9/28/2022

BIOS 731

Advanced Statistical Computing
Fall 2022

lecture 11
Introduction to MCMC

Steve Qin
September 29, 2022

Motivation

» Generate random samples from arbitrary
probability distributions.

* Ideally, the random samples are i.i.d.
— Independent
— Identically distributed

» Extremely hard problem especially for high
dimensional distributions.



Markov Chain Monte Carlo

The goal is to generates sequence of random
samples from an arbitrary probability
density function (usually high dimensional),

The sequence of random samples form a
Markov chain,

The purpose is simulation (Monte Carlo).

What 1s Monte Carlo
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What is Monte Carlo?

« Rely on repeated sampling to study the
results of a experiment or study the
properties of certain procedure.

— Often used in complex and uncertain scenarios

— Difficult to formulate, high correlation.

— Cheap

— Take advantage of faster computers

 History

— John von Neumann, Stanislaw Ulam, Nicholas Metropolis

How simulation works?

Traffic Simulation .-
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FOURTH
PARADIGM

Science Paradigms

Thousand years ago:
science was empirical
describing natural phenomena
+ Last few hundred years:
theoretical branch
using models, generalizations
+ Last few decades:
a computational branch
simulating complex phenomena
« Today: data exploration (eScience)
unify theory, experiment, and simulation
— Data captured by instruments
or generated by simulator
—~ Processed by software
- Information/knowledge stored in computer
— Scientist analyzes database/files
using data management and statistics

\

FIGURE 1
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Applications of Monte Carlo

« Optimization
» Numerical integration
 Generate random samples

Bufton’s needle

Georges-Louis Leclerc, Comte de Buffon
(1707-1788)

Given a needle of length ¢ and an infinite
grid of parallel lines with common
distance d between them, what is the
probability P(F) that a needle, tossed at
the grid randomly, will cross one of the
parallel lines? | |
d
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Buffon’s needle

e Assumea <d

™ @ sin 0df L
P(E) =f = (a/—.-rd)f sin 8d9 = 2a/7d.
0

T 0
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Motivation

» Generate iid r.v. from high-dimensional
arbitrary distributions is extremely difficult.

* Drop the “independent” requirement.

» How about also drop the “identically
distributed” requirement?

12
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Markov chain
« Assume a finite state, discrete Markov chain
with N different states.
« Random process X,, n =0,1,2,...
X €S={L2,.,N} |
« Markov property,
P(X,. =X X, =X, X, =%,,..., X, =X,) = P(X
» Time-homogeneous

« Order
— Future state depends on the past m states. s

=X| X, =x,)

n+1

Key parameters

 Transition matrix
P(Xn = J | Xn—l = I) = p(lv J)a
P={p(, )}
« Initial probability distribution z(®
7M@) =P(x, =1).
« Stationary distribution (invariant/equilibrium)
T =7P.

14
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Reducibility

» A state j is accessible from state i (written
i j) if P(X,=j|X,=i)=p{">0.

« A Markov chain is irreducible if it is
possible to get to any state from any state.

15

Recurrence

A state i is transient if given that we start in
state i, there is a non-zero probability that
we will never return to i. State i is recurrent
if it is not transient.

16
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Ergodicity

« A state i is ergodic if it is aperiodic and
positive recurrent. If all states in an
irreducible Markov chain are ergodic, the
chain is ergodic.

17

Reversible Markov chains

» Consider an ergodic Markov chain that
converges to an invariant distribution z. A
Markov chain is reversible if for all x, y € S,

7(X) (X, Y) = 7z(y) p(Y, X).

which is known as the detailed balance
equation.

 An ergodic chain in equilibrium and
satisfying the detailed balance condition has
7 as its unique stationary distribution.
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Markov Chain Monte Carlo

» The goal is to generates sequence of random
samples from an arbitrary probability
density function (usually high dimensional),

» The sequence of random samples form a
Markov chain,

in Markov chain, P 2 =
in MCMC, = = P.

19
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Bayesian Inference

Genotype WAV
Haplotype FA=REARE v
Frequency (SR80
WIS O (1 Dirichlet(3)

P(Y ' Z ! ®) = ﬁ[ezileziZ ﬁggﬁg -
i=1 g=1

History

« Metropolis, N., Rosenbluth, A. W.,

22

Rosenbluth, M. N., Teller, A. H. and Teller,
E. (1953).

Equation of state calculations by fast
computing machines. Journal of Chemical
Physics, 21, 1087-1092.

