Optimization

September 4, 2018

Optimization problem —1/34 —

e An optimization problem is the problem of finding the best solution for an
objective function.

e Optimization method plays an important role in statistics, for example, to find
maximum likelihood estimate (MLE).

e Unconstrained vs. constrained optimization problem: whether there is constraint
in the solution space.

e Most algorithms are based on iterative procedures.

o We'll spend next few lectures on several optimization methods, under the
context of statistics:
— New-Raphson, Fisher scoring, etc.
— EM and MM.
— Hidden Markov models.
— Linear and quadratic programming.

Review: Newton-Raphson (NR) method — 2/34 —

Goal: Find the root for equation f(6) = 0.
Approach:
1. Choose an initial value 6’ as the starting point.

2. By Taylor expansion at 8°, we have 7(0) = f(6) + /(89) (@ — 6©). Set f(8) =0
gives an update of the parameter: 8V = 09 — £(6©)/ f/(@).

3. Repeated update until convergence: 6%t = g% — £(gL)/ £/(6W).

Vv

'
f(z) =0 f(x)
tangenta

f(x0)

tangent 2
f(x1)

’/._/ o == X
y A X= X1 X0

Newton-Raphson Method

NR method convergence rate — 3/34 —

Quadratic convergence: 6* is the solution.
. |0(k+1) . H*l
/}E?o 00 g =c (rate = ¢ > 0, order = 2)

The # of significant digits nearly doubles at each step (in the neighborhood of 6%).

Proof: By Taylor expansion (to the second order) at 6%,
1
0= fO) = fO9) + f(@N)O - 0) + S)0 - 00y, £V eler,0Y]

Dividing the equation by f’(6%) gives

f7EY)

(k)2
s 1

~fE/f00) - (" - 0Y) =

The definition of 8%*D = gk — £(@®)/ f"(6%) gives

g+ _ g — L‘f(k))(g* . 9("))2,
2f7(6W)
What conditions are needed?
e /(%) £ 0 in the neighborhood of 6*
e 7(£W)is bounded

e Starting point is sufficiently close to the root 6*

Review: maximum likelihood — 4/34 —

Here is a list of some definitions related to maximum likelihood estimate:

Parameter 6, a p-vector
Data X
Log likelihood I(0) = log Pr(X|0)
Score function {(0) = (91/86,...,01/96,)
Hessian matrix () = {0°1/06,00}; j-1...,

Fisher information 1(8) = —El(6) = EI(0){i(0)Y
Observed information — [(0)

When 6* is a local maximum of [, [(6*) = 0, and [(6") is negative definite.

Application of NR method in MLE:
when @ is a scalar — 5/34 —

Maximum Likelihood Estimation (MLE): 6 = arg max, /(6).
Approach Find 6 such that i(6) = 0.

If the closed form solution for i(§) = 0 is difficult to obtain, one can use NR method
(replace f by [). The the NR update for solving MLE is:

ok D = g® _ jip®)y i,

What can go wrong?

— 6/34 —

e Bad starting point

e May not converge to the global maximum

e Saddle point: i(d) = 0, but /(d) is neither negative definite nor positive definite
(stationary point but not a local extremum; can be used to check the likelihood)

starting point & local extremum

global maximum

local maximum

N

6 — |

0
2 -
i \/

global minimum

>

local minimum

0 02

04

0.6

0.8

1

12

10

5

0

=5

-10

saddle point

10) = 6°

|

4 -3 =2 -1 0

1

saddle point
1(61,6,) = 67 — 65

Generalization to higher dimensions:
when 6 is a vector — 7/34 —

General Algorithm
1. (Starting point) Pick a starting point ¥ and let k = 0

2. (Iteration) Determine the direction d® (a p-vector) and the step size o'¥ (a

scalar) and calculate
gD = gb 4 ok gk

such that
1% Dy > 1(9%)y

3. (Stop criteria) Stop iteration if
165D — 1) /(L) + &) < &

or
Oks1.j — Ok jl/ (Ol +€1))<e, j=1,...,p
for precisions such as €; = 107 and &, = 107°. Otherwise go to 2.

Key: Determine the direction and the step size

Generalization to higher dimensions (continued) — 8/34 —

Determining the direction (general framework, details later)

We generally pick d¥ = R=1i(6®), where R is a positive definite matrix.

Choosing a step size (given the direction)
e Step halving

— To find o™ such that 1(6“*D) > 1(6Y)
— Start at a large value of o®. Halve o® until /(6%**D) > 1(6™)

— Simple, robust, but relatively slow
e Linear search

— To find a® = arg max, [(6® + ad®)

— Approximate I[(6% + ad®) by doing a polynomial interpolation and find o
maximizing the polynomial

— Fast

Polynomial interpolation — 9/34 —

Given a set of p + 1 data points from the function f(a) = (6 + ad®), we can find a
unique polynomial with degree p that goes through the p + 1 data points. (For a
quadratic approximation, we only need 3 data points.)

