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A brief review of HMM —1/19 —

e HMM is used to model sequential data. Observed data are assumed to be
“emitted” from hidden states, where the hidden states is a “Markov chain”.

e A HMM is characterized by initial/emission/transition probabllities.

e Difference between HMM and mixture model is the correlations between hidden
states.

e The goals of HMM include (1) parameter estimation; (2) underlying states
estimation; (3) determine the best path.

e Use EM with “forward-backward” algorithm for parameter estimation.

e We will cover dynamic programming and Viterbi algorithm in this lecture.



Dynamic Programming (DP) —2/19 —

“Two sledgehammers of the algorithms craft: dynamic programming and linear
programming”

e DP is a general optimization algorithm.
e Breaking the overall optimization problem into overlapping smaller problems.

e Solve each sub-problem once, and reuse the results, thus reducing the
computing cost (dramatically).

e Often working backward.



A simple DP example — 3/19 —

Find the shortest path from S to E in the directed acyclic graph below.

The problem can be solved backward. Take node D as an example. The way to get
to D is through B or C. So, dist(D) = min{dist(B) + 1, dist(C) + 3}.

Then work our way backward, we can find the best path.



Compare with exhaustive approach — 4/19 —

Using exhaustive search , one has to do:
e SABE: 1+6+2 ;
e SCABE: 2+4+6+2
e SCDE: 2+3+1
e SCABDE: 2+4+6+1+1

Total is 11 additions. The complexity grows exponentially with the size of graph
Using DP, do:

e Dist(A)=min(1, 2+4)=1

e Dist(C)=2

e Dist(B)=dist(A)+6=1+6=7

e Dist(D)=min(dist(B)+1, dist(C)+3)=min(7+1, 2+3)=5
e Dist(E)=min(dist(B)+2, dist(D)+1)=min(7+2, 5+1)=6

Total is 6 additions. The complexity grows linearly with the size of graph.



Finding most likely hidden state sequence — 5/19 —

Under the notations:
e Observed data: u = {uy, us, ..., ur}.
e Hidden states: s = {51, 5o, ..., 57}
e Model parameters: A = {my, bi(u), ay;}.

We want to find the most possible “path”: § = argmax, Pr(s|A,u). This is called the
rule of Maximum A Posteriori (MAP) (mode of the posterior probability).

Since we have:
Pr(s,u|Ad)

Pr(u|d)

Pr(s|A,u) =

The denominator doesn’t involve s. So

argmax Pr(s|Ad,u) = argmax Pr(s, u|A)

In other words, to maximize the conditional probability, we can simply maximize the
joint probability.



The Viterbi Algorithm — 6/19 —

e The Viterbi algorithm maximizes an objective function G(s), where
s ={s1,...,sr}is a sequence of categorical values: s, € {1,..., M}.

e G(s) satisfies following special property:
G(s) = g1(s1) + g2(s2, 1) + &3(53, 52) + ... + gr(ST, ST-1).

So the objective function can be expressed as sum of functions depending one
state and its preceding one.

e In a diagram, let g,(k, ) be the distance from state / at r — 1 to state k at z. At the
starting node, use g, (k) for state k. The optimal path can be found through DP.
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The Viterbi Algorithm in HMM — 7/19 —

In a HMM, the distance between nodes are the transition probabilities. But we still
need to consider emission probabilities.

Remember we want to find optimal sequence s*:

s* = argmax Pr(s,u|A).
A

The objective function can be expressed as:

G(s) = 10g Pr(s,uld) = log[ﬂslbsl(ul)asl,szbsz(MZ)asz,S3 e aST_l,STbST(uT)]
= [log s, +1og by, (u1)] + [log ay, 5, +10g by, (uz)] + ... + [logay,_, s, +10g by, (ur)]

If we define

g1(s1) = logmy, + log by, (uy)
gt(va St—l) — log aSt_l,St + log bs,(ut)

then G(s) = g1(s1) + Zthz g:(s;, s;_1), and Viterbi algorithm can be applied.



Viterbi training — 8/19 —

e Note: the Viterbi algorithm requires that the model parameters A are known.
e “Viterbi training” algorithm can be applied to estimate A. The steps are:

1. Choose initial values of A.
2. Under current A, find the optimal path s*.
3. Let Ly(r) = 1(s; = k) and Hy(t) = 1(s,—; = k)1(s, = [), then update A using the
same M-step procedures derived before.
e Viterbi training replaces the step of computing forward and backward

probabilities by finding the optimal path s* under the current parameters using
Viterbi algorithm.

e Basically, it uses “hard” classification (0/1) to replace the “soft” classification
(probabilities).



Selecting the number of states (M) —9/19 —

e This is a model selection problem.

e Since the whole data likelihood P(u) is available, this can be done by using
BIC/AIC.

e With one more state, there are more parameters from initial probability,
transition probabilities, and emission probability.

e However, based on my experience, BIC tends to select large M in real data,
especially when the chain is long.

e Sometimes have to use arbitrary criteria.



