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Outline — 1/66 —

1. Genetic variants and GWAS

2. Linkage disequilibrium

3. Statistical methods for single variant GWAS
4. Population stratification

5. Meta-analysis methods



Genetic terms — 2/66 —

e Genetic markers, variants, e.g., SNPs, Indel (Insertion, Deletion), Copy number
variation (CNV), Structure variation (SV, ¢,1KB)

e Minor allele frequency (MAF)

e Common Variants: Genetic variants (e.g., SNPs) with MAF> 5%.
e Genes

e Phenotypes or traits

e Genotype, quantified as values in [0,2] or 0, 1,2

e Linkage disequilibrium (LD)

See videos about introductions to the basic principles of genetics, e.g., genes,
SNPs, phenotypes, as provided by 23&me: https://www.23andme.com/genl01/



Studies of Human Genetics

— 3/66 —
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e Human genetic variants and sample sizes over past 20 years

Publication

NHLBI Precision Medicine Cohorts / TopMed
Haplotype Reference Consortium (Nature Genetics)
The 1000 Genomes Project (Nature)

The 1000 Genomes Project (Nature)

The 1000 Genomes Project (Nature)

Lipid GWAS (Nature)

Lipid GWAS (Nature Genetics)

HapMap (Nature)

HapMap (Nature)

Chr. 19 Variation Map (Nature Genetics)

Chr. 22 Variation Map (Nature)

Three Region Variation Map (Am J Hum Genet)
T-cell receptor variation (Hum Mol Genet)



DNA Microarrays (CHIP) — 4/66 —

e Microarrays (lllumina and Affymetrix) are used to genotype 0.5M — 1M SNPs
across the whole genome

e LD-information of the HapMap project has been incorporated so that the chips
provide adequate coverage of the entire human genome for most ethnicities.

e Customize chips with densely spaced SNPs within known genes regions
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Whole Genome Sequencing — 5/66 —

Introduction video of lllumina Sequencing technology
https://www.youtube.com/watch?v=fCd6B5HRaZ8

The Whole Genome Sequencing (WGS) Process

WGS is a laboratory procedure that determines the order of bases in the genome of an

organism in one process. WGS provides a very precise DNA fingerprint that can help
link cases to one another allowing an outbreak to be detected and solved sooner.
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21st Century Sequencing Costs

Moore's Law

National Human Genome
Research Institute

genome.gov/sequencingcosts

$1K
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http://genome.gov/sequencingcostsdata




WGS Analysis Workflow — 7/66 —

bel2fastq2 (5 hour)
Run folder (BCLs) Fastq

Isaac Aligner (5 hour)

BAM (sorted & mark-dup)
Isaac variant caller
(IVC)
(0.7 hour)

CNVSeg

Manta (0.2 hour) (0.7 hour)
Variants SV (VCF) CNV (VCF)
(SNP/INDEL)

SnpEft (1.1 hour)

Annotated variants (VCF) Split by chromosome file (EXCEL)

Total analysis time including statistics calculation (2 hour) — approximately 10 hour

DOI:10.5213/inj.1632742.371



1000 Genome Project 2008 - 2015 — 8/66 —

GOAL: Find most genetic variants with MAF > 1% in populations across the world.

e First project to sequence the genomes of a large number of people (2,504
samples)

e Largest public catalogue of human variation and genotype data,
http://www.1internationalgenome.org/

e 26 Different populations under 5 super populations

— AFR: African

— AMR: Admixed American
— EAS: East Asian

— EUR: European

— SAS: South Asian



TOPMed WGS Project 2015 - Present — 9/66 —

e NIH National Heart, Lung, and Blood Institute (NHLBI) sponsored the
Trans-Omics for Precision Medicine (TOPMed) program
https://topmed.nhlbi.nih.gov/

e Deep (30x coverage) whole genome sequencing for all of the collected samples
from ongoing disease-specific research projects

e WGS data are generated by seven sequencing centers

e University of Washington group is designated as the Data Coordinating Center
(DCC) and will coordinate phenotype information

e University of Michigan group is designated as the Informatics Research Center
(IRC) with responsibility for creating a unified variant call set

e The sequence and genotype data will be deposited to dbGaP
https://www.ncbi.nlm.nih.gov/gap



Summary of total sequencing progress over time

This chart shows a summary of the total genomes received by IRC over time

Remapped to build 38

Remapped to build 37
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Samples that have completed QC: 178,156 (as of 6/23/2021).
> 10'° sequenced bases, > 100x more data than the 1000 Genome Project.

