
Linear programming III

September 26, 2022

Review — 1/34 —

What have covered in previous two classes

• LP problem setup: linear objective function, linear constraints. Optimal solution
at exist extreme point(s).

• Simplex method: go through extreme points to find the optimal solution.

• Primal-dual property of the LP problem.

• Interior point algorithm: based on the primal-dual property, travel through the
interior of the feasible solution space.

• Quadratic programming: based on KKT condition.

• LP application: quantile regression – minimize the sum of the asymmetric
absolute deviations.

LP/QP application in statistics II: LASSO — 2/34 —

Consider usual regression settings with data (xi, yi), where xi = (xi1, . . . , xip) is a
p-vector of predictors and yi is the response for the ith object.

The ordinary linear regression setting is:

• Find coefficient to minimize the residual sum of squares:

b̂ = argmin
b

 n∑
i=1

(yi − xib)2

Here b = (b1, b2, . . . , bp)T is a vector of coefficients.

• The solution happens to be the MLE assuming a normal model:

yi = xib + εi, εi ∼ N(0, σ2)

• This is undesirable when the number of predictors (p) is large, because

1. When p > n, there is no degree of freedoms for residual so the model can’t
be fit.

2. One wants a small subset of predictors, but OLS provides an estimated
coefficient for each predictor.

The LASSO — 3/34 —

LASSO stands for “Least Absolute Shrinkage and Selection Operator”, which
aims for model selection when p is large (works even p > n). The LASSO
procedure will “shrink” the coefficients toward 0, and eventually force some to be
exactly 0 (predictors with 0 coefficient will be selected out).

The LASSO estimates are defined as:

b̃ = argmin
b

 n∑
i=1

(yi − xib)2

 , s.t. ||b||1 ≤ t

Here ||b||1 =
∑p

j=1 |b j| is the L1 norm, and t ≥ 0 is a tuning parameter controlling the
strength of shrinkage.

So LASSO tries to minimize the residual sum of square, with a constraint on the
sum of the absolute values of the coefficients.

NOTE: There are other types of “regularized” regressions. For example, regression
with an L2 penalty, e.g.,

∑
j b2

j ≤ t, is called “ridge regression”.

Model selection by LASSO — 4/34 —

The feasible solution space for LASSO is linear (defined by the constraints), so the
optimal solution is at a corner point. The implication: at optimal, many coefficient
(non-basic variables) will be 0⇒ variable selection.

On the contrary, ridge regression usually doesn’t have any coefficient being 0, so it
doesn’t do model selection.

LASSO model fitting — 5/34 —

The LASSO problem can be solved by standard quadratic programming
algorithm.

In LASSO, we need to solve the following optimization problem:

max −

n∑
i=1

yi −
∑

j

b jxi j

2

s.t.
∑

j

|b j| ≤ t

This is not a standard LP form, since the constraints have absolute value operator!

LASSO model fitting (cont.) — 6/34 —

The trick is to convert the problem into the standard QP problem setting, i.e., to
remove the absolute value operator.

The trick to get rid of absolute value operator is to let b j = b+j − b−j , where b+j , b
−
j ≥ 0.

Then |b j| = b+j + b−j , and the problem can be written as:

max −

n∑
i=1

yi −
∑

j

b+j xi j +
∑

j

b−j xi j

2

s.t.
∑

j

(b+j + b−j) ≤ t,

b+j , b
−
j ≥ 0

This is a standard QP problem can be solved by standard QP solvers.

A little more on LASSO — 7/34 —

The Lagrangian for the LASSO optimization problem is:

L(b, λ) = −
n∑

i=1

yi −
∑

j

b jxi j

2

− λ

p∑
j=1

|b j|

This is equivalent to the likelihood function for a Bayesian model with a double
exponential (DE) prior on b’s (remember ADE used in quantile regression?):

Y |X,b ∼ N(Xb, σ2)
b j ∼ DE(1/λ)

The DE density function is

f (x, τ) =
1
2τ

exp
(
−|x|
τ

)
.

