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BIOS 731
Advanced Statistical Computing

Fall 2022

Lecture 13

Applications of MCMC and SMC

Steve Qin 

Review

• Gibbs sampler

• Grouping and collapsing

• Convergence check

• Sequential Monte Carlo

– Acceptance rejection method

– Importance sampling
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Appliation: Transcription Factor 

Binding Sites Discovery

Example: cyclic receptor protein (CRP)

Stormo and Hartzell, 1989
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Example: cyclic receptor protein (CRP)

Stormo and Hartzell, 19895

Transcription factor binding site (TFBS)
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acgtgagatcagctatgaccgatagctactcgataaccg

Motif identification model

a1

a2

a3

aJ

…

aaaggtcgagtagctactcgatcgatactagcaatcgttaccctagctcgatcgaaa

acgtgagatcagctatcgatcgattgataactactcgtacgtat

gaatagctactcgatcgatactagcaatcgttaccctagctcgatcgagatggaaag
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Alignment variable }...,,{ 21 JaaaA=

Posterior distributions
• The posterior conditional distribution for

alignment variable A

DNA sequence data

Lawrence et al. Science 1993, Liu et al. JASA 1995
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Motif Alignment Model
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Statistical Model

• Objects:

– Seq: sequence data to search for motif

– 0: non-motif (genome background) probability

– : motif probability matrix parameter

– : site locations

• Problem: P(,  | seq, 0)

• Approach: alternately estimate

–  by P( | , seq, 0)

–  by P( | , seq, 0)
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The Algorithm

• Initialize by choosing random starting positions

• Iterate the following steps many times;

– Randomly or systematically choose a sequence to 

exclude

– Carry out the predictive-updating step to update the 

starting position

– Stop when no more observable changes in likelihood.

12

The Predictive Updating Step

• Compute predictive frequencies of each 

position i in motif

• Sample from the predictive distribution of ak
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References

• Lawrence et al. (1993) Science. 

• Liu, Neuwald and Lawrence (1995) JASA.

• Liu and Lawrence (1999) Bioinformatics.

Infer the 3D shape of 

chromosomes 

Slides from Ming Hu
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Microscopic Methods

• Fluorescent in situ hybridization (FISH)

15http://en.wikipedia.org/wiki/Cytogenetics

FISH Data Representation

16

3D chromosomal 

structure

1st bp

Nth bp

Region A

Region B

d(A,B)

http://en.wikipedia.org/wiki/Cytogenetics
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Contact Frequency vs. Spatial Distance

17

Lieberman-Aiden, et al, 2009

Problem setting

18

Hi-C

?
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Problem setting

• Challenges:

➢Sequencing uncertainties

➢Biases: enzyme, GC content, mappability

19

?

Hi-C

Problem setting

• Challenges:

➢Sequencing uncertainties

➢Biases: enzyme, GC content, mappability

20

?

Yaffe and Tanay, 2011

Hi-C
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Beads-on-a-string Representation

21

ACGTAGCTAGATACTGTAGTGTAGTTTGGAACCTGAGGG

Beads-on-a-string Representation

22

ACGTAGCTAGATACTGTAGTGTAGTTTGGAACCTGAGGG
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Beads-on-a-string Representation
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ACGTAGCTAG ATACTGTAGT GTAGTTTGGA ACCTGAGGG

Beads-on-a-string Representation

24

A B C D
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Beads-on-a-string Representation

x

y

z

o
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Beads-on-a-string Representation

x

y

z

o
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Bayesian Statistical Model

27

?

Bayesian Statistical Model

28

: # of reads between loci    and 

: Euclidian coordinates of locus 

: spatial distance between loci    and 

: # of enzyme cut site in locus 

: GC content of locus 

: mappability of locus 

Hi-C read counts: population summation

Hi-C read counts vs. spatial distance: log-log linear

?