http://nhlbi.sph.umich.edu



10'® sequenced bases
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Image: Patrick Porter @ Smug Mug



How Much Variation is There? — 12/66 —

Table 1 Number of variants in 40,722 unrelated individuals in
TOPMed

From: Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program

All unrelated individuals (n= 40,722) Per individual

Total Singletons (%) Average 5th percentile Median 95th percentile
Total variants 384,127,954 203,994,740 (53) 3,748,599 3,516,166 3,563,978 4,359,661
SNVs 357043141 189,429,596 (53) 3,653,423 3,335,442 3,380,462 4,125,740
Indels 27,084,813 14,565,144 (54) 195,176 180,616 183,503 233,928
Novel variants 298,373,330 191,557,469 (64) 29,202 20,312 24106 44,336
SNVs 275141134 177,410,620 (64) 25,027 17,520 20,975 36,861
Indels 23,232,196 14,146,849 (61) 4175 2,747 3145 7,359
Coding variation 4,651,453 2,523,257 (54) 23,909 22158 22,557 27,716
Synonymous 1,435,058 715,254 (50) 11,651 10,841 11,056 13,678
Nonsynonymous 2,965,093 1,648,672 (56) 11,384 10,632 10,856 13,221
Stop/essential splice 97,217 60,347 (62) 474 425 454 566
Frameshift 104,704 71,577 (68) 132 112 127 165
In-frame 51,997 29,110 (56) 102 85 99 128

Novel variants are taken as variants that were not present in dbSNP build 149, the most recent dbSNP version without
TOPMed submissions.

Taliun D. et. al., Nature, 2021.



TopMed variant distribution — 13/66 —

Fig. 1: Distribution of genetic variants across the genome.

From: Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program
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Genome-Wide Association Study (GWAS) — 14/66 —

o Key Goals of GWAS
— Test associations between each genetic variant or gene across the whole
genome and the phenotype of interest
— Understand the biological function of these associated loci (Challenging)
— Germ line risk prediction for diseases

e Rationale
— Most traits and diseases have complex genetic etiology: Many genetic

variants make small contributions (Polygenic)

— Significant genetic variants could be just correlated (in LD) with the true
causal ones

— Large sample size and whole genome sequencing data might be needed to
ensure enough power for identifying risk variants or genes
Types of Association Studies

— Quantitative and Dichotomous (i.e., Case-control studies) traits
— Family-based association study
— Population-based association study (our main focus in this lecture)



GWAS Procedure — 15/66 —

e Quality control (QC) of the study dataset: missing rate, HWE p-value, ancestry

e Choose a model/test for the phenotype of interest (e.g., linear regression model
for quantitative traits, logistic regression model for dichotomous traits)

e Significance level o = 5 x 1078
e Annotate biological functions and nearby genes of the significant SNPs

¢ Investigate the biological functions of significant SNPs or genes



MAF Spectrum and Genetic Effect Sizes — 16/66 —

Genetic architecture of complex traits

Family-based Sequencing
__Studies

Population genome/exome
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reference genotype
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variants with Array-based

intermediate effect genotyping and
genotype igputation

Rare variants of

Hocest small effect N
1.1 very hard to deti Deep Whole Genome
' by genetic means . .
Sequencing with
Low Large Samples?

Allele frequency



Sources of Association — 17/66 —

Causal association best
Genetic marker alleles influence susceptibility

Linkage disequilibrium useful

Genetic marker alleles associated with other nearby
alleles that influence susceptibility

Population stratification misleading
Genetic marker is unrelated to disease alleles



Linkage Disequilibrium (LD) — 18/66 —

e Linkage Disequilibrium (LD) is the non-random association of alleles at
different loci in a given population..

e Nearby markers are likely to be correlated, why?

e Origin of LD?



Linkage Disequilibrium (LD) — 19/66 —

* Consider the history of two neighboring single nucleotide
polymorphism (SNP)

* SNPs exist today arose through ancient mutation events...

Before Mutation
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After Mutation
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Linkage Disequilibrium (LD) — 20/66 —

* One SNP arose first and then the other ...

