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Review EM — 1/30 —

(Y0b87 Ymis) ~ f(yobSa ymislg)s we observe Yobs but not Ymis-
Complete-data log likelihood: Ic(0]Yobs, Yimis) = 102 { f(Yobss Ymisl@)}
Observed-data log likelihood: lo(6]Yops) = 10g{ [ f(Yons: ¥misl®) dymis]

EM algorithm:
o E step: 8(0) = E {Ic(OlYon, Vi)
respect to Yiis| Yobs, SO

E {ZC(0|YOb89 Ymis)

Yobs, Q(k)}. Note, the expectation is taken with

Yobs’ e(k)} - flC(mYobs, Ymis)f(ymileobSa Q)dymis-

o M step: 6%V = arg max, h¥(6)

Ascent property: /(0| is non-decreasing along k. If you can calculate it, it is
a good idea to monitor it for debugging purpose.

Issues:
1. Could trap in local maxima.

2. Slow convergence.



Standard errors for the EM estimates — 2/30 —

Numerical approximation of the Hessian matrix

Note: /() = observed-data log-likelihood

We estimate the gradient using
ol(@) O+ d;e;)) — (O — de;)
90, 25,
where ¢; is a unit vector with 1 for the ith element and O otherwise.

{16)); =

In calculating derivatives using this formula, generally start with some medium size
o and then repeatedly halve it until the estimated derivative stabilizes.

We can estimate the Hessian by applying the above formula twice:
l(9+ 6iei + 5]'6]') — 1(9 + 6iei — 5j€j) — 1(9 — 6i€i + 5jej) + l(@— 5,‘6,‘ — 5]'6]')

{Z.(Q)}ij ~ 455
Y]




Standard errors for the EM estimates — 3/30 —

Louis estimator

Louis TA (1982) Finding the observed information matrix when using the EM
algorithm. J R Statist Soc 44: 226-233.

Problem setup:
lC(QlyobS’ Ymis) = lOg {f(Y0b89 Ymisle)}

lO(Qlyobs) = 10g {ff(Y0b87 Ymisw) dymis}

ZC(9|YOb87 Ymis)a ZO(QlYobS) . gradients Of lCa lO
Ic(0)Yops, Yinis), 1o(0]Yons) : Second derivatives of ¢, Io



We can show that
(5) lO(9| Yobs) =E {ZC(GlYObS, Ymis)lYobs}

. . . ®2
(6) - lO(9|Y0bs) =E {_ZC(6|Y0b87 Ymis)lyobs} —E {[IC(9|Y0b87 Ymis)]

Yobs} + [Z.O(Qlyobs)]@2

Given MLE: 0 = arg maxy lo(8|Yops)
. -1 N
Louis variance estimator is: {—ZO(HlYobS)} evaluated at 0 = 6

Note:

e All of the conditional expectations (right hand size of equation 6) can be
computed in the EM algorithm using only /- and I, which are first and second
derivatives of the complete-data log-likelihood.

e Louis estimator should be evaluated at the last step of EM.



Proof of (5) — 5/30 —

Proof: By the definition of [5(0|Yops),

. alog {ff(Y0b87 ymis|6) dymis}
lo(0|Yobs) = 90

B 0 {ff(YObS’ ymisle) dymis} /38

ff(Y0b87 Ymislg) dymis
_ ff,(YOb89 Ymis®) dYmis
ff(Yobs» ymis|8) dymis

(7)



Multiplying and dividing the integrand of the numerator by f(Yobs, ymisl@) gives (5),
L bsdmish) £(Y, 1 y1il6) dyims

[ FYopss Ymisl6) dymis

| alog{f(yggs’ymle)}f (Yobs> Ymisl6) dymis

ff(YobSa ymislg) dymis
f(Yobs, ymisw)

ff(YOb89 ymisle) dymis
Jr ZC(0|YOb89 Ymis)f(ymis|YobSa 9) dymis
E

{ZC(HlyobSa Ymis)lyobs} .