Lieberman-Aiden, et al, 2009
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Bayesian Statistical Model

• Likelihood:       data points, parameters
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Bayesian Statistical Model

• Likelihood:       data points, parameters
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Bayesian Statistical Model

• Likelihood:       data points, parameters

• Posterior distribution

31

Statistical Inference

• Algorithm: Bayesian 3D constructor for Hi-C data (BACH)

32
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Statistical Inference

• Algorithm: Bayesian 3D constructor for Hi-C data (BACH)

➢ Initialization 1: use Poisson regression to obtain the initial values for

. Set                .  
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Statistical Inference

• Algorithm: Bayesian 3D constructor for Hi-C data (BACH)

➢ Initialization 1: use Poisson regression to obtain the initial values for

. Set                .  

➢ Initialization 2: use sequential important sampling to get the initial 3D 
chromosomal structure                                     .

34
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Statistical Inference

• Algorithm: Bayesian 3D constructor for Hi-C data (BACH)

➢ Initialization 1: use Poisson regression to obtain the initial values for

. Set                .  

➢ Initialization 2: use sequential important sampling to get the initial 3D 
chromosomal structure                                     .

➢ Refinement: use Gibbs sampler with hybrid Monte Carlo to refine the 
initial values for parameters.
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Sequential Importance Sampling

36

?
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Sequential Importance Sampling
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Bridging 
distribution:

!

Sequential Importance Sampling
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Bridging 
distribution:

Proposal 
distribution: Step 1

Weighted 
samples:
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Sequential Importance Sampling
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Bridging 
distribution:

Proposal 
distribution: Step 1 Step 2

Weighted 
samples:

Sequential Importance Sampling
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Bridging 
distribution:

Proposal 
distribution: Step 1 Step 2 Step t

Weighted 
samples:
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Sequential Importance Sampling
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Bridging 
distribution:

Proposal 
distribution: Step 1 Step 2 Step t Step N

Weighted 
samples:

Sequential Importance Sampling
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Bridging 
distribution:

Proposal 
distribution: Step 1 Step 2 Step t Step N

Sequential Importance Sampling (SIS) Algorithm:

(1) Design bridging distributions               and proposal distributions

(2) Sequentially draw weighted samples                              , and update weight 

Weighted 
samples:
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SIS in BACH: Outline

• Goal: use sequential importance sampling to 
sequentially put N loci into 3D space, i.e. 
sample from:

• Bridging distributions:

• Proposal distributions (given the previous t-1 
loci, put the t th locus in to 3D space):  
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SIS in BACH: Outline

• Goal: use sequential importance sampling to 
sequentially put N loci into 3D space, i.e. 
sample from:

• Bridging distributions:

• Proposal distributions (given the previous t-1 
loci, put the t th locus in to 3D space):  
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SIS in BACH: Outline

• Goal: use sequential importance sampling to 
sequentially put N loci into 3D space, i.e. 
sample from:

• Bridging distributions:

• Proposal distributions (given the first t-1 loci, 
put the t th locus in to 3D space):  
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SIS in BACH: Illustration
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A B C D
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SIS in BACH: Illustration

47

A B C D

A

B

C

D

A

B C

D

A A A

SIS in BACH: Illustration
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A B C D
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A A A

B
B

B

Each sample 
has a weight
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SIS in BACH: Illustration
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SIS in BACH: Illustration
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Hybrid Monte Carlo

• Goal: do efficient group move to refine initial 
3D chromosomal structure, since local 3D 
coordinates are highly correlated.

• Combine molecular dynamics with Metropolis 
acceptance-rejection rule.

51
Duane, et al, 1987

Hybrid Monte Carlo in BACH

• Goal: sampling from

• Take partial derivate of log likelihood over 3D 
coordinates                                 .

• Run the leap-frog algorithm, adaptively tune the 
time interval to achieve acceptance rate ~ 90%.
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Conclusions

• BACH: reconstruct chromosome 3D structures from Hi-C data

• Remove systematic biases

• Predicted spatial distances are consistent with FISH data

• Elongation of chromatin is highly associated with 
genetic/epigenetic features.

• Separation of compartments of A and B can be visualized. 
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