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Outline

Introduction to ChlP-seq experiment: biological motivation
and experimental procedure.

Method and software for ChlP-seq peak calling:
— Protein binding ChlP-seq.

— Histone modifications.
After peak calling:

— Overlaps of peaks.

— Differential analysis.



ChiIP-seq: Chromatin
ImmunoPrecipitation + sequencing

* Biological motivation: detect or measure some
type of biological modifications along the

genome:

— Detect binding sites of DNA-binding proteins
(transcription factors, pol2, etc.) .

— Quantify strengths of chromatin modifications
(e.g., histone modifications).



Experimental procedures

Crosslink: fix proteins on isolate genomic DNA.
Sonication: cut DNA in small pieces of ~200bp.

IP: use antibody to capture DNA segments with
specific proteins.

Reverse crosslink: remove protein from DNA.
Sequence the DNA segments.



Genomic DNA with TF
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TF/DNA Crosslinking in vivo
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Sonication
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TF-specific Antibody
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Immunoprecipitation (IP)
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Reverse Crosslink and DNA Purification
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Amplification then sequencing
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Data from ChlIP-seq

 Raw data: sequence reads.

* After alignments: genome coordinates
(chromosome/position) of all reads.

* For downstream analysis, aligned reads are often
summarized into “counts” in equal sized bins
genome-wide:

1. segment genome into small bins of equal sizes (50bps).
2. Count number of reads started at each bin.



Methods and software for ChlP-
seq peak/block calling



ChiP-seq “peak” detection

 When plot the read counts against genome coordinates, the
binding sites show a tall and pointy peak. So “peaks” are used
to refer to protein binding or histone modification sites.
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* Peak detection is the most fundamental problem in ChiP-seq
data analysis.



Simple ideas for peak detection

Peaks are regions with reads clustered, so they can be
detected from binned read counts.

Counts from neighboring windows need to be combined to
make inference (so that it’s more robust).

To combine counts:
— Smoothing based: moving average (MACS, CisGenome), HMM-based
(Hpeak).
— Model clustering of reads starting position (PICS, GPS).
Moreover, some special characteristics of the data can be
considered to improve the peak calling performance.



Control sample is important

* A control sample is necessary for correcting many artifacts:
— DNA sequence contents affect amplification or sequencing process.
— Repetitive regions affect alignments.

— Chromatin structures (e.g., open chromatin region or not) affect the
DNA sonication process.
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Reads aligned to different strands

Number of Reads
aligned to different
strands form two
distinct peaks around

the true binding sites.

This information can
be used to help peak
detection.
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Mappability

For each basepair position in the genome, whether a 35 bp
sequence tag starting from this position can be uniquely mapped to
a genome location.

Regions with low mappability (highly repetitive) cannot have high
counts (because multi-aligned reads are discarded), thus affect the
ability to detect peaks.

Table 1 Genome mappability fraction

Monrepetitive sequence Mappable sequence
Organism Genome size (Mb) Size (Mb) Percentage Size (Mb) Percentage
Caenorhabditis elegans 100.28 87.01 86.8% 93.26 93.0%
Drosophila melanogaster 168.74 117.45 69.6% 121.40 71.9%
Mus musculus 2,654.91 1,438.61 ha. 2% 2,150.57 81.0%

Homo sapiens 3,080.44 1,462.69 47.5% 2,451.96 79.6%



Normalization issues

The most common normalization needed is to adjust for total
counts.

Normalize by total counts is conservative, because ChIP

sample contains reads mapped to background and peaks, but
control sample have reads mapped to background only.

It’s better to normalize using the number of total reads in
backgrounds. Two pass algorithm:
— Roughly find peaks, and exclude those regions.
— Compute total reads in the leftover regions and normalize based on
that.
Other normalizations (GC contents, MA plot based) available,
but don’t seems to help much.



