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Outline	
  
•  Introduc=on	
  to	
  ChIP-­‐seq	
  experiment:	
  biological	
  mo=va=on	
  

and	
  experimental	
  procedure.	
  
•  Method	
  and	
  soKware	
  for	
  ChIP-­‐seq	
  peak	
  calling:	
  

–  Protein	
  binding	
  ChIP-­‐seq.	
  
–  Histone	
  modifica=ons.	
  	
  

•  AKer	
  peak	
  calling:	
  
–  Overlaps	
  of	
  peaks.	
  	
  
–  Differen=al	
  analysis.	
  	
  



ChIP-­‐seq:	
  Chroma)n	
  
ImmunoPrecipita)on	
  +	
  sequencing	
  

•  Biological	
  mo=va=on:	
  detect	
  or	
  measure	
  some	
  
type	
  of	
  biological	
  modifica=ons	
  along	
  the	
  
genome:	
  	
  
– Detect	
  binding	
  sites	
  of	
  DNA-­‐binding	
  proteins	
  
(transcrip=on	
  factors,	
  pol2,	
  etc.)	
  .	
  

– Quan=fy	
  strengths	
  of	
  chroma=n	
  modifica=ons	
  
(e.g.,	
  histone	
  modifica=ons).	
  



Experimental	
  procedures	
  	
  

•  Crosslink:	
  fix	
  proteins	
  on	
  isolate	
  genomic	
  DNA.	
  
•  Sonica)on:	
  cut	
  DNA	
  in	
  small	
  pieces	
  of	
  ~200bp.	
  
•  IP:	
  use	
  an=body	
  to	
  capture	
  DNA	
  segments	
  with	
  
specific	
  proteins.	
  	
  

•  Reverse	
  crosslink:	
  remove	
  protein	
  from	
  DNA.	
  
•  Sequence	
  the	
  DNA	
  segments.	
  



Genomic	
  DNA	
  with	
  TF	
  

By Richard Bourgon at UC Berkley 



TF/DNA	
  Crosslinking	
  in	
  vivo	
  

By Richard Bourgon at UC Berkley 



Sonica)on	
  

By Richard Bourgon at UC Berkley 



TF-­‐specific	
  An)body	
  

By Richard Bourgon at UC Berkley 



Immunoprecipita)on	
  (IP)	
  

By Richard Bourgon at UC Berkley 



Reverse	
  Crosslink	
  and	
  DNA	
  Purifica)on	
  

By Richard Bourgon at UC Berkley 



Amplifica)on	
  then	
  sequencing	
  

By Richard Bourgon at UC Berkley 



Data	
  from	
  ChIP-­‐seq	
  

•  Raw	
  data:	
  sequence	
  reads.	
  	
  
•  AKer	
  alignments:	
  genome	
  coordinates	
  
(chromosome/posi=on)	
  of	
  all	
  reads.	
  	
  

•  For	
  downstream	
  analysis,	
  aligned	
  reads	
  are	
  oKen	
  
summarized	
  into	
  “counts”	
  in	
  equal	
  sized	
  bins	
  
genome-­‐wide:	
  
1.  segment	
  genome	
  into	
  small	
  bins	
  of	
  equal	
  sizes	
  (50bps).	
  
2.  Count	
  number	
  of	
  reads	
  started	
  at	
  each	
  bin.	
  	
  



Methods	
  and	
  soPware	
  for	
  ChIP-­‐
seq	
  peak/block	
  calling	
  	
  



ChIP-­‐seq	
  “peak”	
  detec)on	
  

•  When	
  plot	
  the	
  read	
  counts	
  against	
  genome	
  coordinates,	
  the	
  
binding	
  sites	
  show	
  a	
  tall	
  and	
  pointy	
  peak.	
  So	
  “peaks”	
  are	
  used	
  
to	
  refer	
  to	
  protein	
  binding	
  or	
  histone	
  modifica=on	
  sites.	
  	
  

	
  
	
  
	
  
	
  
	
  
	
  

•  Peak	
  detec=on	
  is	
  the	
  most	
  fundamental	
  problem	
  in	
  ChIP-­‐seq	
  
data	
  analysis.	
  	
  



Simple	
  ideas	
  for	
  peak	
  detec)on	
  

•  Peaks	
  are	
  regions	
  with	
  reads	
  clustered,	
  so	
  they	
  can	
  be	
  
detected	
  from	
  binned	
  read	
  counts.	
  	
  

•  Counts	
  from	
  neighboring	
  windows	
  need	
  to	
  be	
  combined	
  to	
  
make	
  inference	
  (so	
  that	
  it’s	
  more	
  robust).	
  	
  

•  To	
  combine	
  counts:	
  
–  Smoothing	
  based:	
  moving	
  average	
  (MACS,	
  CisGenome),	
  HMM-­‐based	
  

(Hpeak).	
  
–  Model	
  clustering	
  of	
  reads	
  star=ng	
  posi=on	
  (PICS,	
  GPS).	
  

•  Moreover,	
  some	
  special	
  characteris=cs	
  of	
  the	
  data	
  can	
  be	
  
considered	
  to	
  improve	
  the	
  peak	
  calling	
  performance.	
  	
  



Control	
  sample	
  is	
  important	
  
•  A	
  control	
  sample	
  is	
  necessary	
  for	
  correc=ng	
  many	
  ar=facts:	
  

–  DNA	
  sequence	
  contents	
  affect	
  amplifica=on	
  or	
  sequencing	
  process.	
  
–  Repe==ve	
  regions	
  affect	
  alignments.	
  	
  
–  Chroma=n	
  structures	
  (e.g.,	
  open	
  chroma=n	
  region	
  or	
  not)	
  affect	
  the	
  

DNA	
  sonica=on	
  process.	
  



Reads	
  aligned	
  to	
  different	
  strands	
  

•  Number	
  of	
  Reads	
  
aligned	
  to	
  different	
  
strands	
  form	
  two	
  
dis=nct	
  peaks	
  around	
  
the	
  true	
  binding	
  sites.	
  

•  This	
  informa=on	
  can	
  
be	
  used	
  to	
  help	
  peak	
  
detec=on.	
  	