iO(HlYobs) —

Jr ZC(9|YObS’ Ymis)

dy mis

For above, we used the following results
d10g { f (Yobs, Ymisl0)} _ J'(Yobs» Ymis|@)

00 - f(YobSaymislg)
ff(YObS, ymisle) dymis — f(Yobs|6)
Yo S» mislg
f( bs: ) ) — f@mis'YobSa Q)

J (Yobs|6)



Proof of (6) — 7/30 —

Note, expression (7) is
ff,(Yobs, ymisle) dymis
ff(YobSa Ymis|0) dYmis

We take an additional derivative of [o(6|Y,s) in expression (7) to obtain

ZO(Qlyobs) —

2
-l- (9|Y ) ff”(YObSa ymisle) dymis ff,(YobSa ymislg) dymis
) obs) — -
ff(Y0b89 ymis|9) deis ff(Yost ymis|9) dymis
f”(YOb87 Ymisle) deis : ®2
] — {lo(61Yobs)}
ff(Yobs, ymislg) dymis

_ ff,/(YObSa ymisle) dymis
f(Yobslg)

~{io@1Yar))” (8)



To see how the first term breaks down, we take an additional derivative of

’ dlo { (Yo S» mile)}
ff(YobSaymislg) dymis :f 2 f bs» ) f(YobSaymis|9) dymis

00
to obtain
62 IOg {f(Y0b87 ymisle)}
" YO Ss Ymis 9 d mis — YO Ss Ymis 0 d mis
ff(byl)y f 3000 J (Yobs» Ymisl0) dy
D10 { F (Yopss ymisl)} |
+fl 2 f(a;) 4 )}] f(YobSaymislg) dymis

Thus we express the first term in equation (8) to be

. . ®2
E {ZC(9|YObS’ Ymis)lYobs} +E {[ZC(Qlyobs, Ymis)]

Yobs} .



Convergence rate of EM — 9/30 —

Let Ic(6) and Io(0) denote the complete information and observed information,
respectively.

One can show when the EM converges, the linear convergence rate, denoted as
O**+D — §) /(6% — ) approximates 1 — I5(0)/1c(6).

This means that
e When missingness is small, EM converges quickly

e Otherwise EM converges slowly.
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e EM algorithm does not generate asymptotic covariance matrix (standard
errors) for parameters as a byproduct.

e The asymptotic covariance matrix for 6, denoted as V, can be found as
A -1
{—lo(QIYobs)} . However, the derivations can be difficult to evaluate directly.

e In contrast, —I-(0|Yos, Yimis), and hence Ioc = E{—Z'C(é|Yobs, Ymis)|YobS} is relatively
easier to evaluate.

e Louis estimator for covariance matrix, i.e.,
o o &2 o 2
E {—lc(9|Yobs, Ymis)|Yobs} - E {[lc(9|Yobs, Ymis)] Yobs} + [10(9|Yobs)]

requires calculation of the conditional expectation of the square of the
complete-data score function, which is specific to each problem.

e Supplemented EM algorithm (Meng & Rubin, 1991) obtains covariance matrix
by using only the code for computing the complete-data covariance matrix, the
code for EM itself, and code for standard matrix operations.



SEM algorithm (continued) — 11/30 —

e EM defines a mapping, M : 0%*D = M(6%)), where M(0) = (M,(0), ..., M,(0))

o Let {DM};; = (OM(0)/06:)|,-5, Which is a p X p matrix. We can show that
0D — 6~ DM(O® - 0),
which means DM is the rate of convergence of EM.

Proof: Because %D = M(6%) and 6 = M(6), 6%V — § = M) — M(6). By Taylor series
expansion on the right hand side, we have 6%V — 9 ~ DM (% — ).

e It has been shown that V = I (I - DM)~". Here, Ioc = E {—Z'C(@|Y0bs, Ymis)|Y0bs}.
This means,

— The observed-data asymptotic variance can be obtained by inflating the
complete-data asymptotic variance by the factor (1 — DM)~'. So
observed-data variance is larger (less information in the data).