Peak detection software

MACS
Cisgenome
QUEST
Hpeak
PICS

GPS
PeakSeq
MOSAICS



MACS (Model-based Analysis of ChiP-Seq)
Zhang et al. 2008, GB

Estimate shift size of reads d from the distance of two modes
from + and — strands.

Shift all reads toward 3’ end by d/2.

Use a dynamic Possion model to scan genome and score
peaks. Counts in a window are assumed to following Poisson
distribution with rate: e =max(sg, el Ao A

— The dynamic rate capture the local fluctuation of counts.

FDR is estimated from sample swapping: flip the IP and
control samples and call peaks. Number of peaks detected
under each p-value cutoff will be used as null and used to
compute FDR.



Using MACS is easy

http://liulab.dfci.harvard.edu/MACS/index.html

Written in Python, runs in command line.

Command:

macsld4d -t sample.bed -c control.bed -n result
A problem: doesn’t consider replicates. Data from
replicated samples need to be merged.



Cisgenome (Ji et al. 2008, NBT)

* Implemented with Windows GUI.
* Use a Binomial model to score peaks.
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Consider mappability: PeakSeq
Rozowsky et al. (2009) NBT

First round analysis: detect possible peak regions by
identifying threshold considering mappability:

— Cut genome into segment (L=1Mb). Within each segment, the same

number of reads are permuted in a region of f x Length, where f is the
proportion of mappable bases in the segment.

1. Constructing signal maps

Signal map

2. First pass: determining potential binding regions by comparison to simulation
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ChlIP-seq sample
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Second round analysis:

— Normalize data by counts in background regions.

— Test significance of the peaks identified in first round by comparing
the total count in peak region with control data, using binomial p-
value, with Benjamini-Hochberg correction.

3. Normalizing control to ChIP-seq sample

0 50 100 150 200 250 300 350 400
Input DNA

0 50 100 150 200 250 300 350 400
Input DNA

4. Second pass: scoring enriched target regions relative to control

e For potential binding sites calculate the fold enrichment
e Compute a P-value from the binomial distribution
* Correct for multiple hypothesis testing and determine enriched target sites

« Select fraction of potential peaks to exclude (parameter P,)
¢ Count tags in bins along chromosome for ChIP-seq sample and control
* Determine slope of least squares linear regression

ChlIP-seq sample
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Comparing peak calling algorithms

* Wilbanks et al. (2010) PloS One
* Laajala et al. (2009) BMC Genomics
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Another class of approach:
modeling the read locations

Regions with more reads clustered tend to be
binding sites.

This is similar to using binned read counts.

Reads mapped to forward/reverse strands are
considered separately.

Peak shape can be incorporated.



PICS: Probabilistic Inference for ChIP-seq
Zhang et al. 2010 Biometrics

Use shifted t-distributions to model peak shape.

Can deal with the clustering of multiple peaks in a
small region.

A two step approach:
— Roughly locate the candidate regions.
— Fit the model at each candidate region and assign a score.

EM algorithm for estimating parameters.
Computationally very intensive.
R/Bioconductor package available.



Reads Density
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GPS (Genome Positioning System)

Guo et al. 2010, Bioinformatics

Part of GEM (Genome wide Event finding and Motif
discovery) software suite.

The general idea is very similar to PICS.
Use non-parametric distribution to model the peak shape.

Estimation of peak shape and peak detection are iterated
until convergence.

Written in Java, runs in command line.



Use GPS

* Run following command:

java -Xmx1lG -jar gps.jar --g mm8.info --d
Read Distribution default.txt --expt IP.bed
—--ctrl control.bed --f BED --out result

e |t’s much slower than MACS or CisGenome.



A little more comparison

* | found that using peak shapes helps. GPS tend to
perform better. PICS seems not stable.
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ChiIP-seq for histone modification

* Histone modifications have various patterns.

— Some are similar to protein binding data, e.g.,
with tall, sharp peaks: H3K4.