A
y

X X X, Xu

Survey of basic methods — 10/34 —

1. Steepest ascent: R = I = identity matrix
4P = j(g(k))
a® = arg max (6% + «i(6™)) or a small fixed number
g+ — o +C;(k) i0®)
Why i(60) is the steepest ascent direction?
By Taylor expansion at 6,
1OF + A) — 167 = ATi(@P) + o(|All)
By Cauchy-Schwarz inequality,
ATIED) < 1Al - 116

The equality holds at A = «i(6F). So when A = «i(6%), (6% + A) increases the most. O

e Easy to implement; only require the first derivative/gradient/score
e Guarantee an increase at each step no matter where you start

e Converge slowly. The directions of two consecutive steps are orthogonal, so the
algorithm “zigzags” to the maxima.

Steepest ascent (continued) —11/34 —

When o'® is chosen as arg max, (8% + «i(6'®)), the directions of two
consecutive steps are orthogonal, i.e.,

[0)T i6*+V) = 0,

Proof: By the definition of o' and g%V

OOV + al(6™))
- Oa

0 = (0% + P [O0NT[(@X) = (0% T [(e).

a=ak)

> > >

Example: Steepest Ascent — 12/34 —

Maximize the function
f(x) =6x— x°

Example: Steepest Ascent (cont)) — 13/34 —

fun® <- function(x) return(- x"3 + 6%x) # target function
grd® <- function(x) return(- 3*x"2 + 6) # gradient

Steepest Ascent Algorithm
Steepest_Ascent <- function(x, fun=fun®, grd=grd®, step=0.01, kmax=1000, toll=le-6, tol2=1e-4)
{

diff <- 2*x # use a large value to get into the following "while" loop

k <- 0 # count iteration

while (all(abs(diff) > toll*(abs(x)+tol2)) & k <= kmax) # stop criteria

{
g_x <- grd(x) # calculate gradient using x
diff <- step * g_x # calculate the difference used in the stop criteria
X <- x + diff # update x
k <-k +1 # update iteration
}
f x = fun(x)

return(list(iteration=k, x=x, f_x=f_x, g_x=g_x))

Example: Steepest Ascent (cont)) — 14/34 —

> Steepest_Ascent(x=2, step=0.01)

$iteration

[1] 117

$x

[1] 1.414228

$f x

[1] 5.656854

$g_x

[1] -0.0001380379

> Steepest_Ascent(x=1, step=-0.01)

$iteration
[1] 159

$x

[1] -1.414199
$£f x

[1] -5.656854
$9_x

[1] 0.0001370128

In large dataset — 15/34 —

The data log-likelihood is usually summed over n observations: /(0) = }.°_, I(x;;).
When n is large, this poses computational burden.

One can implement a “stochastic” version of the algorithm: stochastic gradient
descent (SGD). Note: Gradient descent is just steepest descent.

Simple SGD algorithm: replace the gradient i(6) by the gradient computed from a
single sample (x;; 0), where x; is randomly sampled.

“Mini-batch” SGD algorithm: compute the gradient based on a small number of
observations.

e Advantage of SGD:

— Evaluate gradient at one (or a few) observations, requires less memory.
— Has better property to escape from local minimum (gradient is noisy).

e Disdvantage of SGD: Slower convergence.

Survey of basic methods (continued) — 16/34 —

2. Newton-Raphson: R = —/(8¥) = observed information

d" = [-[0)]"1(6"Y)
gD = g® 4 [—jg®)]1je™)
a® =1 forall k

e Fast, quadratic convergence

e Need very good starting points

Theorem: If R is positive definite, the equation set Rd® = [(6™) has a unique solution for
the direction d®, and the direction ensures ascent of /(6).

Proof: When R is positive definite, it is invertible. So we have a unique solution
d® = R71j(0W). Let
gD = 00 + ad® = 6% + aR71i(GW).
By Taylor expansion,
16"y = 16™) + ad(6P) R71i(6W).

The positive definite matrix R ensures that [(6**D) > [(6®) for sufficiently small positive a. O

Newton-Raphson vs. steepest ascent — 17/34 —

e Newton-Raphson converges much faster than steepest ascent (gradient
descent).

e NR requires the computation of second derivative, which can be difficult and
computationally expensive. In contrast, gradient descent requires only the first
derivative, which is easy to compute.

e For poorly behaved objective function (non-convex), gradient-based methods
are often more stable.

e Gradient-based method (especially SGD) is widely used in modern machine
learning.

