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Course outline

8-9:15: Intro and data preprocessing.
9:15-9:45: Lab: preprocessing and visualization.

10-11:15: Normalization, batch effect, imputation, DE,
simulator.

11:15-12: Lab: Normalization, batch effect, imputation,
DE, simulator

12-1: lunch break
1-2: Clustering and pseudotime construction
2-2:30: Lab: Clustering and pseudotime construction

2:45-3:30: Supervised cell typing & related single cell data
sources

3:30-4: Lab: supervised cell typing.
4:15-5: scRNA-seq in cancer



Other useful resources

e https://github.com/theislab/single-cell-
tutorial/

e https://scrnaseq-
course.cog.sanger.ac.uk/website/index.html

e https://broadinstitute.github.io/2019 scWork
shop/



https://github.com/theislab/single-cell-tutorial/
https://scrnaseq-course.cog.sanger.ac.uk/website/index.html
https://broadinstitute.github.io/2019_scWorkshop/

Outline for this session

* Background
— Scientific motivation
— Technology
— UMI

* Pre-processing: Alignment, QC, GE
guantification

 Data visualization: tSNE, UMAP



Background

* Most of the biological experiments are performed on
“bulk” samples, which contains a large number of

cells (millions).

 The “bulk” data measure the average signals (gene
expression, TF binding, methylation, etc.) of many
cells.

 The bulk measurement ignores the inter-cellular
heterogeneities:

— Different cell types.
— Variation among the same cell type.



Single cell biology

The study of individual cells.

The cells are isolated from multi-cellular
organism.

Experiment is performed for each cell
individually.

Provides more detailed, higher resolution
information.

High-throughput experiments on single cell is
possible.



Single cell sequencing

* Different types of sequencing at the single-cell
level:
— DNA-seq
— ATAC-seq, ChlP-seq
— BS-seq
— RNA-seq
— Multi-omics

e Very active research field in the past few years.



Basic experimental procedure

Isolation of single cell. Techniques include
— Laser-capture microdissection (LCM)
— Fluorescence-activated cell sorting (FACS)

— Microfluidics
Open the cell and obtain DNA/mRNA/etc.
PCR amplification to get enough materials.

Perform sequencing.



Single cell RNA-seq (scRNA-seq)

 The most active in the single cell field.

e Scientific goals:
— Composition of different cell types in complex tissues.
— New/rare cell type discovery.

— Gene expression, alternative splicing, allele specific
expression at the level of individual cells.

— Transcriptional dynamics (pseudotime construction).

— Above can be investigated and compared spatially,
temporally, or under different biological condition.



Single Cell RNA Sequencing Workflow
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Technologies by cell
capturing method

* Plate-based methods: Smart-Seq/Smart-Seq?2,
CEL-seq:
— Sort cells into the wells on a multi-well plate.
— Lower throughput (in terms of number of cells).
— High sequencing depth
— Can be combined with FACS for cell sorting.
— Better at detecting low expression genes

— Good for isoform analysis, allele specific
expression



Microwell plates

Figure source: wikipedia



* Droplet-based methods: Drop-seq, inDrop, 10x
genomics
— Put each cell in a nanoliter droplet with a bead.
— Each droplet is a reactor for PCR.

— Each bead has a unique barcode, so all beads can be
pooled and sequenced together.

— Much higher throughput in terms of number of cells.
— Lower sequencing depth.
— Good for identifying cell subpopulations.
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Unique molecule identifier (UMI)
NM 2014

Quantitative single-cell
RNA-seq with unique
molecular identifiers

Saiful Islam!, Amit Zeisel!, Simon Joost?,
Gioele La Mannol, Pawel Zajacl, Maria Kasperz,
Peter Lonnerberg! & Sten Linnarsson!



UMI

 PCR introduces nonlinear amplification bias

— Factors influencing PCR: sequence content,
chromatin structure, etc.

 UMIs are short sequence tag added to each
unique MRNA molecular before PCR, for
reducing PCR bias.

* Number of possible UMIs = 4%, where L is the
length of the UM



Multiplexing

* Technology to pool many cells together for
each sequencing lane.

* Each cell is uniquely marked by a barcode
(short sequence tag).

e A combination of barcode and UMI can
guantify unique transcripts in each cell.



UMI + barcode

Assumption: number of identical mMRNA is small
(say, <100) for most genes.

Use 5-bp UMI (can mark 1024 molecules)

— When a transcript has, say, 20 mRNA molecules, the
probability of two molecule having the same UMI is
small.

Use 6-bp barcode to identify cells (up to 4096

cells).

Use molecule counts instead of read counts as
gene expression measurements.



b Chr13: Tubb2b I34,130,350 I34,1 30,300
— R —>

UMI Barcode 5" end of transcript Reads

ATGGA CAAAGT =— X106
Cell 1 CGTAA CAAAGT X22

|
GCTGG CAAAGT —o— %10
TAATG CAAAGT  ——ssss— x14
CGTAA ATGCTT ———— x4
Cell 2 CGTTC ATGCTT = ————————— x20
TATCA ATGCTT =— %41

NATURE METHODS | VOL.11 NO.2 | FEBRUARY 2014 | 163



— Sequencing and computation
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UMI provides better measurements and
reproducibility
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Single nucleus RNA-seq (snRNA-seq)

* Profile gene expressions in nucleus, instead of
the whole cell

— Transcripts can be in cytoplasm and nucleus

e Useful when the cells are difficult to isolate
— Frozen tissues

— Highly connected cells such as neurons

* Analysis methods are similar.