  

Mapping to two strands

UNC Biostatistics 784, spring 2011 3

Valouev	
  et	
  al.	
  (2008)	
  Nature	
  Method	
  



Mappability	
  

•  For	
  each	
  basepair	
  posi=on	
  in	
  the	
  genome,	
  whether	
  a	
  35	
  bp	
  
sequence	
  tag	
  star=ng	
  from	
  this	
  posi=on	
  can	
  be	
  uniquely	
  mapped	
  to	
  
a	
  genome	
  loca=on.	
  	
  

•  Regions	
  with	
  low	
  mappability	
  (highly	
  repe==ve)	
  cannot	
  have	
  high	
  
counts	
  (because	
  mul=-­‐aligned	
  reads	
  are	
  discarded),	
  thus	
  affect	
  the	
  
ability	
  to	
  detect	
  peaks.	
  	
  

Mappability

It is defined as whether a 35 bp sequence tag can be uniquely mapped

to a genome location, and recorded corresponding to the 5’ start of

the sequence tag.

UNC Biostatistics 784, spring 2011 35



Normaliza)on	
  issues	
  

•  The	
  most	
  common	
  normaliza=on	
  needed	
  is	
  to	
  adjust	
  for	
  total	
  
counts.	
  	
  

•  Normalize	
  by	
  total	
  counts	
  is	
  conserva=ve,	
  because	
  ChIP	
  
sample	
  contains	
  reads	
  mapped	
  to	
  background	
  and	
  peaks,	
  but	
  
control	
  sample	
  have	
  reads	
  mapped	
  to	
  background	
  only.	
  

•  It’s	
  befer	
  to	
  normalize	
  using	
  the	
  number	
  of	
  total	
  reads	
  in	
  
backgrounds.	
  Two	
  pass	
  algorithm:	
  
–  Roughly	
  find	
  peaks,	
  and	
  exclude	
  those	
  regions.	
  
–  Compute	
  total	
  reads	
  in	
  the	
  leKover	
  regions	
  and	
  normalize	
  based	
  on	
  

that.	
  	
  

•  Other	
  normaliza=ons	
  (GC	
  contents,	
  MA	
  plot	
  based)	
  available,	
  
but	
  don’t	
  seems	
  to	
  help	
  much.	
  	
  



Peak	
  detec)on	
  soPware	
  

•  MACS	
  
•  Cisgenome	
  
•  QuEST	
  
•  Hpeak	
  
•  PICS	
  
•  GPS	
  
•  PeakSeq	
  
•  MOSAiCS	
  
•  …	
  



MACS	
  (Model-­‐based	
  Analysis	
  of	
  ChIP-­‐Seq)	
  
Zhang	
  et	
  al.	
  2008,	
  GB	
  

•  Es=mate	
  shiK	
  size	
  of	
  reads	
  d	
  from	
  the	
  distance	
  of	
  two	
  modes	
  
from	
  +	
  and	
  –	
  strands.	
  

•  ShiK	
  all	
  reads	
  toward	
  3’	
  end	
  by	
  d/2.	
  
•  Use	
  a	
  dynamic	
  Possion	
  model	
  to	
  scan	
  genome	
  and	
  score	
  

peaks.	
  Counts	
  in	
  a	
  window	
  are	
  assumed	
  to	
  following	
  Poisson	
  
distribu=on	
  with	
  rate:	
  
–  The	
  dynamic	
  rate	
  capture	
  the	
  local	
  fluctua=on	
  of	
  counts.	
  	
  

•  FDR	
  is	
  es=mated	
  from	
  sample	
  swapping:	
  flip	
  the	
  IP	
  and	
  
control	
  samples	
  and	
  call	
  peaks.	
  Number	
  of	
  peaks	
  detected	
  
under	
  each	
  p-­‐value	
  cutoff	
  will	
  be	
  used	
  as	
  null	
  and	
  used	
  to	
  
compute	
  FDR.	
  	
  

http://genomebiology.com/2008/9/9/R137 Genome Biology 2008,     Volume 9, Issue 9, Article R137       Zhang et al. R137.2

Genome Biology 2008, 9:R137

unknown to the user. Second, ChIP-Seq data exhibit regional
biases along the genome due to sequencing and mapping
biases, chromatin structure and genome copy number varia-
tions [10]. These biases could be modeled if matching control
samples are sequenced deeply enough. However, among the
four recently published ChIP-Seq studies [5-8], one did not
have a control sample [5] and only one of the three with con-
trol samples systematically used them to guide peak finding
[8]. That method requires peaks to contain significantly
enriched tags in the ChIP sample relative to the control,
although a small ChIP peak region often contains too few con-
trol tags to robustly estimate the background biases.

Here, we present Model-based Analysis of ChIP-Seq data,
MACS, which addresses these issues and gives robust and
high resolution ChIP-Seq peak predictions. We conducted
ChIP-Seq of FoxA1 (hepatocyte nuclear factor 3α) in MCF7
cells for comparison with FoxA1 ChIP-chip [1] and identifica-
tion of features unique to each platform. When applied to
three human ChIP-Seq datasets to identify binding sites of
FoxA1 in MCF7 cells, NRSF (neuron-restrictive silencer fac-
tor) in Jurkat T cells [8], and CTCF (CCCTC-binding factor) in
CD4+ T cells [5] (summarized in Table S1 in Additional data
file 1), MACS gives results superior to those produced by
other published ChIP-Seq peak finding algorithms [8,11,12].

Results
Modeling the shift size of ChIP-Seq tags
ChIP-Seq tags represent the ends of fragments in a ChIP-
DNA library and are often shifted towards the 3' direction to
better represent the precise protein-DNA interaction site. The
size of the shift is, however, often unknown to the experi-
menter. Since ChIP-DNA fragments are equally likely to be
sequenced from both ends, the tag density around a true
binding site should show a bimodal enrichment pattern, with
Watson strand tags enriched upstream of binding and Crick
strand tags enriched downstream. MACS takes advantage of
this bimodal pattern to empirically model the shifting size to
better locate the precise binding sites.