Example: Newton Raphson — 18/34 —

fun® <- function(x) return(- x"3 + 6%X) # target function
grd® <- function(x) return(- 3*x"2 + 6) # gradient
hes® <- function(x) return(- 6*x) # Hessian

Newton-Raphson Algorithm
Newton_Raphson <- function(x, fun=fun®, grd=grd®, hes=hes®, kmax=1000, toll=1le-6, tol2=1e-4)
{

diff <- 2*x

k <- 0

while (all(abs(diff) > toll*(abs(x)+tol2)) & k <= kmax)

{
g_x <- grd(x)
h_x <- hes(x) # calculate the second derivative (Hessian)
diff <- -g_x/h_x # calculate the difference used by the stop criteria
X <- x + diff
k <-k +1
}
f x = fun(x)

return(list(iteration=k, x=x, f_x=f_x, g_x=g_x, h_x=h_x))

Example: Newton Raphson — 19/34 —

> Newton_Raphson(x=2)

$iteration

[1] 5

$x

[1] 1.414214

$£_x

[1] 5.656854

$g_x

[1] -1.353229e-11
$h_x

[1] -8.485281

> Newton_Raphson(x=1)

$iteration

[1] 5

$x

[1] 1.414214

$f x

[1] 5.656854

$9_x

[1] -1.353229e-11
$h_x

[1] -8.485281

Survey of basic methods (continued) — 20/34 —

3. Modification of Newton-Raphson

e Fisher scoring: replace —I(0) with —E/(0)
— —El(9) = Ei(0)I[(9) is always positive and stabilize the algorithm
— —El(0) can have a simpler form than —{(6)

— Newton-Raphson and Fisher scoring are equivalent for parameter estimation
in GLM with canonical link.

e Quasi-Newton: aka “variable metric methods” or “secant methods”.
Approximate [(0) in a way that

— avoids calculating Hessian and its inverse
— has convergence properties similar to Newton

Fisher Scoring: Example — 21/34 —

In the Poisson regression model of n subjects,
e The responses Y; ~ Poisson(4;) = (¥;!)~'4/'e™ . We know that 1; = E(Y;|X)).

e We relate the mean of Y; to X; by g(1;) = X;8. Taking derivative on both sides,

(/l)——X o _ X
ST B g

e Log likelihood: /(B) = > ,(Y;log A; — A;), where A;’s satisfy g(41;) = X,5.

e Maximum likelihood estimation: 5 = arg maxg [(3)
Newton-Raphson needs

. Yo \oh (%) |
“ﬁ)zz(z”)%‘zl(ai 1)g’(/li X

l

S 1 R IR T AT LT
= _Zﬁ aﬁ P (g™

B ot N1 (% g
T Igmzl Z()Ag(ﬂ)zz Z(ﬂi l)gm“

l

Fisher Scoring: Example (continued) — 22/34 —

Fisher scoring needs /(8) and

Elip)] = Z— TR

which is [(8) without the extra terms.

With the canonical link for Poisson regression:
g(4;) = log 4;,

we have

g()=4" and g"(4) = -4
So that the extra terms equal to zero (check this!) and we conclude that
Newton-Raphson and Fisher scoring are equivalent.

Quasi-Newton — 23/34 —

1. Davidson-Fletcher-Powell QNR algorithm

Let AI® = [(6P) — [(6%D) and AP = g% — k=D Approximate negative Hessian by

AOOAGNT GOA[B AN GE
(AGNTAGD — (AJRYTGOAKR

Gl+D — R

Use the starting matrix G = I.

Theorem: If the starting matrix G is positive definite, the above formula ensures that every
G® during the iteration is positive definite.

Nonlinear Regression Models — 24/34 —

Data: (x;,y;))fori=1,...,n

Notation and assumptions
e Model: y; = h(x;,B) + €, where ¢ Hd N(0,0?) and A(.) is known
e Residual: ¢;(B) = y; — h(x;, B)

e Jacobian: {J(B)};; = ‘”’(;’jﬁ) = ag"T(f), an X p matrix

Goal: to obtain I\/ILE,@ = arg ming S (B), where S(B) = >,; {yvi — h(x,-,,B)}2 = [e(B)]! e(B)
We could use the previously-discussed Newton-Raphson algorithm.
e Gradient: g;(8) = M =2 ziei(ﬁ)%, i.e., 2(B) = —2J(B) e(B)

. d*S 0e; dei(B) de;
e Hessian: H ,(8) = aﬁjaﬁ) 2 Sileif g + Ll

Problem: Hessian could be hard to obtain.