11
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THE TOPIO LIST

1946: The Metropolis Algorithm

1947: Simplex Method

1950: Krylov Subspace Method

1951: The Decompositional Approach to Matrix Computations
1957: The Fortran Optimizing Compiler

1959: QR Algorithm

1962: Quicksort

1965: Fast Fourier Transform

1977: Integer Relation Detection

1987: Fast Multipole Method

Dantzig von Neumann Hestenes Householder Backus Hoare Greengard

Metropolis algorithm

« Direct sampling from the target distribution is
difficult,

 Generating candidate draws from a proposal
distribution,

» These draws then “corrected” so that
asymptotically, they can be viewed as random
samples from the desired target distribution.

24
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Pseudo code

« Initialize X,,
* Repeat
— Sample Y ~ q(x,.),
— Sample U ~ Uniform (0,1),
—IfU<a (X)Y),set X;=y,
— Otherwise X; = X.

25

An informal derivation

o Find a (X,Y):
« Joint density of current Markov chain state and the
proposal is g(x,y) = q(x,y)z(x)
Suppose g satisfies detail balance
q(x,y) =(x) = a(y,x)z(y)
If g(x,y) =(X) > q(y,x)z(y), introduce
a(x,y) <1land a(zl,x) =1
hence a(x,y) == na(y.x)
7(X)q(X, y)
1 axy) ) > A0
The probability of acceptance is «(x,y) =min (1

z(y)a(y, x)}
(. y)

26
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Metropolis-Hastings Algorithm

« Start with any X'”=x,, and a “proposal chain” T(x,y)
* Suppose X”=x,. At time t+1,
— Draw  y~T(x,.y) (i.e., propose a move for the next step)

— Compute “goodness ratio”
&

_ANT(X)
()T (%, Y)

— Acceptance/Rejection decision: Let

5 S Soa S ]
\’”"”—{}3 with p=min{1,r/

X with 1—p

[

27
Remarks
 Reliesonly on Probability(x,, X,)
calculation of X, + accepted step
* rejected st

target pdf up to a rereciea sl
normalizing

constant.

28
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Remarks

» How to choose a good proposal function is
crucial.

« Sometimes tuning is needed.
— Rule of thumb: 30% acceptance rate

» Convergence is slow for high dimensional
cases.

29

[llustration of Metropolis-Hastings

» Suppose we try to sample from a bi-variate
normal distributions. N[(OMl pjj
« Start from (0, 0) 0){p 1

» Proposed move at each step is a two
dimensional random walk x., = x +scosé
Yo = Y, +5SIN60
with
sU(0,1)
60U (0,2r)

30
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[llustration of Metropolis-Hastings

r= 7Z.(XI+1’ yt+1)
(X ¥i)

T YD (Vi) =T (K Vo) (00 1)) =Y 7
since

At each step, calculate

L exp| — ot (X — 29X Ve + Y24
o 272_\/17 2(17p2) +1 +1 X t+1 t+1
N 1 1 2 2
exp| — —20% Y, + Y j
2721 p? ( 2(1—/02)(Xt X ye)

= em[—ﬁ((x{i —2P% 1 Yea + Yia)— (X — 2%y + ¥¢ )))
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Convergence

 Trace plot Good

||||||||||

32
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Convergence

» Trace plot Bad
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Convergence
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Convergence

 Autocorrelation plot Good
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Convergence

« Autocorrelation plot  Bad s=0.5
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Convergence

- Autocorrelation plot  Okay s=3.0
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References

Metropolis et al. 1953,

Hastings 1973,

Tutorial paper:

Chib and Greenberg (1995). Understanding

the Metropolis--Hastings Algorithm. The
American Statistician 49, 327-335.
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Gibbs Sampler

 Purpose: Draw random samples form a joint
distribution (high dimensional)
X = (X, Xy,..., X,) Target 7z(x)

» Method: Iterative conditional sampling

Vi, draw x; 0 (X | X_;;)

39

[llustration of Gibbs Sampler

* Suppose the target distribution 1s:

(0 7)

[X]Y =y]~ N(py,l=p7)
[Y|X =x]~ N(px,l- p7)

* Gibbs sampler:

Start from, say, (X,Y)=(10,10), we can take a look at the
trajectories. We took p=0.6.
40
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first 20 iterations , . first 100 iterations
_‘.n..- i -

- !
L . W | -
. | .

] L gl ]

101-1000 iterations 900 iid samples

References

Geman and Geman 1984,
Gelfand and Smith 1990,
Tutorial paper:

Casella and George (1992). Explaining the
Gibbs sampler. The American Statistician,
46, 167-174.
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Remarks

Gibbs Sampler is a special case of Metropolis-
Hastings

Compare to EM algorithm, Gibbs sampler and
Metropolis-Hastings are stochastic procedures

Verify convergence of the sequence
Require Burnin
Use multiple chains
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