BIOS731 Advanced Statistical Computing

Fall 2022
Homework 4

Due 10/22/2022 Saturday at 11:59PM

Instruction: Please submit both write-ups and programs. The programs need to be written in a high-level language (no compilation required). The codes for all problems need to be saved in a single file named NAME_hw4.EXT. Replace NAME by your name, and EXT by proper extension name, e.g., R, sas, py, etc. Provide adequate comments in the codes to clearly mark the section for different questions. The codes should generate all results and figures in the homework. Please make sure the codes are "self-contained", e.g., does not depend on platform, can be run at any other machine in any subdirectory, and does not require user input.

Total is 100 points. Partial credit will be given.

Problem 1 (20 pts). Jack performed an independent student t test on 5 cases and 5 controls. The test statistics is 10 . What is the corresponding p-value? Design a Monte Carlo method to accurately estimate it with 3 significant digits.

Problem 2 (20 pts). Evaluate integral $E\left(X^{3} I(0<X<5)\right.$) in which X follows Gamma distribution with mean 0.5 , variance 0.25 , using vanilla Monte Carlo and importance sampling approaches. With the same number of samples, compare their estimation accuracy.

Problem 3 (60 pts). Two loaded coins are used to produced 10 different series of heads and tails. It is known that one coin produces more heads and the other more tails. Each series contains 50 results. Both coins are used in every one of the 10 series, and one and only one switch occurs within each series. The sequences are shown below (1-head,0-tail). Design a Gibbs sampler to estimate the switch point for each series.
a. (10 pts) Write down your statistical model for the data, using proper probability distribution(s).
b. (10pts) What are the model parameters? Write down the likelihood function.
c. (10 pts) Assuming noninformative priors. Write down the joint posterior distribution and all the conditional distributions for unknown parameters.
d. (25 pts) Implement the Gibbs sampler and check convergence.
e. (5 pts) What are your estimate of the switching points?

00000010001001011001011011111011111110111011110111 00010000011011001000101010101111011110001010101111 00100000100101011100111011111111011111111100111011 00000001001010001000001100001111111110111111111111 00000110000101100000001110110001111010101111111111 00000000000100101000000000100010011111110111111101 00000000000001000000100000000010010111101111111011 10001010000001000101100101111111111111101011011111 00000000000011101000001000000010111111111111011011 00000000010100010110001111011111111011111001010101