Given a sonication size (bandwidth) and a high-confidence
fold-enrichment (mfold), MACS slides 2bandwidth windows
across the genome to find regions with tags more than mfold
enriched relative to a random tag genome distribution. MACS
randomly samples 1,000 of these high-quality peaks, sepa-
rates their Watson and Crick tags, and aligns them by the
midpoint between their Watson and Crick tag centers (Figure
1a) if the Watson tag center is to the left of the Crick tag
center. The distance between the modes of the Watson and
Crick peaks in the alignment is defined as 'd', and MACS shifts
all the tags by d/2 toward the 3' ends to the most likely pro-
tein-DNA interaction sites.

When applied to FoxA1 ChIP-Seq, which was sequenced with
3.9 million uniquely mapped tags, MACS estimates the d to be

only 126 bp (Figure 1a; suggesting a tag shift size of 63 bp),
despite a sonication size (bandwidth) of around 500 bp and
Solexa size-selection of around 200 bp. Since the FKHR motif
sequence dictates the precise FoxA1 binding location, the true
distribution of d could be estimated by aligning the tags by the
FKHR motif (122 bp; Figure 1b), which gives a similar result
to the MACS model. When applied to NRSF and CTCF ChIP-
Seq, MACS also estimates a reasonable d solely from the tag
distribution: for NRSF ChIP-Seq the MACS model estimated
d as 96 bp compared to the motif estimate of 70 bp; applied to
CTCF ChIP-Seq data the MACS model estimated a d of 76 bp
compared to the motif estimate of 62 bp.

Peak detection
For experiments with a control, MACS linearly scales the total
control tag count to be the same as the total ChIP tag count.
Sometimes the same tag can be sequenced repeatedly, more
times than expected from a random genome-wide tag distri-
bution. Such tags might arise from biases during ChIP-DNA
amplification and sequencing library preparation, and are
likely to add noise to the final peak calls. Therefore, MACS
removes duplicate tags in excess of what is warranted by the
sequencing depth (binomial distribution p-value <10-5). For
example, for the 3.9 million FoxA1 ChIP-Seq tags, MACS
allows each genomic position to contain no more than one tag
and removes all the redundancies.

With the current genome coverage of most ChIP-Seq experi-
ments, tag distribution along the genome could be modeled
by a Poisson distribution [7]. The advantage of this model is
that one parameter, λBG, can capture both the mean and the
variance of the distribution. After MACS shifts every tag by d/
2, it slides 2d windows across the genome to find candidate
peaks with a significant tag enrichment (Poisson distribution
p-value based on λBG, default 10-5). Overlapping enriched
peaks are merged, and each tag position is extended d bases
from its center. The location with the highest fragment
pileup, hereafter referred to as the summit, is predicted as the
precise binding location.

In the control samples, we often observe tag distributions
with local fluctuations and biases. For example, at the FoxA1
candidate peak locations, tag counts are well correlated
between ChIP and control samples (Figure 1c,d). Many possi-
ble sources for these biases include local chromatin structure,
DNA amplification and sequencing bias, and genome copy
number variation. Therefore, instead of using a uniform λBG
estimated from the whole genome, MACS uses a dynamic
parameter, λlocal, defined for each candidate peak as:

λlocal = max(λBG, [λ1k,] λ5k, λ10k)

where λ1k, λ5k and λ10k are λ estimated from the 1 kb, 5 kb or
10 kb window centered at the peak location in the control
sample, or the ChIP-Seq sample when a control sample is not
available (in which case λ1k is not used). λlocal captures the



Using	
  MACS	
  is	
  easy	
  

•  hfp://liulab.dfci.harvard.edu/MACS/index.html	
  
•  Wrifen	
  in	
  Python,	
  runs	
  in	
  command	
  line.	
  	
  
•  Command:	
  
!macs14 -t sample.bed -c control.bed -n result!

•  A	
  problem:	
  doesn’t	
  consider	
  replicates.	
  Data	
  from	
  
replicated	
  samples	
  need	
  to	
  be	
  merged.	
  	
  

!



Cisgenome	
  (Ji	
  et	
  al.	
  2008,	
  NBT)	
  

•  Implemented	
  with	
  Windows	
  GUI.	
  	
  
•  Use	
  a	
  Binomial	
  model	
  to	
  score	
  peaks.	
  

ni	
  =k1i	
  +	
  k2i	
  
k1i	
  |	
  ni	
  ~	
  Binom(ni	
  ,	
  p0)	
  

k1i	
  

k2i	
  



Consider	
  mappability:	
  PeakSeq	
  
Rozowsky	
  et	
  al.	
  (2009)	
  NBT	
  

•  First	
  round	
  analysis:	
  detect	
  possible	
  peak	
  regions	
  by	
  
iden=fying	
  threshold	
  considering	
  mappability:	
  
–  Cut	
  genome	
  into	
  segment	
  (L=1Mb).	
  Within	
  each	
  segment,	
  	
  the	
  same	
  

number	
  of	
  reads	
  are	
  permuted	
  in	
  a	
  region	
  of	
  f	
  ×	
  Length,	
  where	
  f	
  is	
  the	
  
propor=on	
  of	
  mappable	
  bases	
  in	
  the	
  segment.	
  

background of the sample to the control by linear regression of the
counts of tags from the control against the sample for windows
(B10 Kb) along each chromosome. The slope of the linear regression
a is used to scale tag counts from the control in the comparison with
the ChIP-seq sample. Because windows that contain enriched peaks
will increase the slope (conservatively overestimating the tag counts
from the control), we introduce Pf—a parameter denoting the
fraction of potential target regions that we exclude from the normal-
ization procedure (windows that overlap excluded target regions are
not used in the linear regression). We show the effect of the normal-
ization procedure for two settings of this parameter (Pf ¼ 0 and
Pf ¼ 1; Fig. 2 (3) and Supplementary Fig. 1).
In the second pass of the procedure (Fig. 2 (4), the ChIP-seq signals

for putative binding sites are then compared against the normalized
input-DNA control. Only regions that are enriched in the counts of
the number of mapped sequence tags in the ChIP-seq sample relative
to the input-DNA control are called binding sites. This comparison is
analogous to the way enrichment is determined when validating
ChIP ‘hits’ using quantitative (q)PCR. We compute the statistical

significance using the binomial distribution. We also correct for
multiple hypothesis testing by applying a Benjamini-Hochberg correc-
tion17. We report a ranked target list sorted by Q-value that also lists
fold-enrichment values for each binding site. Comparison of
potential target binding sites in the ChIP-seq sample against the
input-DNA control accounts for the nonuniform background of a
ChIP-seq experiment10.

