
BIOS 731 Advanced Statistical Computing
Fall 2022

Homework 1

Due 9/9/2022 Friday at 11:59pm

Instruction:

• Please submit both write-ups and programs in two separate files.

• All submissions need to be in electronic format.

• The write-up is preferred be in pdf format (written in Word or LATEX, or scanned hand-

written document). You can take a picture of hand-written document and submit JPG

if you don’t have a scanner, but make sure the picture is clear and readable. Name the

file BIOS731 NAME hw1.EXT. Replace NAME by your name, and EXT by proper

extension name (pdf or jpg).

• The programs need to be written in a high-level language (no compilation required),

and R is recommended. The codes for all problems need to be saved in a single file

named BIOS731 NAME hw1.EXT. Replace NAME by your name, and EXT by

proper extension name, e.g., R, sas, m, py, etc. Provide adequate comments in the codes

to clearly mark the section for different questions. The codes should generate all results

and figures in the homework. Please make sure the codes are “self-contained”, e.g., does

not depend on platform, can be run at any other machine in any subdirectory, and does

not require user input.

• Total is 50 points, with 10 points bonus for the last question. Partial credit will be given.

Problem 1: Permutation test and bootstrap in linear regression. (30 points)

Consider a multiple linear regression model yi = b0+b1x1i+b2x2i+εi. Assume b0 = 10, b1 = 1,

b2 = 0.5.

1. (15 pts) Assume εi ∼ N(0, 1), use permutation test to test null hypothesis H0 : b2 =

0. Report result p-value, and then compare with the one from using R (from the lm

function). You can use following codes to simulate data (yi, x1i and x2i).

1

n=100

b0=10; b1=1; b2=0.5

x1 = rnorm(n); x2=rnorm(n); eps=rnorm(n)

y = b0+b1*x1+b2*x2+eps

2. (15 pts) Use non-parametric bootstrap to estimate the 95% confidence interval (CI) for

b̂2. Generate data using different residual distributions: (1) εi ∼ N(0, 1); (2) εi ∼ t(5).

Compare the estimated CIs to theoretical values assuming normally distributed residuals

(using R confint function). Comment on the results.

Problem 2: Poisson regression (20 + 10 bonus points)

Write your own function for Poisson generalized linear model (GLM) with canonical link

(log) using different algorithms: Iteratively reweighted least squares (IRLS), gradient descent

(GD), and stochastic gradient descent (SGD). You can write three separate functions named

poisreg IRLS, poisreg GD, and poisreg SGD. Or if you prefer, you can write a single function

with a method parameter to switch the methods. There are 10 points each for IRLS and GD,

and 10 bonus points for SGD.

The function(s) should take a response y (a vector of integers) and a covariate matrix X.

Other (optional) parameters of the functions could be

• the maximum number of iterations allowed

• tolerance parameter to check convergence

• Batch size and number of epochs (for SGD)

The function should return the estimated coefficient, the estimated variance/covariance

matrix of the estimates, and number of iterations. Compare your results with these functions

from the glm function in R, and make some comments.

You can use the following codes to simulate data and run glm:

n = 100 ## number of observations

p = 3 ## number of covariates

generate X, the covariates

X = cbind(1, matrix(rnorm(n*p), ncol=p))

2

beta = c(1, .5, 1, 2)

mu = exp(X %*% beta)

generate Y, the outcome

Y = rpois(n, mu)

use R’s glm function to fit

fit = glm(Y~X-1, family=poisson)

coef(fit) ## estimated coefficients

vcov(fit) ## estimated variance/covariance matrix of the estimates

Tips for SGD implementation:

We didn’t have in-depth discussion for the implementation of SGD in the class, but there

are many such discussions online, for example, https://www.ocf.berkeley.edu/~janastas/

stochastic-gradient-descent-in-r.html and

https://towardsdatascience.com/implementing-sgd-from-scratch-d425db18a72c.

Here are a few tips in SGD implementation:

• A good start point could be a rough estimate derived from response y and covariates X.

• SGD doesn’t guarantee the increase of likelihood at every step, so we don’t need to check

that.

• People usually don’t check the convergence from SGD, instead, they run a fixed num-

ber of iterations. There are concepts of “batch size” and “epoch”. Briefly speaking,

batch size means number of samples used in a single mini-batch for one iteration, and

epoch means the entire dataset has been run/looped exactly one time. For exam-

ple for a dataset of 2000 samples, if the batch size is 500, it will take 4 iterations to

complete 1 epoch. Thus, the total number of iterations equals to total sample size ×
epoch number/batch size.

• The choice of batch size and number of epoch is usually arbitrary. Traditional SGD

uses batch size 1 (sampling one data point each time), while the mini-batch SGD can

use batch size 10-50. Choices for number of epoch depends on the data, but anything

between 10-100 will be enough for this question.

3

https://www.ocf.berkeley.edu/~janastas/stochastic-gradient-descent-in-r.html
https://www.ocf.berkeley.edu/~janastas/stochastic-gradient-descent-in-r.html
https://towardsdatascience.com/implementing-sgd-from-scratch-d425db18a72c

• The step size is referred to as “learning rate” in SGD. To determine the learning rate can

be tricky. Usually a large learning rate will cause the algorithm to diverge, and a small

one will cause a slow convergence. There is no general prescriptions for choosing an

appropriate learning rate. One method is to use diminishing step size, which means the

step size decreases with increase of iteration number. Another method is to determine

the learning rate on a small fraction of training data before running SGD on full data

set and update the learning rate after each epoch. You may check some discussion from

following online link: https://www.cs.ubc.ca/~fwood/CS340/lectures/L24.pdf.

4

https://www.cs.ubc.ca/~fwood/CS340/lectures/L24.pdf