Before Mutation
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Linkage Disequilibrium (LD) — 21/66 —

* Recombination generates new arrangements for the ancestral alleles

Before Recombination

=t
C G
.. ©
c C
After Recombination
A G
C G
C C




Linkage Disequilibrium (LD) — 22/66 —

* Chromosomes are mosaics

Anceston

* Extent and conservation of mosaic pieces depends on
* Recombination rate present.day
* Mutation rate
* Population size
* Natural selection

* Combinations of alleles at very close markers reflect ancestral haplotypes



Linkage Disequilibrium (LD) — 23/66 —

With observed frequency p, and pp for two alleles A and B at two markers and
frequency pap for alleles A and B appear together:

Dasp = paB — PAPB

e Define a random variable X, to be the number of allele A present at the first
marker, 0,1, 2

e Define a random variable X to be the number of allele B present at the second
marker, 0,1, 2
e Correlation between these two random variables is given by
Cov(Xy4, Xp) Dyp

" VaraVarXs)  pa(l — popa(l— py)

V'AB

e 1> between these two random variables is given by
Dip

= pa = pops(l = pp)

)
iy




Linkage Disequilibrium (LD) — 24/66 —

Genotype data for multiple samples from a population
« SNP1:x1=(0,1,2,1,0,0, ..)
« SNP2:x2=(1,1,2,0,0,0,..)
* r2 = (correlation(x1, x2) )2
* Raw r? from CHR22

Dawson et al, Nature, 2002



Linkage Disequilibrium (LD) — 25/66 —

Linkage Disequilibrium in Three Regions

2q13 13q13 14911

(63 markers) (38 markers) (26 markers)

Abecasis et al, Am J Hum Genet, 2001



Linkage Disequilibrium (LD) — 26/66 —

Comparing Populations ...

0 50 100 150 200 250
Distance (kb)

LD extends further in CEPH and the Han/Japanese than in the Yoruba
International HapMap Consortium, Nature, 2005



Linkage Disequilibrium (LD) — 27/66 —

Why LD is Important for Association Studies?

* SNPs in strong LD with disease variant are good
proxies for disease variant

Ihdirect > Dise ase
assoclation _.="" phenotype
e’ Direct Direct
» association association
{ { Haplotype
Typed marker locus Unobserved causal locus

_ . _Balding, 2006
* If testing (unobservable) disease variant for

association would yield chi-squared statistic X?, testing
variant in LD yields r’X?

* Model LD among multiple markers in joint tests to
improve power



Statistical Methods for Single Variant Association Test — 28/66 —

1. Contingency table based tests (only for dichotomous traits)

(a) Genotypic Association test (2-df test)
(b) Genotypic Association test with dominant/recessive disease models
(c) Allelic Association test

2. Regression based tests

(a) Logistic regression based tests for dichotomous traits
(b) Linear regression based tests for quantitative traits



Genotypic Association Test — 29/66 —

e Compare genotype frequencies in cases and controls in a 2 x 3 table

e Not assuming any specific disease model

AA Aa aa | Total
Case |njg nip npp| ny.
Control noo Noi1 No2 | No.
Total ng ni No| n

The genotype/codominant test: D — disease status; G — genotype

Hy : Pr(D = 1|Geno = AA) = Pr(D = 1|Geno = Aa) = Pr(D = 1|Geno = aa)
H, : At least one inequality holds

The standard 2 df Pearson y* test of independence for a 2 x 3 table is:
X; = Z Z (0;;— Ei)’|E;; ~ x° df=2
i=0,1 j=0,1,2

— O;; = n;;: observed count in the cell
— E;; = n;n_j/n: expected count under independence: npp-;pg=; = n(n; /n)(n ;/n)



Dominant or Recessive Disease Models — 30/66 —

e Compare frequencies of AA or Aa with aa in cases and controls in a 2 x 2 table
e Assume dominant or recessive Mendelian disease model

e More powerful than genotype test if the disease model is true

With dominant disease model:

AA or Aa aa  Total
Case | njg+ny;; np| ng
Control | ngg + ng; ngy | no.
Total no+ny, no| n

Hy : Pr(D = 1|AA) = Pr(D = 1|Aa) = Pr(D = 1|aa)
Hy : Pr(D = 1|AA or Aa) # Pr(D = 1|aa)

The standard 1 df Pearson y? test of independence for a 2 x 2 table is:

X; = Z Z(Oij_Eij)z/Eij ~ x5 df=1

i=0,1 j=0,1

How to obtain E;;?



Allelic Association Test — 31/66 —

e Compare frequencies of alleles A and a in cases and controls in a 2 x 2 table

e Assume additive disease model: the risk associated with the heterozygote
genotype is intermediate between the two homozygotes. (mostly used model)

e Assume HWE: allele frequencies in a population will remain constant from
generation to generation, with random mating and in the absence of other
evolutionary influences (selection, mutation, genetic drift)

e The allele test is the most powerful test for additive model.