Application of PeakSeq to Pol II and STAT1 ChIP-seq data
We applied the PeakSeq procedure to the Pol II and STAT1 ChIP-seq
data sets (we conservatively set Pf ¼ 0 in the following analysis). We
initially identified 73,562 and 123,321 potential binding sites for Pol II
and STAT1, respectively. These represent the potential targets that are
found to be enriched in the Pol II and STAT1 signal density maps
compared to a simulated null random background. After comparing
these target regions with the normalized input-DNA controls (unsti-
mulated and interferon-g–stimulated HeLa S3 cells), we found that
only 24,739 and 36,998 of these regions are significantly enriched for
Pol II and STAT1, respectively (using a false-discovery rate threshold

• Extend mapped tags to DNA fragment
• Map of number of DNA fragments at each nucleotide position

• For potential binding sites calculate the fold enrichment
• Compute a P-value from the binomial distribution
• Correct for multiple hypothesis testing and determine enriched target sites

• Select fraction of potential peaks to exclude (parameter Pf)
• Count tags in bins along chromosome for ChIP-seq sample and control
• Determine slope of least squares linear regression

1. Constructing signal maps 

Tags

Signal map

• Simulate each segment
• Determine a threshold 
satisfying the desired initial 
false discovery rate
• Use the threshold to 
identify potential target sites

2. First pass: determining potential binding regions by comparison to simulation

f
Mappability map 
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Potential target sites

4. Second pass: scoring enriched target regions relative to control
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Figure 2 PeakSeq scoring procedure. (1) Mapped reads are extended to have the average DNA fragment length (reads on either strand are extended in the
3¢ direction relative to that strand) and then accumulated to form a fragment density signal map. (2) Potential binding sites are determined in the first pass
of the PeakSeq scoring procedure. The threshold is determined by comparison of putative peaks with a simulated segment with the same number of mapped
reads. The length of the simulated segment is scaled by the fraction of uniquely mappable starting bases. (3) After selecting the fraction of potential target
sites that should be excluded from the normalization, the scaling factor Pf is determined by linear regression of the ChIP-seq sample against the input-DNA
control in 10-Kb bins. Bins that overlap the potential targets regions selected for exclusion are not used for regression. The fitted slopes as well as the
Pearson correlations are displayed for Pf set to either 0 or 1. (4) Enrichment and significance are computed for putative binding regions.
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•  Second	
  round	
  analysis:	
  
–  Normalize	
  data	
  by	
  counts	
  in	
  background	
  regions.	
  
–  Test	
  significance	
  of	
  the	
  peaks	
  iden=fied	
  in	
  first	
  round	
  by	
  comparing	
  

the	
  total	
  count	
  in	
  peak	
  region	
  with	
  control	
  data,	
  using	
  binomial	
  p-­‐
value,	
  with	
  Benjamini-­‐Hochberg	
  correc=on.	
  

background of the sample to the control by linear regression of the
counts of tags from the control against the sample for windows
(B10 Kb) along each chromosome. The slope of the linear regression
a is used to scale tag counts from the control in the comparison with
the ChIP-seq sample. Because windows that contain enriched peaks
will increase the slope (conservatively overestimating the tag counts
from the control), we introduce Pf—a parameter denoting the
fraction of potential target regions that we exclude from the normal-
ization procedure (windows that overlap excluded target regions are
not used in the linear regression). We show the effect of the normal-
ization procedure for two settings of this parameter (Pf ¼ 0 and
Pf ¼ 1; Fig. 2 (3) and Supplementary Fig. 1).
In the second pass of the procedure (Fig. 2 (4), the ChIP-seq signals

for putative binding sites are then compared against the normalized
input-DNA control. Only regions that are enriched in the counts of
the number of mapped sequence tags in the ChIP-seq sample relative
to the input-DNA control are called binding sites. This comparison is
analogous to the way enrichment is determined when validating
ChIP ‘hits’ using quantitative (q)PCR. We compute the statistical

significance using the binomial distribution. We also correct for
multiple hypothesis testing by applying a Benjamini-Hochberg correc-
tion17. We report a ranked target list sorted by Q-value that also lists
fold-enrichment values for each binding site. Comparison of
potential target binding sites in the ChIP-seq sample against the
input-DNA control accounts for the nonuniform background of a
ChIP-seq experiment10.

Application of PeakSeq to Pol II and STAT1 ChIP-seq data
We applied the PeakSeq procedure to the Pol II and STAT1 ChIP-seq
data sets (we conservatively set Pf ¼ 0 in the following analysis). We
initially identified 73,562 and 123,321 potential binding sites for Pol II
and STAT1, respectively. These represent the potential targets that are
found to be enriched in the Pol II and STAT1 signal density maps
compared to a simulated null random background. After comparing
these target regions with the normalized input-DNA controls (unsti-
mulated and interferon-g–stimulated HeLa S3 cells), we found that
only 24,739 and 36,998 of these regions are significantly enriched for
Pol II and STAT1, respectively (using a false-discovery rate threshold

• Extend mapped tags to DNA fragment
• Map of number of DNA fragments at each nucleotide position

• For potential binding sites calculate the fold enrichment
• Compute a P-value from the binomial distribution
• Correct for multiple hypothesis testing and determine enriched target sites

• Select fraction of potential peaks to exclude (parameter Pf)
• Count tags in bins along chromosome for ChIP-seq sample and control
• Determine slope of least squares linear regression

1. Constructing signal maps 
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Figure 2 PeakSeq scoring procedure. (1) Mapped reads are extended to have the average DNA fragment length (reads on either strand are extended in the
3¢ direction relative to that strand) and then accumulated to form a fragment density signal map. (2) Potential binding sites are determined in the first pass
of the PeakSeq scoring procedure. The threshold is determined by comparison of putative peaks with a simulated segment with the same number of mapped
reads. The length of the simulated segment is scaled by the fraction of uniquely mappable starting bases. (3) After selecting the fraction of potential target
sites that should be excluded from the normalization, the scaling factor Pf is determined by linear regression of the ChIP-seq sample against the input-DNA
control in 10-Kb bins. Bins that overlap the potential targets regions selected for exclusion are not used for regression. The fitted slopes as well as the
Pearson correlations are displayed for Pf set to either 0 or 1. (4) Enrichment and significance are computed for putative binding regions.
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Comparing	
  peak	
  calling	
  algorithms	
  	