— Some have wide (mega-bp) “blocks”: H3k9.

— Some are variable, with both peaks and blocks:
H3k27me3, H3k36me3.



Histone modification ChIP-seq data
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Peak/block calling from histone ChIP-seq

* Use the software developed for TF data:
— Works fine for some data (K4, K27, K36).

— Not ideal for K9: it tends to separate a long block into
smaller pieces.

e Existing methods based on: smoothing, HMM,
wavelet, etc.

 Method for detecting blocks is relatively under-
developed and under-tested:
— ENCODE is evaluating existing methods.



Complications in histone peak/block calling

* Smoothing-based method:

— Long block requires bigger smoothing span, which hurts
boundary detection.

— Data with mixed peak/block (K27me3, K36me3) requires
varied span: adaptive fitting is computationally infeasible.

e HMM based method:

— Tend to over fit. Sometimes need to manually specify
transition matrix.



Available methods/software for
histone data peak calling

MACS2

BCP (Bayesian change point caller)
SICER

RSEG

UW Hotspot

BroadPeak

mosaicsHMM

WaveSeq

ZINBA



Summary for ChiP-seq peak/block calling

* Detect regions with reads enriched.
* Control sample is important.

* Incorporate some special characteristics of the data
improves results.

e Calling blocks (long peaks) is harder.
 Many software available.



Downstream analysis after
peak/block calling



After peak/block calling

 Compare results among different samples:
— Presence/absence of peaks.
— Differential binding.
— Look for Combinatory patterns.

 Compare results with other type of data:

— Correlate TF binding with gene expressions from RNA-seq
or DNA methylation from BS-seq.



Comparison of multiple ChiP-seq

* It’s important to understand the co-occurrence patterns of
different TF bindings and/or histone modifications.
* Post hoc methods: look at overlaps of peaks and represent by

Venn Diagram.
— This can be done using different tools: BEDtools, Bioconductor, etc.

— We will practice in the lab.
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Differential binding (DB) analysis

Problems for the overlapping analysis are:

— Completely ignores the quantitative differences of peaks.

— Highly dependent on the thresholds for defining peaks.
More desirable: quantitative comparison to detect differential
protein binding or histone modification (referred to as “DB
analysis”).
Typical DB analysis procedure:

— Call peaks from individual dataset.

— Union the called peaks to form candidate regions.

— Hypothesis testing for each candidate region.



Complications in DB analysis

Different backgrounds: for example, chromatin
structures affect the sequencing efficiency.

Signal to noise ratios (SNR) from different
experiments:
— Biological: sample with less peak will have taller peaks.
— Technical: qualities of the experiments are different.

To summarize:
— DB is more complicated than RNA-seq DE problem.

— Methods are relatively under-developed.



Existing methods for DB analysis

 Normalize data first, then compare:

— MAnorm (Shao et al. 2012, Genome Biology): normalization based on MA
plot of counts from two conditions, then use normalized “M” values to

rank differential peaks.
— ChIPnorm (Nair et al. 2012, PLoS One): quantile normalization for each
dataset, then define differential peak based on normalized IP differences.
 Based on RNA-seq DE methods:

— DBChIP: Liang et al. (2012) Bioinformatics.
— DiffBind: A Bioconductor package.

* Model the differences of data from two IP sample:

— DIME (Taslim et al. 2009, 2011, Bioinformatics): finite mixture model on
differences of normalized IP counts.

— ChIPDiff (Xu et al. 2008, Bioinformatics): HMM on differences of
normalized IP counts between two groups.



Review

NGS provides cost-effective ways for various aspects of
genomic research.

ChlP-seq is a type of NGS for genome-wide regional analysis:
detect protein binding or histone modification regions.

Main goal of ChIP-seq data analysis is “peak/block” calling.
— Many software available, based on smoothing or HMM.
— Block calling is harder.

Comparison of ChiIP-seq signals (differential binding analysis)
is still an open problem.