A a Total
Case nig = 2ny0 +ny1 Ny = Ny + 2n10 | 2nq

Control Noa = 27100 + Nno1 Nog = No1 + 2]1()2 211().
Total ng=2nog+n; ng,=n;+2n, | 2n

The allele test:
Hy :Pr(AlD =1) = Pr(A|D = 0)
The standard 1 df Pearson y* test of independence for a 2 x 2 table is:

X] = Z Z(Oij_Eij)z/Eij ~ x5 df=1

i=0,1 j=0,1



Measure of Association Strength: Odds Ratio

— 32/66 —

Exposed (E) Not Exposed (E)

Case (D) a

Control (D) c

b
d

Odds ratio:
R— P(D|E)/P(DIE)

~ P(DIE)/P(DIE)
_ P(E\D)/P(E|D)

~ P(E|D)/P(E|D)
= ad/bc

— Exposed = carry certain genotype
— Counts pertain to individuals, not alleles.



Measure of Association Strength: Odds Ratio (continued) — 33/66 —

Genotype Model (E=aa)

AA Aa aa ORper = (ny1n02)/ (no1n12)
Case N N1 N2 ORpom = (n10n02)/(noon12)
Control | ngg no; ng

Dominant Model (E=aa)
AA or Aa aa
Case | njo+ny np ORp = [(n1o + ni)ne2l/[(neo + no)ni2]
Control | ngg + ng1 1o

Allele Model (E=a)

A a
Case |2njp+ny ni +2np OR; = [(2nyo + ny1)(no1 + 2np2)1/[(2ngo +
Control 2110() + ngr nop + 21102 I”l()l)(l’lll + 2n12)]
Trend Model

estimate OR by maximum likelihood OR7: logistic regression



Calculating Confidence Interval for Odds Ratio — 34/66 —

In large samples and when OR is estimated from the contingent table, log((/ﬁ?) IS

approximately normally distributed, with estimated variance
— I 1 1 1
Var[log(OR)] ~ =+ =+ — + —,
a b ¢ d

where a, b, c, d are the cells contributing to the estimation of OR.

A (1 — @)100th confidence interval for the population OR :

expO2OR=21-012 \/ Var[log(OR)]

where z(1_q/2) IS the (1 — «/2)100th percentile of the standard normal.



Logistic Regression

— 35/66 —

— Y = dichotomous phenotype
— X = a coding for the genotype

Genotype | Codominant Dominant Recessive Additive

AA | X=0, D
Aa X=(,0"
aa X =(0,0)"

X=1 X=1
X=1 X=0
X=0 X=0

Assume a logistic regression model:

Pr(Y = 11X)
S Pe(Y = 01X)

]Z,B()+CL’C+,81X

where S is the intercept, a is the coefficient for covariates C, and S, is the genetic

effect-size (i.e., log(Odds-Ratio) ).

H()I,Blz()

H,:6,#0



Logistic Regression vs. Contingency Table — 36/66 —

e Likelihood ratio test of logistic regression = chi-square tests for appropriate
contingency tables.

e The estimated coefficients = log of the corresponding odds ratios.

e For the additive model, the trend test ~ likelihood ratio test from logistic
regression with additive coding for X.

e Because the logistic regression operate on variables defined for individuals, not
chromosomes, there is no underlying assumption about HWE.



General Linear Regression

— 37/66 —

Extension to other phenotypes:

e The phenotype Y can be a count or a continuous outcome.

e The generalized linear model is given by
SIE(Y|X)] = Bo + aC + 51X

where g(.) is a link function.

HO:,BI:O

H,: B #0



QC

— 38/66 —

Additional Factors Important for GWAS: batch effects, population stratification

pre-QC dataset

U

sample
quality

- —~—

\i

batch effect
analysis

'

marker
quality

*D‘

sex average call rate marker
inconsistencies and MAP genotyping
check ~— call rate
i i \
sample population exclude HapMap duplicate
relatedness stratification low MAF concordance sample
—l SNPs concordance
% J' L |
save
sample eigenvectors one plate vs. all A/
genotyping for PCA others GWAS-look ,
call rate analysis at number of minor allele
significant hits frequency
l A4
— S
compute genomic Hardy-Weinberg
control A if equilibrium
necessary \
Y l }
remove remove
poor-quality > - poor-quality
samples SNPs

Figure1.19.1 Aflowchart overview of the entire GWAS QC process. Each topic is discussed in detail in the corresponding
section in the text. Squares represent steps, ovals represent input or output data, and trapezoids represent filtering of

data.