Multivariate HMIM — 10/19 —

e So far we have discussed univariate HMM, e.g., u, is a scalar.
e \When observation is a random vector, it can be modeled as a multivariate HMM.
e The emission probability (1) becomes a multivariate distribution.

e There are more parameters need to be estimated, but the procedure is the
same.



Multivariate HMM example: chromHMM — 11/19 —

Ernst & Kellis, Nature Method 2012

ChromHMM: automating chromatin-
state discovery and characterization

e The observed data are multiple ChiP-seq datasets profiling histone modification
and protein binding strengths.

e The data are measurements from 200 bp bins genome-wide. There are around
10 million bins (chain is 10 million long).

e The goal is to segment the whole genome into a number of “states”.
e They run multivariate HMM, assuming the outcomes are independent.

e Result segments the genome into 15 states.



chromHMM genome segmentation result on a gene:

Scale 50 kb {
chr4: 103650000 1 OSEOC%CS)OO I & 103750000
efSeq Genes
NFKB1 st J Pttt pppbl--H- MANBA bt
NFKB1 ¢ Poopr>t B 1 b ptp-tt--Hh
8 ser ed)
GM12878 BN Il . E’\M W W BB DN T
) GM12878 (User ordered)
1_Active_Promoter I f
2_Weak_Promoter f H —

3_Poised_Promoter
4_Strong_Enhancer
5_Strong_Enhancer
6_Weak_Enhancer
7_Weak_Enhancer

8_Insulator i
9_Txn_Transition | H-imi—11——. | ——aH—H
10_Txn_Elongation B L L . I -1 1 L
11_Weak_Txn

12_Repressed
13_Heterochrom/lo
14_Repetitive/CNV
15_Repetitive/CNV




chromHMM emission and transition probabilities:
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Auto-regressive HMM (ARHMM) — 14/19 —

e The observations within a state have spatial correlations (remember HMM
assumes observations are independent conditional on state).

e There are different ways to model the spatial correlations within a state, such as
AR model or smoothing.

e Advantage over HMM: avoid over-fitting. The state segmentation of the chain is
smoother.



Example — Define CpG island — 15/19 —

e DNA sequence is a long (3 billion for human) string of four letters: A, C, G, T.

e The appearance of “CG” is rare, due DNA methylation, mutations and selection
pressure.

e However, there are regions where “CG” appears more frequently compared with
the rest of the genome. Such regions are called “CpG islands”, and they often
mark important regions (such as gene promoters).

e The CpG islands can be detected by modeling the DNA sequence using HMM.

e Observed data are C+G content and CG appearance in 16bp bins.



GC content plot in a small region:
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Our way to model this: the observation follows a smooth curve within each
segmentation.

p(s)|s e S;and X(M;) =i ~ Normal{c; + f(s), 2,

For details, read Wu et al. (2010) Redefining CpG islands using hidden Markov
models. Biostatistics.



Another example of ARHMM —17/19 —

Rashid et al. (2014) Some Statistical Strategies for DAE-seq Data Analysis:
Variable Selection and Modeling Dependencies among Observations. JASA

e The goal is to detect long range histone modified regions.

e WWe want the regions to be long, but directly fitting a HMM often gives overly
fragmented, short regions.

e Use AR model for the spatial dependence.
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Other variations of HMM — 18/19 —

Non-homogeneous HMM
Transition probability varies along the chain. Have to impose some constrains on
the transition probabilities so that they can be estimated.

Higher-order HMM
Assume the hidden states are from a higher order Markov chain, e.g., the current
state depends on several previous states.

Hierarchical HMM (HHMM)
Each state of the HHMM is itself an HHMM, e.g., the states of the HHMM emit
sequences of observation that follows another HHMM.

2D HMM

Used in image segmentation. Inputs are 2D data emitted from a Markov random
field. Need to model the transition from one observation to its neighbor. However a
fully connected 2D HMM is NP-hard (computationally unsolvable). So different
approximation is used (Pseudo 2D HMM).



Review —19/19 —

e HMM is used to model sequential data. Observed data are assumed to be
“emitted” from hidden states, where the hidden states is a “Markov chain”.

e A HMM is characterized by initial/emission/transition probabllities.

e Difference between HMM and mixture model is that HMM assumes correlations
between hidden states, whereas mixture model assumes independence.

e The goals of HMM include (1) parameter estimation; (2) underlying states
estimation; (3) determine the best path.

e Parameter estimation can be done by EM with “forward-backward” algorithm.

e Dynamic program (DP) is a general optimization method to find the shortest
path in a directed acyclic graph.

e Viterbi algorithm is a DP algorithm applied in finding the optimal path for a HMM.

e Viterbi training is a simplified version of forward-backward algorithm. It uses
hard classification to replace soft classification.