— Smaller missingness — smaller DM — less variance inflation and faster
convergence.
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SEM consists of three steps
1. The evaluation of Ipc
2. The evaluation of DM

3. The evaluation of V
Evaluation of /oc = E {—Z'C(§|Yobs, Ymis)|Y0bS}

e Example 1 (Grouped Multinomial): Ic(0|X) = (x1 + y4)log 8 + (v, + y3)log (1 — 6).
e Example 2 (Normal Mixtures): lc(u, o, plx.y) = 3 yi; {log p; + log ¢(xilu . o)}
o f(Yons, Ymis) belongs to exponential family: [-(6|X) = S (X)'n(0) — B(O)

The Ic, Ic and [c are linear functions of x;, Y, y;; and S (X) (sufficient statistics).

Recall that we evaluate E(sufficient statistics|Yps, 8X) at every E step.

We easily obtain Ioc by plugging in E(sufficient statistics| Yo, 6) at the last E step,
no additional coding.



SEM algorithm (continued) — 13/30 —

Evaluation of DM = {r;;}

For a scalar 6, we can use the sequence 6% to obtain DM.

For a vector 6, we cannot do so, because 6**" — 6, ~ 3., DM, j(9§.") - 9)).

Each DM;; is the component-wise rate of convergence of the following “forced EM”

1. Run EM to get the MLE 4

2. Pick a starting point, 8, some small distance from 8 but not equal to 6 in any
component

(k)

3. Repeat the following until I IS stable

(a) Calculate 6% = M(H("‘l)) using one step of EM
(b) Foreachi=1,...,p,
i. Let 09() = y,...,01,6",0,11,...,0,) (Replace the ith element of § with
the ith element of 6%))
ii. Perform one step of EM on 8%(i) to obtain M[6%(i)]
ii. Obtain #9 = {M,[6%)] - §;} /{6 — b} for j=1.....p



SEM algorithm (continued) — 14/30 —

Note:

e The MLE 6 should be obtained at very low tolerance (e.g., € = 107'?)

(k) (k) _

e The final r;; is taken to be the first value of r;; (’?‘1)| < €, where k

can be different for different (i, j).

satisfying |r
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EM algorithm: the analytical integration of the likelihood required for the E-step
can be difficult.

Monte Carlo EM algorithm (Wei & Tanner, 1990) replaces the analytical integration
in the E-step by a Monte Carlo integration procedure with MCMC sampling
techniques such as the Gibbs or the Metropolis Hastings algorithm.

e MCE step: Simulate a sample Y1, . . ., Yimism from f(YmislYons, %) and
calculate

BOO) = m™ > 1e(0lY b, Yo )
j=1

o M step: 6%+ = arg maxy hP(6)

Choose m to guarantee convergence

Wei & Tanner recommend starting with small value of m and then increasing m as
6™ moves closer to the true maximizer.
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Suppose we have prior 7(6) and wish to find the mode of

log posterior = [o(6|Yops) + log m(6).

o E step: 19(0) = E {lc(9|Y0bs, Y...,) + log ()
= E {Ic(0lYops Yo

o M step: 0%V = arg max, 0 (0)

Yobs, e<k>} + log 71(6)




Bayesian EM: Example — 17/30 —

Observed data:

( ) multinomial{ 2+ 10 9}
V1, Y2,Y3 n, 1’ 2’2

Complete data:

( y3) ultino ial{ —1 — : }
X0, X1, V2, ~Mm m n; =, ———, —
0> X15 Y2, Y3 2’ 4
where xy + x1 = ;.
No Prior 0 ~ Beta(vy, v2) : m(6) = FF((VV‘)F(?Z))H(” D1 - 902D

lc(0]x0, x1,y2,¥3) | (x1 +y3)logf + yrlog(l —6)| (x1+y3+vi—1)logh+ (y» + v, —1)log(l —6)

W\ = E(x1169, y)) 0By, /(6P + 2) Same as left

g*+D (a) +y3)/(a) +y2 +3) (a) +y3+v1—1)/(a) +y2+y3+vi+vy—2)
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Generalized EM (GEM)

o E step: evaluate 7¥(9) as before

e M step: Choose 6%+ such that AP (8%*+D) > HB(HD)
(do not necessarily maximize A¥(6), just increase it.)