As a side note, the ridge regression is equivalent to the Bayesian model with a
normal prior on b (verify it).

LASSO in R — 9/34 —

The glmnet package has function glmnet

glmnet package:glmnet R Documentation

fit a GLM with lasso or elasticnet regularization

Description:

Fit a generalized linear model via penalized maximum likelihood.

The regularization path is computed for the lasso or elasticnet

penalty at a grid of values for the regularization parameter

lambda. Can deal with all shapes of data, including very large

sparse data matrices. Fits linear, logistic and multinomial,

poisson, and Cox regression models.

Usage:

glmnet(x, y, family=c("gaussian","binomial","poisson","multinomial","cox","mgaussian"),

weights, offset=NULL, alpha = 1, nlambda = 100,

lambda.min.ratio = ifelse(nobs<nvars,0.01,0.0001), lambda=NULL,

standardize = TRUE, intercept=TRUE, thresh = 1e-07, dfmax = nvars + 1,

pmax = min(dfmax * 2+20, nvars), exclude, penalty.factor = rep(1, nvars),

lower.limits=-Inf, upper.limits=Inf, maxit=100000,

type.gaussian=ifelse(nvars<500,"covariance","naive"),

type.logistic=c("Newton","modified.Newton"),

standardize.response=FALSE, type.multinomial=c("ungrouped","grouped"))

LASSO in R example — 10/34 —

> x=matrix(rnorm(100*20),100,10)

> b = c(-1, 2)

> y=rnorm(100) + x[,1:2]%*%b

> fit1=glmnet(x,y)

>

> coef(fit1, s=0.05)

11 x 1 sparse Matrix of class "dgCMatrix"

1

(Intercept) 0.003020916

V1 -0.967153276

V2 1.809566641

V3 -0.106775004

V4 0.041574896

V5 .

V6 .

V7 0.102566050

V8 .

V9 .

V10 .

> coef(fit1, s=0.1)

11 x 1 sparse Matrix of class "dgCMatrix"

1

(Intercept) 0.01304181

V1 -0.92725224

V2 1.76178647

V3 -0.05743472

V4 .

V5 .

V6 .

V7 0.05953563

V8 .

V9 .

V10 .

> coef(fit1, s=0.5)

11 x 1 sparse Matrix of class "dgCMatrix"

1

(Intercept) 0.08689072

V1 -0.52883089

V2 1.29823139

V3 .

V4 .

V5 .

V6 .

.........

> plot(fit1, "lambda")

run cross validation

> cv=cv.glmnet(x,y)

> plot(cv)

−5 −4 −3 −2 −1 0

−
1.

0
0.

0
0.

5
1.

0
1.

5

Log Lambda

C
oe

ffi
ci

en
ts

10 7 5 4 2 2

−5 −4 −3 −2 −1 0

1
2

3
4

5

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

10 10 7 5 5 4 3 2 2 2 0

Support Vector Machine (SVM) — 13/34 —

Figures for the slides are obtained from Hastie et al. The Elements of Statistical
Learning.

Problem setting:

• Given training data pairs (x1, y1), . . . , (xN, yN). xi’s are p-vector predictors.
yi ∈ {−1, 1} are outcomes.

• Our goal: to predict y based on x (find a classifier).

• Such classifier is defined as a function of x, G(x). G is estimated based on the
training data (x, y) pairs.

• Once G is obtained, it can be used for future predictions.

There are many ways to construct G(x), and Support Vector Machine (SVM) is one
of them. We’ll first consider the simple case: G(x) is based on linear function of x.
It’s often called linear SVM or support vector classifier.

Simple case: perfectly separable case — 14/34 —

• First define a linear hyperplane by {x : f (x) = xT b + b0 = 0}. It is required that b
is a unit vector with ||b|| = 1 for identifiability.

• A classification rule can be defined as G(x) = sign[xT b + b0].