  

peak ranking accuracy, we calculated the rate of canonical motif
occurrence for NRSF, GABP and FoxA1 within additive intervals
of 50 peaks (top 50, top 100, top 150, etc; Figure 6 and Figures S1,
S2). The percentage of peaks containing high confidence motifs
decays with decreasing peak rank, suggesting that rank generally
discriminates well between high confidence and lower confidence
peaks. The performance of the different ChIP-seq methods at
detecting high confidence NRSF binding sites is very similar; the
percentage of motif-containing peaks varied by less than 3% with
the exception of PeakSeq and HPeak. More variability is seen in
the ranking of the top 50 peaks, though the methods still differ by
only 10% when the outliers (PeakSeq and HPeak) are excluded.
Over the first 2000 peaks, PeakSeq and HPeak detect between 10
and 20% fewer peaks with strong motifs than other algorithms.
However, when a larger window (1 kb) surrounding the peak
center is examined, the performance of these methods is
comparable to other programs (Figure S3). This result suggests
that both PeakSeq and HPeak identify peaks with lower positional
resolution than other methods for the NRSF dataset. The decay of
motif content in ranked peaks for the other two datasets were
similarly tightly clustered, showing relatively little variation with
the exception of slightly poorer performance for Sole-Search in the
GABP dataset and QuEST in the FoxA1 dataset (Figure S1 and
S2, respectively). While changes in the significance threshold set
for defining a motif occurrence impacted absolute percentage of
peaks containing motifs, such changes did not alter the
performance of the programs relative to one another (Figure
S5). Another interesting point with regards to peak ranking is that
the different statistics provided by the same program can produce
substantially different rankings, with variable success at determin-
ing high-quality peaks (Figure S4).

This peak ranking analysis provides considerably more practical
information to the user than does the motif analysis conducted by
Laajala et al. [12], which simply reports the average significance of
motif overlap with all peaks. Our results support their general
conclusion that the whole peak lists from all programs show
significant proportion of the canonical binding motif and also
demonstrate the significance of peak rank in recovering high
confidence motif sites.
We note that the absence of a strong motif occurrence does not

definitively classify peaks as false positives, as some such peaks
could represent true binding sites with weak or non-canonical
binding motifs. Nonetheless, high confidence motif occurrences
within peaks are a good indicator of an actual binding event and
can be used to assess how well peak ranking identifies the most
confident binding sites. Furthermore, previous studies of non-
canonical motifs suggest that these sites makes up a relatively
minor fraction of overall motif occurrences [16].
Given the vagaries of ChIP enrichments, it is important to

consider the robustness specificity in peak calling with ‘‘noisy’’
data. Less efficient ChIP enrichments will produce datasets with a
larger ratio of non-specific background sequence to ChIP-targeted
sequence. Such datasets will thus be characterized by higher
background noise, lower peaks and under-sampling of low-
intensity peaks. The complexity of features in the background
sequence (discussed in Introduction) makes modeling ‘‘noise’’
features extremely challenging. We have simulated noisy datasets
in silico by removing randomly sampled ChIP reads from Johnson
et al. ’s NRSF dataset and introducing an equal number of reads
from the background data. Datasets were simulated where the
noisy ChIP sample was composed 10%, 30% and 50% reads
sampled from the background control dataset. These increasingly
noisy datasets are meant to simulate decreasing efficiency ChIP
enrichments with the same sequencing coverage.
As expected, the number of peaks called decreases in

simulations of less efficient ChIP (Figure S6). The size of the
decrease tended to be most marked for programs that called larger
peak lists, suggesting that it was the smaller peaks were lost in the
noise. This conclusion was borne out in by searching for canonical
motifs in the ranked peak lists from our simulated noisy data. Few
differences were observed between variable noise datasets in the
motif content of ranked peaks (Figure S7), indicating that though
all programs lost some peaks in the noise, they tended not to
increase spurious peak calls. QuEST showed the most notable
decay of motif content in noisier datasets, likely because this
algorithm’s background filtering method relies on larger control
datasets. In noisier simulations, HPeak and PeakSeq showed
increasing motif content in the top 500 peaks, such that it seems
that their ranking algorithms performed better on noisier datasets.
Further investigation is needed to discover the origin of this
phenomenon, though we suspect that this may be due to better
spatial precision in their identifications. In summary, however, we
find few substantial differences between the performance of these
programs on our simulated datasets at increasing noise thresholds.

Spatial resolution. In addition to discriminating the true
binding sites, a ChIP-seq peak finder should identify that binding
site with some degree of precision to facilitate the location of
DNA-protein binding. The width of identified peaks can be an
important consideration for de novo motif searches of peaks
identified by ChIP-seq, since extraneous sequence around the
true protein binding adds significant noise that can obscure the
motif signal. Most programs will report a peak region of variable
width, given by start and stop coordinates. However,
directionality-scoring methods tend to report either narrow fixed
width peaks (SISSRS) or single coordinate peaks (spp package),

Figure 3. Quantity of peaks identified. Programs report different
numbers of peaks, when run with their default or recommended
settings on the same dataset. Number of reported peaks is shown for
the GABP (green bars), FoxA1 (red bars) and NRSF (blue bars) datasets.
To assess how different these peak lists were, those peaks identified by
all 11 methods were calculated (core peaks).
doi:10.1371/journal.pone.0011471.g003
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rather than the wider regions reported by other methods. For both
the FoxA1 and NRSF datasets, the median peak width was
between 250 and 400 bp for all methods reporting peak width
ranges, with the exception of CisGenome which had smaller
median peak width (72 bp for NRSF and 90 bp for GABP; Figure
S8 and S9). In contrast, peaks called from the GABP dataset
tended to be wider, with median peak widths ranging from 300 to
800 bp, excepting CisGenome which was only 90 bp (Figure S10).
This observed variance between datasets emerges either from
actual differences in transcription factor binding (GABP binding in
a more distributed manner), from variation in the preparation of
samples (such as differences in antibody specificity or size selection
during the preparation of the sequencing library) or a combination
of such factors.
In general, programs also provide an estimate of the exact