Note: This retains the ascent property of EM.

EM gradient algorithm (Lange, 1995): a class of GEM

e M step: Do one step of Newton-Raphson:

0000’ 00
Start with o® = 1; do step-halving until A®(8%+D) > L®(HH)

-1
o&D = g0 4 o ®g® where d® = — {82h(k)(9)} {8h(k)(9)}

o=g(k)

Lange pointed out that one step Newton-Raphson saves us from performing
iterations within iterations and yet still displays the same local rate of convergence
as a full EM algorithm that maximizes 2¥)(9) at each iteration.



ECM algorithm — 19/30 —

EM is unattractive if maximizing complete-data log likelihood 2¥(6) is complicated.

In many cases, maximizing 4©(0) is relatively simple when conditional on some of
the parameters being estimated.

Expectation Conditional Maximization algorithm (Meng & Rubin, 1993) replaces a
(complicated) M step with a sequence of conditional maximization (CM) steps.

o E step: evaluate /¥ (0) as before
e CM step: Partition 6 into T parts: 6 = (0y,...,0r). Fort=1,...,T, obtain
H§k+1)

_ k) c nlk+1) (k+1) (k) (k)
_argmgatlxh()(Hl e 055,607 ., 00))

Note:

e Sharing all appealing convergence properties of EM, such as ascent property

¢ Typically need more E- and M- iterations but can be faster in total computer time.
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Complete data:
a_le_y/ﬁ

Bl (@)

Yi,-...,¥n ~ gamma(a, B) with density f(yla,B) =

Observed data:
yo = censoring of the complete data

Complete-data log-likelihood
lc(a, By, ...,y =(@—1) Z log y; — Zy,-/ﬁ — n{a log B + log F(a)}

Definey=n"!'3.y;, 8 =n"'>.logy;, and y(a) = I''(a)/T'(a)



E step:

" = Elyo, o, )
™ = E(@lyo, o, 8)

Now, directly maximizing the Q-function is difficult, because of the alog 8 term. We
can, however, update a and 8 one by one, assuming the other is know.

CM steps

Given a'®, ,B(k”) = w® /¥
Given ,B(k+1), oD — ¢—1(T(k) _ logﬁ(kﬂ))
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ECM Either algorithm (Liu & Rubin, 1994) is a generalization of the ECM
algorithm. It replaces some CM-steps of ECM, which maximize the conditional
expected complete-data log likelihood, with steps that maximize the corresponding
conditional observed-data log likelihood.

o E step: evaluate /¥ (0) as before

e CM step: Partition 6 into T parts: 6 = (64,...,07).
Fortr=1,...,T, obtain either

gD Z are max AR, e 6,600 60
t

t+1°°

or

9§k+1) = arg mHaX 10(9(1k+1), %D o;, o ‘s 6\ | Yobs)

t S t+1° "
Note:
e Share with both EM and ECM their stable monotone convergence and simplicity

of implementation

e Converge substantially faster than either EM or ECM, measured by either the
number of iterations or actual computer time.
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For a longitudinal dataset of i = 1, ..., N subjects, each withr =1, ...,n;
measurements of the response, a simple linear mixed effect model is given by

Yy=XB+b;+¢€;, b~ N(Q, cri), & ~ N,.(0, (fﬁlni), b;, €, independent

Observed-data log-likelihood
1 1
l(ﬁa O-b, O-€|Y13'°',YN) — Z{_E(Yl XIIB) Zi (Yl XZIB) zlog |zl|},
where {£;}, = 07 + o2 and (X}, = o for ¢’ # t.
e In fact, this likelihood can be directly maximized for (8, o}, %) by using
Newton-Raphson or Fisher scoring.

e Note: Given (o, 07) and hence %;, we obtain 3 that maximizes the likelihood by

solving
01(,8 O'b, 2|Y1,...