• The problem is to estimate b’s.

Consider a simple case where two groups are perfectly separated. We want to
find a “border” to separate two groups.

• There are infinite number of borders can perfectly separate two groups. Which
one is optimal?

• Conceptually, the optimal border should separates the two classes with the
largest margins.

• We define the optimal border to be the one satisfying: (1) the distances between
the closest points to the border are the same in both groups, denote the
distance by M; and (2) M is maximized.

M is called the “margin”.

Problem setup — 15/34 —

Then problem to find the best border can be framed into following optimization
problem:

max
β,β0

M

s.t. yi(xT
i b + b0) ≥ M, i = 1, . . . ,N

This is not a typical LP/QP problem so we do some transformations to make it look
more familiar.

Divided both sides of the constraint by M, and define β = b/M, β0 = b0/M, the
constraints become:

yi(xT
i β + β0) ≥ 1.

This means that we scale the coefficients of the border hyperplane, so that the
margin lines are in the forms of xT

i β + β0 + 1 = 0 (lower margin) and xT
i β + β0 − 1 = 0

(upper margin).

Now we have
||β|| = ||b||/M = 1/M.

So the objective function (maximizing M) is equivalent to minimizing ||β||.

After this transformation, the optimization problem can be expressed as a simpler,
more familiar form:

min
β,β0

||β||

s.t. yi(xT
i β + β0) ≥ 1, i = 1, . . . ,N

This is a typical quadratic programming problem.

Illustration of the optimal border (solid line) with margins (dash lines).
418 12. Flexible Discriminants

•

•

•

•

•

• •

•
•

•

•

•

•
•

•
•

•

•

•

•

margin

M = 1
‖β‖

M = 1
‖β‖

xT β + β0 = 0

•

•

•

•

•

• •

•
•

•

•

•

•

•

•
•

•
•

•

•

•

••

margin

ξ∗
1ξ
∗
1ξ
∗
1

ξ∗
2ξ
∗
2ξ
∗
2

ξ∗
3ξ
∗
3

ξ∗
4ξ
∗
4ξ
∗
4 ξ∗

5

M = 1
‖β‖

M = 1
‖β‖

xT β + β0 = 0

FIGURE 12.1. Support vector classifiers. The left panel shows the separable
case. The decision boundary is the solid line, while broken lines bound the shaded
maximal margin of width 2M = 2/‖β‖. The right panel shows the nonseparable
(overlap) case. The points labeled ξ∗

j are on the wrong side of their margin by
an amount ξ∗

j = Mξj; points on the correct side have ξ∗
j = 0. The margin is

maximized subject to a total budget
P

ξi ≤ constant. Hence
P

ξ∗
j is the total

distance of points on the wrong side of their margin.

Our training data consists of N pairs (x1, y1), (x2, y2), . . . , (xN , yN), with
xi ∈ IRp and yi ∈ {−1, 1}. Define a hyperplane by

{x : f(x) = xT β + β0 = 0}, (12.1)

where β is a unit vector: ‖β‖ = 1. A classification rule induced by f(x) is

G(x) = sign[xT β + β0]. (12.2)

The geometry of hyperplanes is reviewed in Section 4.5, where we show that
f(x) in (12.1) gives the signed distance from a point x to the hyperplane
f(x) = xT β+β0 = 0. Since the classes are separable, we can find a function
f(x) = xT β + β0 with yif(xi) > 0 ∀i. Hence we are able to find the
hyperplane that creates the biggest margin between the training points for
class 1 and −1 (see Figure 12.1). The optimization problem

max
β,β0,‖β‖=1

M

subject to yi(x
T
i β + β0) ≥ M, i = 1, . . . , N,

(12.3)

captures this concept. The band in the figure is M units away from the
hyperplane on either side, and hence 2M units wide. It is called the margin.