Multi-omics single cell assays

e CITE-seq (Cellular Indexing of Transcriptomes
and Epitopes by Sequencing)

— Jointly profile transcriptome and proteome.
 scNMT-seq (single-cell Nucleosome,
Methylation and Transcription sequencing)

— Jointly profile chromatin accessibility, DNA
methylation, and transcription
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Brief introduction to Bioconductor

* A collection of R packages

* The de facto language for genomic data analysis.

Month Nb of distinct IPs Nb of downloads
Jan/2020 347 1863031
Feb/2020 11182950 2327549
Mar/2020 [ 1100156 2437796
Apr/2020 11109245 2445530

May/2020 [ 107201 3059277
Jun/2020 68529 2406886
Jul2020 [ 06776 2409421
Aug/2020 1186995 2119491
Sep/2020 111190269 2280596
Oct/2020 1100693 2427302
Nov/2020 0111103086 2572492
Dec/2020 (111195193 2225497
2020 [ 816065 28574868
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Functionalities

* “Bioconductor provides tools for the analysis and
comprehension of high-throughput genomic data.
Bioconductor uses the R statistical programming
language, and is open source and open
development.”

* Provides close to 2000 packages for:
— microarrays.
— second generation sequencing.
— other high-throughput assays.

— annotation.

* Most of the packages are contributed.



Bioconductor installation

* Use BiocManager::install().

* Basic installation: installing default (core)
packages:

if (!requireNamespace("BiocManager"))
install.packages("BiocManager")

BiocManager: :install()

* Installing a specific package:

BiocManager::install("limma")



Data processing

Preprocessing

— QC
— Alignment
— Expression quantification

Normalization
Batch effect correction

Imputation



scCRNA-seq data preprocessing

e QC:
— FastQC is a popular tool for checking a single sample.
— MultiQC: create a single report with interactive plots

for multiple QC reports.

* Read trimming:
— cutadapt (with a wrapper Trim Galore!)

* Bioconductor package “scater” provides useful
and easy-to-use functions for QC and data

visualization.



Alignment and quantification

* Alignment

— Bulk RNA-seq alignment software (Tophat, STAR,
HISAT, etc.) can be used.

— Some commercial software, such as CellRanger for 10x
genomics data.

e Quantification (to obtain count matrix from
aligned reads)

— Most alignment software provide such functionality.



Some data characteristics

e Datais very sparse (many zeros), especially for Drop-seq data.

* Number of transcripts detected is much lower compared to
bulk RNA-seq under the same sequencing depth.
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* Bulk and aggregated single cell expressions
have good correlation.

o

Spearman r = 0.894
Pearson r = 0.870

Bulk RNA gene expression (median FPKM, log,)
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* Expression levels for a gene cross cells
sometimes show bimodal distribution.
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scRNA-seq data after processing

A matrix of read counts: rows are genes and
columns are cells

AACGGTACCTTCGC_1 AGAGAAACGCCCTT_1 AGGCAGGACGAATC_
ENSGO0000228463
ENSGO0000230021
ENSGO0000237491
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ENSGO0000225880
ATACCTTGCCGATAL_
ENSGO0000228463
ENSGO0000230021
ENSGO0000237491
ENSGO0000177757
ENSGO0000225880
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A few useful R packages

* SingleCellExperiment:

— Bioconductor package. Defines
“SingleCellExperiment” class for storing single cell
data: expression matrix, gene and cell
information, etc.

* Visualization tools:
— tSNE
— UMAP



SingleCellExperiment

 |nstallation:

BiocManager::install("SingleCellExperiment™)

* Create SingleCellExperiment object:

sce <- SingleCellExperiment(list(counts=counts),
colData=DataFrame(label=celllabels),
rowData=DataFrame(genenames=genenames),
metadata=list(study="GSE111111")

* Functions to access contents of the object: counts, rowData,
colData, etc.



t-SNE: a useful visualization tool

* t-SNE (t-distributed stochastic neighbor embedding):
visualize high-dimensional data on 2-/3-D map.

* When project high-dimensional data into lower

dimensional space, preserve the distances among
data points.

— Try to make the pairwise distances of points similar in high
and low dimension.

* Has “tsne” and “Rtsne” package on CRAN.
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Example code for t-SNE

library(Rtsne)
tsne _model 1 = Rtsne(datamatrix,
check _duplicates=FALSE, pca=TRUE,
perplexity=30, theta=0.5, dims=3)
tsne_out = as.data.frame(tsne_model 1$Y)

plot(tsne_out$Vvl, tsne_out$v2,
pch = 19, cex = 0.4, col = mycolor)
legend("bottomleft", col = mycolor,
legend = uniqCT, pch = 19,
cex = 0.5, bty = "n")



UMAP: a newer (and better?)
visualization tool

UMAP (uniform manifold approximation and projection): a
recently developed dimension reduction tool

“Comparing the performance of UMAP with five other tools,
we find that UMAP provides the fastest run times, highest
reproducibility and the most meaningful organization of cell
clusters. ” ---- Betcht et al. 2018 Nat Biotech

“UMAP, which is based on theories in Riemannian geometry
and algebraic topology, has been developed, and soon
demonstrated arguably better performance than t-SNE due to
its higher efficiency and better preservation of continuum.” ---
- Mu et al. 2018 GBP

Has “umap” package on CRAN.
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Example code for UMAP

library(umap)

sim_umap <- umap(datamatrix)

sim_umap2 <- sim_umap$layout
colnames(sim_umap2) <- c("UMAP1", "UMAP2")

plot(sim_umap2[,1], sim _umap2[,2],
pch = 19, cex = 0.4, col = mycolor)
legend("bottomleft", col = mycolor,
legend = uniqCT, pch = 19,
cex = 0.5, bty = "n")