binding position, given as a single coordinate calculated either as
the highest point of tag coverage in the peak or by some other

scoring metric. This coordinate is meant to aid the researcher in
honing in on section of DNA originally cross-linked by the target
protein during the ChIP-enrichment step. Though there is no
single nucleotide at which cross-linking occurs, this estimate is
meant to facilitate the precise discovery of cis-regulatory elements
[11]. To assess the positional accuracy of these estimates made by
different programs, the distance was calculated between each
predicted binding coordinate and the centers of high confidence
binding motifs within 250 bp (Figure 7, Table S3). Binding
positions were estimated as the center of the reported peak region,
if the program did not provide a predicted binding coordinate
(HPeak, PeakSeq and Sole-Search; starred in Figure 7). Unsur-
prisingly, all three datasets revealed that these centered estimates
provided much less positional resolution than the precise
predictions of binding positions by other programs.
For all programs, the positional accuracy was lower for the

GABP dataset (Figure 7C) than for either FoxA1 or NRSF.

Figure 5. Sensitivity assessment. The percentage of qPCR verified positives that were detected by different programs is shown as a function of
the increasing number of ranked peaks examined for the (A) NRSF dataset and its 83 qPCR-verified sites, or (C) the GABP dataset and its 150 qPCR-
verified GABP binding sites. qPCR sites were classified as ‘‘found’’ if the center of the sites occurred within 250 bp of a program’s predicted binding
site (peak summit or peak region center). (B) Coverage of high confidence (FIMO p,161027) NRSE2 motifs or (D) high confidence (FIMO p,161026)
GABP motifs throughout the human genome as a function of increasing ranked peaks examined. Motif occurrences were covered if the center of the
motif occurred within 250 bp of a program’s predicted binding site (peak summit or center of peak region).
doi:10.1371/journal.pone.0011471.g005
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Another	
  class	
  of	
  approach:	
  	
  
modeling	
  the	
  read	
  loca)ons	
  

•  Regions	
  with	
  more	
  reads	
  clustered	
  tend	
  to	
  be	
  
binding	
  sites.	
  	
  

•  This	
  is	
  similar	
  to	
  using	
  binned	
  read	
  counts.	
  
•  Reads	
  mapped	
  to	
  forward/reverse	
  strands	
  are	
  
considered	
  separately.	
  

•  Peak	
  shape	
  can	
  be	
  incorporated.	
  	
  



PICS:	
  Probabilis)c	
  Inference	
  for	
  ChIP-­‐seq	
  
Zhang	
  et	
  al.	
  2010	
  Biometrics	
  

•  Use	
  shiKed	
  t-­‐distribu=ons	
  to	
  model	
  peak	
  shape.	
  	
  
•  Can	
  deal	
  with	
  the	
  clustering	
  of	
  mul=ple	
  peaks	
  in	
  a	
  
small	
  region.	
  	
  

•  A	
  two	
  step	
  approach:	
  
–  Roughly	
  locate	
  the	
  candidate	
  regions.	
  
–  Fit	
  the	
  model	
  at	
  each	
  candidate	
  region	
  and	
  assign	
  a	
  score.	
  

•  EM	
  algorithm	
  for	
  es=ma=ng	
  parameters.	
  
•  Computa=onally	
  very	
  intensive.	
  
•  R/Bioconductor	
  package	
  available.	
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Figure 1: Binding events in two candidate regions in GABP data. PICS detected one binding
event in the region in (a) and two binding events in the region in (b). Forward and reverse
strand aligned reads are shown by red and green arrowheads, respectively. Mappability pro-
files are shown as black/white lines, in which the white intervals show nonmappable regions.
In (a) the distribution of reverse reads has been biased by a region with low mappability.

where µfk = µk − δk/2 and µrk = µk + δk/2 and µk, δk, σfk, σrk are defined as in (1), but

have an index k that corresponds to the binding event k, while wk is the mixture weight

of component k, which represents the relative proportion of reads coming from the binding

event k. For simplicity we denote by gf and gr the resulting p.d.f. of the forward and reverse

mixture distributions.

Figure 1b displays a candidate region that has two binding events, along with the corre-

sponding PICS parameter estimates.

As described in (1-2), PICS uses t distributions with 4 degrees of freedom to model local

distributions of forward and reverse reads. While the t distribution is similar in shape to the

Gaussian distribution, its heavier tails make it a robust alternative (Lange et al., 1989). The

degrees of freedom are fixed as v = 4 to minimize computation (Lo et al., 2008). Note also

that since a DNA fragment should contribute a forward read or a reverse read with equal

probability, we use the same mixture weight wk for both forward and reverse distributions.

Finally, to accomodate possible biases (e.g. in DNA sonication) that result in asymmetric

forward and reverse peaks, we use different forward and reverse variance parameters σ2
fk and

σ2
rk.
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s = 10 bp for computational convenience. We tested other values for w and s and obtained

essentially the same candidate regions.

3 Model, priors and parameter estimation

In this section, we use IGa(α, β) to denote an inverse gamma distribution, and Ga(α, β)

to denote a gamma distribution with shape parameter α and an inverse scale parameter

β. Similarly, N(µ, σ2) denotes a Normal distribution with mean µ and variance σ2, while

t4(µ, σ2) denotes a t distribution with 4 degrees of freedom, mean µ and variance parameter

σ2.

3.1 Modeling a single binding event

Having segmented the read data into candidate regions, as described in section 2, we now

assume that each region contains a single transcription factor binding site. An extension to

the case of multiple binding sites is treated below. Let us denote by fi and rj the i − th

and j − th forward and reverse reads in a given region, with i = 1, . . . , nf and j = 1, . . . , nr.

Note that the number of forward reads, nf , and reverse reads, nr, will typically vary between

candidate regions. We jointly model the forward and reverse reads as:

fi ∼ t4
(

µ − δ/2, σ2

f

)

and rj ∼ t4
(

µ + δ/2, σ2

r

)

(1)

where µ represents the binding site position, δ is the distance between the maxima of the

forward and reverse distributions, which corresponds to the average DNA fragment size of

the binding event in question, and σf and σr measure the corresponding variability in DNA

fragment lengths. Note that this approach differs from that typical for sequencing data, in

that we do not model the sequence counts, but rather the distributions of the fragment ends,

for which we have more prior information. Figure 1a displays a candidate region with one

binding event, along with the corresponding PICS parameter estimates.