We showed that this problem can be more conveniently rephrased as

min
β,β0

‖β‖

subject to yi(x
T
i β + β0) ≥ 1, i = 1, . . . , N,

(12.4)

Non-separable case — 18/34 —

When two classes are not perfectly separable, we still want to find a border with two
margins. But now there will be points on the wrong sides. We introduce slack
variables to account for those points:

Define slack variables {ξ1, . . . , ξN} (also known as “hinge loss”) as

ξi = max(0, 1 − yi(xT
i β + β0))

We can see that:

• ξi ≥ 0 ∀i.

• ξ = 0 when the point is outside the margins.

• ξ is proportional to the distance from the margin: ξ > 1 when the point passes
the border to the wrong side. 0 < ξ < 1 when the point is in the margin but still
on the correct side of the border.

418 12. Flexible Discriminants

•

•

•

•

•

• •

•
•

•

•

•

•
•

•
•

•

•

•

•

margin

M = 1
‖β‖

M = 1
‖β‖

xT β + β0 = 0

•

•

•

•

•

• •

•
•

•

•

•

•

•

•
•

•
•

•

•

•

••

margin

ξ∗
1ξ
∗
1ξ
∗
1

ξ∗
2ξ
∗
2ξ
∗
2

ξ∗
3ξ
∗
3

ξ∗
4ξ
∗
4ξ
∗
4 ξ∗

5

M = 1
‖β‖

M = 1
‖β‖

xT β + β0 = 0

FIGURE 12.1. Support vector classifiers. The left panel shows the separable
case. The decision boundary is the solid line, while broken lines bound the shaded
maximal margin of width 2M = 2/‖β‖. The right panel shows the nonseparable
(overlap) case. The points labeled ξ∗

j are on the wrong side of their margin by
an amount ξ∗

j = Mξj; points on the correct side have ξ∗
j = 0. The margin is

maximized subject to a total budget
P

ξi ≤ constant. Hence
P

ξ∗
j is the total

distance of points on the wrong side of their margin.

Our training data consists of N pairs (x1, y1), (x2, y2), . . . , (xN , yN), with
xi ∈ IRp and yi ∈ {−1, 1}. Define a hyperplane by

{x : f(x) = xT β + β0 = 0}, (12.1)

where β is a unit vector: ‖β‖ = 1. A classification rule induced by f(x) is

G(x) = sign[xT β + β0]. (12.2)

The geometry of hyperplanes is reviewed in Section 4.5, where we show that
f(x) in (12.1) gives the signed distance from a point x to the hyperplane
f(x) = xT β+β0 = 0. Since the classes are separable, we can find a function
f(x) = xT β + β0 with yif(xi) > 0 ∀i. Hence we are able to find the
hyperplane that creates the biggest margin between the training points for
class 1 and −1 (see Figure 12.1). The optimization problem

max
β,β0,‖β‖=1

M

subject to yi(x
T
i β + β0) ≥ M, i = 1, . . . , N,

(12.3)

captures this concept. The band in the figure is M units away from the
hyperplane on either side, and hence 2M units wide. It is called the margin.

We showed that this problem can be more conveniently rephrased as

min
β,β0

‖β‖

subject to yi(x
T
i β + β0) ≥ 1, i = 1, . . . , N,

(12.4)

Now the constraints in the original optimization problem is modified to:

yi(xT
i β + β0) ≥ 1 − ξi, i = 1, . . . ,N

• ξi can be interpreted as the proportional amount by which the predication is on
the wrong side of the margin.

We try to minimize the amount of wrong classification in addition to maximizing the
margin, thus,

∑
i ξi is added to the objective function. Together, the optimization

problem can be formulated as the following QP problem :

min
β,β0

1
2
||β|| + γ

∑
i

ξi

s.t. yi(xT
i β + β0) ≥ 1 − ξi, ξi ≥ 0

A bit more about the objective function: When ||β|| is small, M will be large (wide
margin) and values of ξi will be large. The objective function balances the two parts.

