  
pch = 19, cex = 0.4, col = mycolor)

legend("bottomleft", col = mycolor,  
legend = uniqCT, pch = 19, 
cex = 0.5, bty = "n")



UMAP: a newer (and better?) 
visualization tool

• UMAP (uniform manifold approximation and projection): a 
recently developed dimension reduction tool

• “Comparing the performance of UMAP with five other tools, 
we find that UMAP provides the fastest run times, highest 
reproducibility and the most meaningful organization of cell 
clusters. ” ---- Betcht et al. 2018 Nat Biotech

• “UMAP, which is based on theories in Riemannian geometry 
and algebraic topology, has been developed, and soon 
demonstrated arguably better performance than t-SNE due to 
its higher efficiency and better preservation of continuum.” ---
- Mu et al. 2018 GBP

• Has “umap” package on CRAN.



Betcht et al. 2018 Nat Biotech 



Example code for UMAP

library(umap)
sim_umap <- umap(datamatrix)
sim_umap2 <- sim_umap$layout
colnames(sim_umap2) <- c("UMAP1", "UMAP2")

plot(sim_umap2[,1], sim_umap2[,2], 
pch = 19, cex = 0.4, col = mycolor)

legend("bottomleft", col = mycolor, 
legend = uniqCT, pch = 19, 
cex = 0.5, bty = "n")