3.2 Modeling multiple binding events

We use mixture models to address the possibility that the sets of forward and reverse reads

in single candidate region were generated by multiple closely-spaced binding events. We

model the forward and reverse reads using t-mixture distributions:

fi ∼
K

∑

k=1

wkt4
(

µfk, σ
2

fk

) d
=gf(fi|w, µ, δ, σf)

rj ∼
K

∑

k=1

wkt4
(

µrk, σ
2

rk

) d
=gr(rj |w, µ, δ, σr) (2)

5



GPS	
  (Genome	
  Posi)oning	
  System)	
  	
  
Guo	
  et	
  al.	
  2010,	
  Bioinforma=cs	
  

•  Part	
  of	
  GEM	
  (Genome	
  wide	
  Event	
  finding	
  and	
  Mo=f	
  
discovery)	
  soKware	
  suite.	
  

•  The	
  general	
  idea	
  is	
  very	
  similar	
  to	
  PICS.	
  
•  Use	
  non-­‐parametric	
  distribu=on	
  to	
  model	
  the	
  peak	
  shape.	
  	
  
•  Es=ma=on	
  of	
  peak	
  shape	
  and	
  peak	
  detec=on	
  are	
  iterated	
  

un=l	
  convergence.	
  
•  Wrifen	
  in	
  Java,	
  runs	
  in	
  command	
  line.	
  



Use	
  GPS	
  

•  Run	
  following	
  command:	
  	
  
java -Xmx1G -jar gps.jar --g mm8.info --d 
Read_Distribution_default.txt --expt IP.bed 
--ctrl control.bed --f BED --out result!

!

•  It’s	
  much	
  slower	
  than	
  MACS	
  or	
  CisGenome.	
  	
  !



A	
  li`le	
  more	
  comparison	
  

•  I	
  found	
  that	
  using	
  peak	
  shapes	
  helps.	
  GPS	
  tend	
  to	
  
perform	
  befer.	
  PICS	
  seems	
  not	
  stable.	
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ChIP-­‐seq	
  for	
  histone	
  modifica)on	
  

•  Histone	
  modifica=ons	
  have	
  various	
  paferns.	
  
– Some	
  are	
  similar	
  to	
  protein	
  binding	
  data,	
  e.g.,	
  
with	
  tall,	
  sharp	
  peaks:	
  H3K4.	
  

– Some	
  have	
  wide	
  (mega-­‐bp)	
  “blocks”:	
  H3k9.	
  	
  
– Some	
  are	
  variable,	
  with	
  both	
  peaks	
  and	
  blocks:	
  
H3k27me3,	
  H3k36me3.	
  



Histone	
  modifica)on	
  ChIP-­‐seq	
  data	
  



Peak/block	
  calling	
  from	
  histone	
  ChIP-­‐seq	
  

•  Use	
  the	
  soKware	
  developed	
  for	
  TF	
  data:	
  
– Works	
  fine	
  for	
  some	
  data	
  (K4,	
  K27,	
  K36).	
  
–  Not	
  ideal	
  for	
  K9:	
  it	
  tends	
  to	
  separate	
  a	
  long	
  block	
  into	
  
smaller	
  pieces.	
  

•  Exis=ng	
  methods	
  based	
  on:	
  smoothing,	
  HMM,	
  
wavelet,	
  etc.	
  	
  

•  Method	
  for	
  detec=ng	
  blocks	
  is	
  rela=vely	
  under-­‐
developed	
  and	
  under-­‐tested:	
  
–  ENCODE	
  is	
  evalua=ng	
  exis=ng	
  methods.	
  	
  



Complica)ons	
  in	
  histone	
  peak/block	
  calling	
  

•  Smoothing-­‐based	
  method:	
  	
  
–  Long	
  block	
  requires	
  bigger	
  smoothing	
  span,	
  which	
  hurts	
  
boundary	
  detec=on.	
  	
  

–  Data	
  with	
  mixed	
  peak/block	
  (K27me3,	
  K36me3)	
  requires	
  
varied	
  span:	
  adap=ve	
  firng	
  is	
  computa=onally	
  infeasible.	
  

•  HMM	
  based	
  method:	
  	
  	
  
–  Tend	
  to	
  over	
  fit.	
  Some=mes	
  need	
  to	
  manually	
  specify	
  
transi=on	
  matrix.	
  	
  



Available	
  methods/soPware	
  for	
  	
  
histone	
  data	
  peak	
  calling	
  	
  

•  MACS2	
  	
  
•  BCP	
  (Bayesian	
  change	
  point	
  caller)	
  	
  
•  SICER	
  	
  
•  RSEG	
  	
  
•  UW	
  Hotspot	
  	
  
•  BroadPeak	
  	
  
•  mosaicsHMM	
  	
  
•  WaveSeq	
  	
  
•  ZINBA	
  	
  
•  …	
  



Summary	
  for	
  ChIP-­‐seq	
  peak/block	
  calling	
  	
  

•  Detect	
  regions	
  with	
  reads	
  enriched.	
  	
  
•  Control	
  sample	
  is	
  important.	
  	
  
•  Incorporate	
  some	
  special	
  characteris=cs	
  of	
  the	
  data	
  
improves	
  results.	
  	
  

•  Calling	
  blocks	
  (long	
  peaks)	
  is	
  harder.	
  	
  
•  Many	
  soKware	
  available.	
  	
  



Downstream	
  analysis	
  aPer	
  	
  
peak/block	
  calling	
  



APer	
  peak/block	
  calling	
  

•  Compare	
  results	
  among	
  different	
  samples:	
  
–  Presence/absence	
  of	
  peaks.	
  
–  Differen=al	
  binding.	
  
–  Look	
  for	
  Combinatory	
  paferns.	
  	
  

•  Compare	
  results	
  with	
  other	
  type	
  of	
  data:	
  
–  Correlate	
  TF	
  binding	
  with	
  gene	
  expressions	
  from	
  RNA-­‐seq	
  
or	
  DNA	
  methyla=on	
  from	
  BS-­‐seq.	
  	