Computation — 21/34 —

The primal Lagrangian is:

LP =
1
2
||β||2 + γ

∑
i

ξi −
∑

i

αi[yi(xT
i β + β0) − (1 − ξi)] −

∑
i

µiξi

Take derivatives of β, β0, ξi then set to zero, get (the stationary conditions) :

β =
∑

i

αiyixi

0 =
∑

i

αiyi

αi = γ − µi,∀i

Plug these back to the primal Lagrangian, get the following dual objective function
(verify):

LD =
∑

i

αi −
1
2

∑
i

∑
i′
αiαi′yiyi′xT

i xi′

The LD needs to be maximized subject to constraints:∑
i

αiyi = 0

0 ≤ αi ≤ γ

The KKT conditions for the problem (in additional to the stationary conditions)
include following complementary slackness and primal/dual feasibilities:

αi[yi(xT
i β + β0) − (1 − ξi)] = 0

µiξi = 0
yi(xT

i β + β0) − (1 − ξi) ≥ 0
αi, µi, ξi ≥ 0

The QP problem can be solved using interior point method based on these.

The support vectors — 23/34 —

At optimal solution, β is in the form of: β̂ =
∑

i α̂iyixi.

This means β̂ is a linear combination of yixi, and only depends on those data points
with α̂ , 0. These data points are called “support vectors”.

Remember the primal constraint is

yi(xT
i β + β0) ≥ 1 − ξi

According to the complementary slackness in the KKT conditions, at optimal point
we have:

αi[yi(xT
i β + β0) − (1 − ξi)] = 0, ∀i

which means αi could be non-zero only when yi(xT
i β + β0) − (1 − ξi) = 0.

What does this result tell us?

For points with non-zero αi:

• The points with ξi = 0 will have yi(xT
i β + β0) = 1, or these points are on the

margin lines.

• Other points with yi(xT
i β + β0) = 1 − ξi are on the wrong side of the margins.

So only the points on the margin or at the wrong side of the margin are informative
for the separating hyperplane. These points are called the “support vectors”,
because they provide “support” for the decision boundary.

This makes sense, because the points that can be correctly separated and “far
away” from the margin (those “easy” points) don’t tell us anything about the
classification rule (the hyperplane).

Support Vector Machine — 25/34 —

We have discussed support vector classifier, which uses hyperplane to separate
two groups. Support Vector Machine enlarges the feature space to make the
procedure more flexible.

To be specific, we transform the input data xi using some basis functions
hm(x),m = 1, . . . ,M. Now the input data become h(xi) = (h1(xi), . . . , hM(xi)). This
basically transform the data to another space, which could be nonlinear in the
original space.

We then find SV classifier in the transformed space using the same procedure, e.g.,
find optimal

f̂ (x) = h(x)T β̂ + β̂0.

And the decision is made by: Ĝ(x) = sign(f̂ (x)).

Note: the classifier is linear in the transformed space, but nonlinear in the
original one.

Choice of basis function — 26/34 —

Now the problem becomes the choice of basis function, or do we even need to
choose basis function.

Recall in the linear space, β is in the form of:

β =
∑

i

αiyixi.

In the transformed space, it becomes:

β =
∑

i

αiyih(xi).

So the decision boundary is:

f (x) = h(x)T
∑

i

αiyih(xi) + β0 =
∑

i

αiyi〈h(x), h(xi)〉 + β0.

Moreover, the dual objective function in transformed space becomes:

LD =
∑

i

αi −
1
2

∑
i

∑
i′
αiαi′yiyi′〈h(xi), h(xi′)〉

What does this tell us?

Both the objective function and the decision boundary in the transformed space
involves only the inner products of the transformed data, not the transformation
itself!

So the basis functions are not important, as long as we know 〈h(x), h(xi)〉.

Kernel tricks — 28/34 —

• The inner product 〈h(x), h(x′)〉 measures the “similarity” of x and x′ in another
space defined by h.

• The explicit representation of h is not that important, as long as we get the
similarity.