DOI:10.1002/0471142905.hg®119s68



Quantile-Quantile (QQ) Plot — 39/66 —

— Obtained —log 10(p-values) from GWAS

— Sort all —log 10(p-values) from most significant to least

— Pair these with the expected values of order statistics of a Uniform(0, 1)
distribution

— Under NULL hypothesis (no association), p-values follow a Uniform(0, 1)
distribution

With inflated type | error Without inflated type | error
) B '
=R . 3 w1
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o ] ra o 7
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—log10(expected p—value) —log10(expected p—value)



Visualize GWAS Results: Manhattan Plot — 40/66 —

— Scatter plot of —log 10(p-values) across all genome-wide variants
— Visualize signal peaks




GWAS Results
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Visualize GWAS Results: Locus Zoom Plot

— 42/66 —

— Zoom into the peak region with gene annotations
— Visualize r* between the specified significant (purple diamond) signal and its

neighbor SNPs

— Visualize recombination rate

Locus #8.2: rs144629244
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NHGRI-EBI GWAS Catalog — 43/66 —

>157K Associations
from 4220 Publications

2019 July

@ www.ebi.ac.uk/gwas

https://www.ebi.ac.uk/gwas/



Population Stratification — 44/66 —

Population stratification (or population structure) is the presence of a systematic
difference in allele frequencies between subpopulations, possibly due to different

ancestry.

Africa Europe Middle Central/ East Oceania America
East South Asia Asia

AV SedD
otostazs (N ’ .V ; ‘ ’ 4 Y
N L L IXYY

Allele frequencies at three microsatellite loci (Rosenberg N.A., Hum Biol. 2011).
Each of the three loci has exactly eight alleles. In most of the pie charts, one or
more alleles is rare or absent.




Population Stratification Causes — 45/66 —

Basic cause of population stratification is non-random mating, often due to human
migration and physical separation.

Human migration:
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Population Stratification Consequences — 46/66 —

1. Population stratification is a major con-founder in genetic association studies,
which can lead to false significant association that are not due to a disease

locus;

2. Often lead to inflated false positive findings for studies including a mixture of
different subpopulations;

3. Often seen when case-control ratio (or disease prevalence) is different across
subpopulations, or when phenotypes differ among subpopulations.



How to Address Population Stratification — 47/66 —

Straightforward approach:

e Carefully select samples such that cases and controls are ethnically matched

e Stratify analyses by ethnicity and then combine results by meta-analysis
Potential problems:

e Self-report is not always reliable

e Considerable variability exists even within race
Widely used approach:

e Account for inflated false-positive rate (genomic control factor)

e Adjust for ancestry quantified by genetic markers (Principal Components
Analysis)

Alternative approach:

e Family-based association analysis



Genomic Control Factor — 48/66 —

Genomic Control Factor is used to control for systematic inflation of type | error.

The idea is that the statistic T is inflated by an inflation factor A (i.e., genomic

control factor) so that
T ~ /l)(%

where A can be estimated by

A = median(Ty, T, . .., Ty)/0.456

e M is the number of independent tests, though in practice all tests are included.
e The denominator is the median of y+ distribution.

e 1 should be 1 under H,.
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Divide all chi-square test statistics 7' by the estimated inflation (GC) factor to get
corrected test statistics
T/A ~ x7

under H, of no association.
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Limitation:

e Genomic control corrects for stratification by adjusting association statistics at
each marker by a uniform overall inflation factor.

e However, some markers differ in their allele frequencies across ancestral
populations more than others.

e Thus, the uniform adjustment applied by genomic control may be insufficient at
markers having unusually strong differentiation across ancestral populations
and may be superfluous at markers devoid of such differentiation, leading to a
loss in power
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The principal component analysis (PCA) has become one of the standard ways to
adjust for population stratification in population-based GWAS (Price et. al., Nature

Genetics, 2006).

e Apply PCA to genotype data to obtain top principal components (PCs) that
explain most genotype data variation

e GWAS tool PLINK (Purcel at. al., 2007) can be used to generate top PCs,
https://www.cog-genomics.org/plink/

e Top PCs will reflect sample ancestry

e Include top PCs as covariates in GWAS
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Top PCs often reflect geographic distribution (e.g, PC1 - PC4 as follows)
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Li et al. Science. 2008; Jakobsson et al. Nature. 2008.
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PC1 vs. PC2 among European samples
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Notation:
— M : Number of SNPs
— N : Number of subjects
—Z = (z;;) : an M x N matrix of standardized genotyped coded for the additive model for
the ith SNP in the jthe subject, i.e.,

zij = (Xij = X))/ \2pi(1 = py)

where p; denotes the MAF of the ith SNP.