Z X5\ (Yi—XB) =0

N I'N
) ﬁ:(zxgzgxi) S,

i:l l:1



Example: Mixed-effects model (continued) — 24/30 —

Complete-data log-likelihood: b; are treated as missing data
Let € =Y, — Xlﬁ — b;. We know that

)=o) (5 20}

1 1 1 n;
lC(ﬁ,O-z,O-aE],...,fN,b],...,bN)E {_ zblz__logo-i_ 261‘,6i__110g0-z}
Z 20'b 2 20_6 2

The parameter that maximizes the ¢ is obtained as, given the complete data
N

2 -1 2
o, =N b;
i=1

(N -1 N
2 _ ’
oe=| ) m| D e

i=1 =1

S

@y
= ZXX) D XY, = by).

\i=1 i=1




Example: Mixed-effects model (continued) — 25/30 —

E step: to evaluate
E ( biz Y., IB(k)’ O'Z(k)’ O_g(k))
E (el-'e | Y;, B9, O'I(f), aﬁ(@)
E(bi | Y. Y.\, o2%)
We use the relationship
E(b; | Y) = {E(b; | Y)Y + Var(b; | ).

Thus we need to calculate E(b; | Y;) and Var(b; | Y;). Recall the conditional
distribution for multivariate normal variables

Y; X; 2 n: L 2[11- 2 n:
_ N ,3, abe,enzi,ae ,(fbezl , e =(1,1,...,1)
b, 0 oLey. o, ’
LetX; = O'ienie,’,li + o2I,,. We known that

E(bi | Y) =0 + e, X (Yi = Xif)

2 2, 5-12
Var(b; | V) = o, — o€, Zi 0.



Example: Mixed-effects model (continued)

— 26/30 —

Similarly, We use the relationship
E(e€ | Y;) = E(€/ | Y)E(e | ¥)) + Var(g | ¥)).

Y; _ N Xip O'zenl.e,’% + o2l,, o, |
€ 0 ) o1, ol
LetX; = O'I%enie,’,li + o2I,,. Then we have

E(g | V) = 0+ o227\ (Y; — X;B)
Var(e; | V;) = 021, — o057

We can derive

M step of standard EM algorithm

N
2(k+1 -1 2 k 2(k 2(k
o, V=N ) B Y0P, o)
i=1

(N -1

ZE(e 617,89, 03", o2®)

—1

2(k+1) _

e

n;

\ i=1

(N
ﬁ(k+1) _ Z
\i=1

=1



ECME algorithm: Mixed-effects model (continued) — 27/30 —

M step of ECME algorithm
e Partition the parameter vector (3,07, 02) as 8 and (o, 077)

e First maximize complete-data log-likelihood over (o7, 02), given by (1) and (2)

2(k+1) O_2(k+1)

o Given (0", 02 Y), we can calculate =" = 07" Ve, el + o2 VI, and
obtain S that maximizes the observed-data Iog likelihood

ZX Z(k+1) ZX Z(k+1) Y,.

ﬁ(k+1) _
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Aitken’s acceleration method (Louis, 1982)

Suppose 8% — §, as k — co. Then

é — H(k) + i [9(k+h+1) . 9(k+h)] .

=0
Now
glrne2) _ gkthsl) — prgrhiy _ prgkehy M : mapping defined by EM
~ J(OF) [0(’”’”1) - 8“‘””] J : Jabobian of M
~ J(H(k)) [9(k+h+l) _ H(k+h):|
~ | ](9<k>)}h+1 [ — 0]
Thus

0~ 0% + i {J(g(k))}h [Q(kﬂ) _ Q(k)]
h=0

~ 00 + {1 - J(H(k))}_l |61 — )]

by which we can produce the effect of an infinite number of iterations by the
following algorithm
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The algorithm:
1. From 6%, produce 6%+ using EM

2. Estimate (I = J(H(")))_1 by (I — f)_l (see below)

3. Compute 6! = g% + (1 - f)_l [ — o)

4. Use 6%V in step 1.

Louis (1982) showed 1
(1 = f) = Ioc (Io)™'

where Ipc = E{—ic(élYobs, Ymis)lYobs} and Iy can be obtained by the Louis formula.
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