Define a function K : RP × RP → R, to represent the inner product in the
transformed space:

K(x, x′) = 〈h(x), h(x′)〉.

K needs to be a symmetric and positive semi-definite. K is called a “kernal”
function.

Kernel tricks (cont.) — 29/34 —

With the kernel trick, the decision boundary becomes:

f (x) =
∑

i

αiyiK(x, xi) + β0.

Some popular choices of the kernel functions are:

• Radial basis function (RBF) aka Gaussian kernel: K(x, x′) = exp{−||x − x′||2/c}.

• Polynomial with d degree: K(x, x′) = (a0 + a1〈x, x′〉)d.

• Sigmoid: K(x, x′) = tanh(a0 + a1〈x, x′〉).

Computation of SVM — 30/34 —

With kernels defined, the Lagrangian dual function is:

LD =
∑

i

αi −
1
2

∑
i

∑
i′
αiαi′yiyi′K(xi, xi′)

Maximize LD, with αi’s being the unknowns, subject to the same constrains:∑
i

αiyi = 0

0 < αi < γ

This is a standard QP problem can be solved easily.

The role of γ — 31/34 —

To control the smoothness of boundary.

• γ is the tuning parameter for
∑

i ξi in the objective function.

• It is introduced to control the total misclassification.

• we can always project the original data to higher dimensional space so that they
can be better separated by a linear classifier (in the transformed space), but

– Large γ: fewer error in transformed space, wiggly boundary in original space.

– Small γ: more errors in transform space, smoother boundary in original
space.

γ is a tuning parameter often obtained from cross-validation.

A little more about the decision rule — 32/34 —

Recall that the decision boundary only depends on support vectors, or the points
with αi , 0. So f (x) can be written as:

f (x) =
∑
i∈S

αiyiK(x, xi) + β0,

where S is the set of support vectors.

The kernel K(x, x′) measures similarity between x and x′. So to classify for point x,
the decision is made essentially by a weighted sum of similarity of x to all the
support vectors.

SVM in R — 33/34 —

There are several R packages include SVM function: e1071, kernlab, klaR,
svmpath, etc.

Table below summarize the R SVM functions. For more details please refer to the
”Support Vector Machines in R” paper at the class website.

Journal of Statistical Software 21

ksvm() svm() svmlight() svmpath()

(kernlab) (e1071) (klaR) (svmpath)

Formulations C-SVC,
ν-SVC,
C-BSVC,
spoc-SVC,
one-SVC, �-
SVR, ν-SVR,
�-BSVR

C-SVC, ν-
SVC, one-
SVC, �-SVR,
ν-SVR

C-SVC, �-SVR binary C-SVC

Kernels Gaussian,
polynomial,
linear, sig-
moid, Laplace,
Bessel, Anova,
Spline

Gaussian,
polynomial,
linear, sigmoid

Gaussian,
polynomial,
linear, sigmoid

Gaussian,
polynomial

Optimizer SMO, TRON SMO chunking NA

Model Selection hyper-
parameter
estimation
for Gaussian
kernels

grid-search
function

NA NA

Data formula, ma-
trix

formula, ma-
trix, sparse
matrix

formula, ma-
trix

matrix

Interfaces .Call .C temporary files .C

Class System S4 S3 none S3

Extensibility custom kernel
functions

NA NA custom kernel
functions

Add-ons plot function plot functions,
accuracy

NA plot function

License GPL GPL non-
commercial

GPL

Table 3: A quick overview of the SVM implementations.

Summary of SVM — 34/34 —

Strengths of SVM:

• flexibility.

• scales well for high-dimensional data.

• can control complexity and error trade-off explicitly.

• as long as a kernel can be defined, non-traditional (vector) data, like strings,
trees can be input.

Weakness:

• can be sensitive to the kernels. How to choose a good kernel – a low degree
polynomial or radial basis function can be a good start.

• slow for multiple-category classification.