Gauss-Newton algorithm

— 25/34 —

Recall in linear regression models, we minimize

@) = - xlp)

l

Because S () is a quadratic function, it is easy to get MLE

(o) (5o

I I

Now in the nonlinear regression models, we want to minimize

SB) =) {yi = h(xi, B)Y
Idea: Approximate h(x;, 8) by a linear function, iteratively at %

Given S© and by Taylor expansion of a(x;, 8) at B, S (8) becomes

<k>)Tah<xi,ﬁ<k>>}2
op

SB)~) {yi ~ h(x;,) ~ (B~ B

i

Gauss-Newton algorithm (cont.) — 26/34 —

1. Find a good starting point 5

2. Atstep k + 1,

(a) Form e(8%) and J(B%¥)

(b) Use a standard linear regression routine to obtain
60 = [IE) JE) I B)Te(BY)
(c) Obtain the new estimate g%V = gk 4 §®

e Don’t need computing Hessian matrix.
e Need good starting values.
e Require J(B®)T J(5%¥) to be invertible.

e This is not a general optimization method. Only applicable to lease square
problem.

Example: Generalized linear models (GLM) — 27/34 —

Data: (y,,x,) fori=1,...,n
Notation and assumptions
e Mean: E(y|x) = u
e Link g: g(u) = X'
e Variance function V: Var(y|x) = ¢V (u)
e Log likelihood (exponential family): (6, ¢;y) = {y0 — b(6)}/a(¢) + c(y, p)

We obtain
e Score function: [= {y — b’'(0)}/a(¢)

e Observed information: —I = b”"(6)/a(¢)
e Mean (in term of 6): E(y|x) = a(¢)E() + b'(0) = b'(6)
e Variance (0, ¢): Var(y|x) = E(y — b'(0))*> = a(¢)’E(l") = a(¢)*E(=1) = b”(0)a(¢)

Canonical link: g such that g(u) = 6, i.e. g7! = b’

Generally we have a(¢) = ¢/w, in which case ¢ will drop out of the following.

GLM

— 28/34 —

Model Normal Poisson Binomial Gamma
¢ o2 1 1/m 1/v
b(6) 02/2 exp®) log(l +¢?) —log(-0)
u 0 exp@ /(1+e -1/0

Canonical link g
Variance function V

identity log logit reciprocal
1 pooop(l—p

Towards lteratively reweighted least squares — 29/34 —

In linear regression models, E(y;|x;) = xl.T,B, SO we minimize

S@ =y -)

l

Because S () is a quadratic function, it is easy to get MLE

(o) 5o

i i

In generalized linear models, consider construct a similar quadratic function S (8).

Question? Can we use

S@B) =Y {son - TB)

l

Answer: No, because
E{g(y)lx:} # x/ B

Idea: Approximate g(y;) by a linear function with expectation x! 5, interactively at

:B(k)

Iteratively reweighted least squares — 30/34 —

Linearize g(y;) around &\ = g~!(x78®), denote the linearized value by 7.

~k Ak Ak IAk
7 = @™y + (3 — 1g' (@)

Check the variances of 5’ and use them as weights

“7](‘7 ~ k 1]/ A](‘7 A](

s =y WP - xlpf

-1

IRLS algorithm:

1. Start with initial estimates, generally 4" = y,

2. Form y§"> and Wl.(k)

3. Estimate g%+ by regressing 7 on x; with weights W*

4. Form gV = g=1(x7g**D) and return to step 2.

Iteratively reweighted least squares (continued) — 31/34 —

Model Poisson Binomial Gamma
p=g"'n e el(l+eh) 1/

g'(u) Vp U —w] =1/

V(u) It p(1 — p) s

e McCullagh and Nelder (1983) justified IRLS by showing that IRLS is equivalent
to Fisher scoring.

e In the case of the canonical link, IRLS is also equivalent to Newton-Raphson.

e IRLS is attractive because no special optimization algorithm is required, just a
subroutine that computes weighted least square estimates.

Miscellaneous things — 32/34 —

Dispersion parameter: When we do not take ¢ = 1, the usual estimate is via the

method of moments: .~
1 (yi — i)
n—p~ V()

@:

Standard errors:
Var(3) = (X’ WX)™!

Quasi likelihood: Pick a link and a variance function, and IRLS can proceed
without worrying about the model. In other words, IRLS is a good thing!

A quick review — 33/34 —

e Optimization method is important in statistics, (i.e., to find MLE), or in general
machine learning (minimize some loss function).

e Maximizing/minimizing an objective function is achieved by solving the equation
that the first derivative is 0 (need to check second derivative).

e Steepest ascent method:

— Only need gradient.
— Slow convergence.

— In large dataset with ill-behaved objective function, stochastic version (SGD)
usually works better.

e Newton-Raphson (NR) method:

— Quadratic convergence rate.
— Could stuck in local maximum.

— In higher dimension, the problems are to find directions and step sizes in
each iteration.

e Fisher scoring: use expected information matrix.

— NR use observed information matrix.
— The expected information is more stable and simpler.
— Fisher scoring and Newton-Raphson are equivalent under canonical link.

e Gauss-Newton algorithm for non-linear regression: Hessian matrix is not
needed.