Algorithm:
— Compute the N x N variance-covariance matrix as * = Z'Z/(N - 1).
— Compute the eigenvalue decomposition of Z: e.g., using R function eigen
— Select the top K eigenvalues that are significantly large (K = 5 or 10) by a scree plot.
— Include the K eigenvectors (PCs) as additional covariates in the generalized linear
regression models that are used for GWAS.
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e Intuition: Under the null hypothesis of no association, an affected child is
equally likely to inherit either allele at the tested marker locus; allele not
inherited by the affected child serves as a matched control.

— Transmission disequilibrium test (TDT): Father-Mother-AffectedChild trios.
Spielman et al. 1993. American Journal of Human Genetics

— Discordant alleles tests: Affected-Unaffected siblings

— Family-based association test (FBAT): General tests that can be used for
both dichotomous and quantitative traits

— Quantitative TDT (QTDT): Variance-Components based test of transmission
distortion for quantitative traits
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e Sib-Pair: discordant sib pairs
e 3 sibs: discordant sib trios (one discordant sib pair and one additional sibling)

e Power is estimated for 1500 families or 1500 cases and 1500 controls under an
additive mode of inheritance and an odds-ratio of 1.4.
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e Combine summary statistics (e.g., p-values, odds ratios, effect-sizes) across
multiple studies for the same phenotype

e Improve power for increasing total sample size
e Address between study variances (due to population stratification, study design)

e Avoid the hassle of sharing individual-level genotype/phenotype/covariate data
(e.g., privacy protocols)

e Yang et. al. (2017) showed that meta-analysis with summary results can be
statistically equivalent to joint analysis using individual-level data
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e Fisher's Method: combining p-values
e Stouffer’s Z-score method
e Fixed Effect Model: combining standardized effect-sizes

e Software: METAL (Willer et. al., 2010, Bioinformatics.)
https://genome.sph.umich.edu/wiki/METAL_Documentation
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Given summary statistics from individual studies of the same genetic variant
e p;. p-value from the kth study, k=1,...,K

The test statistic
=2 ) log(po) ~ Xoax,
k

Derivation:

e Under the null, each p, follows UJ0, 1]
e The —log of a uniformly distributed value follows an exponential distribution

e Scaling a value that follows an exponential distribution by a factor of two yields a
quantity that follows a y? distribution with 2 df

e The sum of K independent y? values follows a y? distribution with 2K df
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Given summary statistics from individual studies of the same genetic variant

e 1. sample size of the kth study
e p;: p-value from the kth study
o (3. effect-size for the kth study

Then, we obtain

o Z, = sign(B)® (1 — px/2), where @ is standard normal CDF.
o wi = +/ni: weight

Stouffer’'s Z statistic is given by
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Inverse-variance estimator

Given summary statistics from individual studies of the same genetic variant

e 3;: genetic effect-size from the kth study

e v;: variance of j3; from the kth study

Then, consider

— 2k WiBk
2k Wk

_ 1
L d Vbeta = Yewk

, wir = 1/vk

e Inverse-variance weighting

The Wald test statistic is given by
ﬁmeta

meta

~ N, 1)
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e Replication study with independent datasets

e Fine-mapping GWAS loci while accounting for functional annotation (Yang et. al.
2017 AJHG; Schaid et. al., 2018, Nature Reviews Genetics)

e Biological interpretation with gene ontology/pathway analysis

e Biological replication (e.g., CRISPER-CAS9)
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e PLINK (Purcel et. al., 2007): https://www.cog-genomics.org/plink/, data
preparation, QC, GWAS, generate top PCs

e EPACTS: https://github.com/statgen/EPACTS, GWAS with genotyped and
imputed doseage data, Manhattan plot, QQ plot

e Locuszoom (Boughton et. al., 2021): https://my.locuszoom.org/,
Manhattan plot, Locus zoom plot, visualize other public GWAS results

e METAL (Willer et. al., 2010, Bioinformatics.):
https://genome.sph.umich.edu/wiki/METAL_Documentation,
meta-analysis with GWAS summary statistics (Z-scores, p-values, effect sizes,
standard deviation of effect sizes)

e DAVID: https://david.ncifcrf.gov/, Gene ontology analysis
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