  



Comparison	
  of	
  mul)ple	
  ChIP-­‐seq	
  

•  It’s	
  important	
  to	
  understand	
  the	
  co-­‐occurrence	
  paferns	
  of	
  
different	
  TF	
  bindings	
  and/or	
  histone	
  modifica=ons.	
  	
  

•  Post	
  hoc	
  methods:	
  look	
  at	
  overlaps	
  of	
  peaks	
  and	
  represent	
  by	
  
Venn	
  Diagram.	
  	
  
–  This	
  can	
  be	
  done	
  using	
  different	
  tools:	
  BEDtools,	
  Bioconductor,	
  etc.	
  
–  We	
  will	
  prac=ce	
  in	
  the	
  lab.	
  	
  	
  

Figure 4. Multiple Transcription Factor-Binding Loci Associated with Nanog, Oct4, Sox2, Smad1, and STAT3 as ES-Cell Enhanceosomes
(A) Co-occurrence of transcription factor (TF) groups within MTL. Colors in the heat map reflect the colocalization frequency of each pair of TFs in MTL (yellow

means more frequently colocalized, red means less). TFs have been clustered along both axes based on the similarity in their colocalization with other factors.

(B) Dissection of the TF makeup within MTL. Two major clusters exist within the 3583 MTL. The first group (orange sector) consists of Oct4, Nanog, or Sox2, but

not n-Myc and c-Myc. The second group (light-blue sector) consists of n-Myc or c-Myc, but not Oct4, Nanog, and Sox2. The purple sector is a mixture of the first

two groups (orange and light-blue sectors).

1112 Cell 133, 1106–1117, June 13, 2008 ª2008 Elsevier Inc.



Differen)al	
  binding	
  (DB)	
  analysis	
  

•  Problems	
  for	
  the	
  overlapping	
  analysis	
  are:	
  	
  
–  Completely	
  ignores	
  the	
  quan=ta=ve	
  differences	
  of	
  peaks.	
  	
  
–  Highly	
  dependent	
  on	
  the	
  thresholds	
  for	
  defining	
  peaks.	
  	
  

•  More	
  desirable:	
  quan=ta=ve	
  comparison	
  to	
  detect	
  differen=al	
  
protein	
  binding	
  or	
  histone	
  modifica=on	
  (referred	
  to	
  as	
  “DB	
  
analysis”).	
  	
  

•  Typical	
  DB	
  analysis	
  procedure:	
  	
  
–  Call	
  peaks	
  from	
  individual	
  dataset.	
  
–  Union	
  the	
  called	
  peaks	
  to	
  form	
  candidate	
  regions.	
  
–  Hypothesis	
  tes=ng	
  for	
  each	
  candidate	
  region.	
  



Complica)ons	
  in	
  DB	
  analysis	
  

•  Different	
  backgrounds:	
  for	
  example,	
  chroma=n	
  
structures	
  affect	
  the	
  sequencing	
  efficiency.	
  	
  

•  Signal	
  to	
  noise	
  ra=os	
  (SNR)	
  from	
  different	
  
experiments:	
  
–  Biological:	
  sample	
  with	
  less	
  peak	
  will	
  have	
  taller	
  peaks.	
  	
  
–  Technical:	
  quali=es	
  of	
  the	
  experiments	
  are	
  different.	
  	
  

•  To	
  summarize:	
  
–  DB	
  is	
  more	
  complicated	
  than	
  RNA-­‐seq	
  DE	
  problem.	
  
– Methods	
  are	
  rela=vely	
  under-­‐developed.	
  	
  



Exis)ng	
  methods	
  for	
  DB	
  analysis	
  

•  Normalize	
  data	
  first,	
  then	
  compare:	
  
–  MAnorm	
  (Shao	
  et	
  al.	
  2012,	
  Genome	
  Biology):	
  normaliza=on	
  based	
  on	
  MA	
  

plot	
  of	
  counts	
  from	
  two	
  condi=ons,	
  then	
  use	
  normalized	
  “M”	
  values	
  to	
  
rank	
  differen=al	
  peaks.	
  	
  

–  ChIPnorm	
  (Nair	
  et	
  al.	
  2012,	
  PLoS	
  One):	
  quan=le	
  normaliza=on	
  for	
  each	
  
dataset,	
  then	
  define	
  differen=al	
  peak	
  based	
  on	
  normalized	
  IP	
  differences.	
  

•  Based	
  on	
  RNA-­‐seq	
  DE	
  methods:	
  	
  
–  DBChIP:	
  Liang	
  et	
  al.	
  (2012)	
  Bioinforma=cs.	
  	
  
–  DiffBind:	
  A	
  Bioconductor	
  package.	
  	
  

•  Model	
  the	
  differences	
  of	
  data	
  from	
  two	
  IP	
  sample:	
  
–  DIME	
  (Taslim	
  et	
  al.	
  2009,	
  2011,	
  Bioinforma@cs):	
  finite	
  mixture	
  model	
  on	
  

differences	
  of	
  normalized	
  IP	
  counts.	
  
–  ChIPDiff	
  (Xu	
  et	
  al.	
  2008,	
  Bioinforma=cs):	
  HMM	
  on	
  differences	
  of	
  

normalized	
  IP	
  counts	
  between	
  two	
  groups.	
  	
  



Review	
  
•  NGS	
  provides	
  cost-­‐effec=ve	
  ways	
  for	
  various	
  aspects	
  of	
  

genomic	
  research.	
  	
  
•  ChIP-­‐seq	
  is	
  a	
  type	
  of	
  NGS	
  for	
  genome-­‐wide	
  regional	
  analysis:	
  

detect	
  protein	
  binding	
  or	
  histone	
  modifica=on	
  regions.	
  	
  
•  Main	
  goal	
  of	
  ChIP-­‐seq	
  data	
  analysis	
  is	
  “peak/block”	
  calling.	
  	
  

–  Many	
  soKware	
  available,	
  based	
  on	
  smoothing	
  or	
  HMM.	
  	
  
–  Block	
  calling	
  is	
  harder.	
  

•  Comparison	
  of	
  ChIP-­‐seq	
  signals	
  (differen=al	
  binding	
  analysis)	
  
is	
  s=ll	
  an	
  open	
  problem.	
  	
  


