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Introduction

‘The Center for Biomedical Imaging Statistics (CBIS) conducts research on statistical methods for analyzing data
from biomedical imaging studies. CBIS research includes brain, heart, breast, and prostate imaging, among
others. CBIS currently develops statistical methods for data acquired from various imaging modalties including
functional and structural magnetic resonance imaging, positron emission tomography, single photon emission
computed tomography, and digital mammograhphy.

CBISis a part of the Rolins of Public Health (RSPH) at Emory University in Atlanta, GA, and we actively
collaborate with other imaging scientists around the university. We are physically located in the D
Biostatistics in RSPH.

Contact Us

CBIS s located in the Rollins School of Public Health at Emory University. We are on the 3rd fioor of the Grace
Crum Rolins Buiding at Emory.

For more information, please contact

Department of Biostatistics
Rollins School of Public Health
Grace Grum Rollins Building
1518 Clifton Road, N.E.
Alanta, Georgia 30322

(404) 712-8646
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This talk is based on the following papers:

> Lukemire®, J., Kundu, S., Pagnoni, G., and Guo, Y. (2019+). Bayesian joint
modeling of multiple brain functional networks. JASA A&CS, Accepted
conditional on reproducibility review. https://arxiv.org/abs/1708.02123.

» Higgins®, I., Kundu, S. and Guo, Y., 2018, Integrative Bayesian analysis of
brain functional networks incorporating anatomical knowledge, Neurolmage,
Volume 181, Pages 263-278

* indicates student advisee
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Brain Tissues

Two main types of brain tissue:
Dendrite Axon
terminal

* Gray Matter
— Makes up the surface of the
cortex
— Composed of neuron cell bodies,
dendrites

Node of 3
Ranvier

» White Matter Al

— Lies beneath the cortex

— Composed of myelinated axons
(fiber tracts) that connect nerve
cells

— Enables communication between
grey matters by carrying electrical
impulses.
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Types of Connectivity

Functional Connectivity: Structural Connectivity:

temporal coherence of anatomical connections

activity between brain areas (white matter tracts) between
brain areas

(fMRI data) (DTI data)
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Functional Connectivity

There are many different approaches to studying functional connectivity, each
with their own advantages and drawbacks.

» Seed voxel/ROI analyses - pick out a region of the brain and measure the
correlation of its time course with the time courses of all other regions

» Graph Theoretical Approach - View the brain as a set of nodes and edges -
estimate the edge set.

» Based on Gaussian graphical models (GGM) which will focus for this talk
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Functional Connectivity

Schematic for generating brain networks from fMRI time series data. (Simpson et al., 2013)
t

Voxel/ROI time courses- g B

Threshoid

Connection Matrix AdjacencyMatrix
J

> Analyze

» Brain Network Representation: V x V matrix ( V: number of nodes).
Z: covariance matrix for marginal connectivity
Q: precision matrix for direct connectivity

» Steps in brain network analysis:
- Defining nodes (brain parcellations)
- Network Estimation
- Thresholding
- Network comparisons between groups (e.g. normal vs. depressed)
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Functional Connectivity - Challenges

Current challenges in brain network analysis:

» Often unsatisfactory reliability and reproducibility due to low signal to noise
ratio in fMRI

» Network comparisons between groups may not be straightforward

» No obvious way to fuse data across multiple fMRI experiments or across two
imaging modalities

> Others ...
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Functional Connectivity - Objectives

» We will integrate data from multiple imaging modalities and experiments in a
manner that improves network estimation accuracy and reproducibility

> In the first part, | will describe an approach for joint estimation of multiple
group level functional networks corresponding to different experimental
conditions experienced by each individual in a group

> In the second part of the talk | will describe an approach for fusing fMRI and
DTI data, with a goal to guide the estimation of functional connectivity using
structural connectivity information

11/52
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Bayesian Joint Network Learning

A Bayesian approach for joint learning of multiple related networks corresponding
to different experimental conditions, longitudinal visits and so on

12/52
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Motivating Stroop Task Application

Congruent Trial Incongruent Trial

(

Yellow

Exertion

Relaxed
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Stroop Task - Research Questions

» How does the brain network differ between (a) exertion vs relaxed task
performance; and (b) task performance and passive fixation (resting state)?

» Data available from same subject on multiple experimental conditions

» Hence, the networks for fixation, EXR and RLX tasks share some
similarities, and also differences

» Important to develop an approach that can borrow information across
experimental conditions in order to compute these networks

14/52
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Data Format

Each subject’s prewhitened P X T data are concatenated along the time dimension for
each group:

> P: number of nodes

> T: number of observations per subject

> Ny: number of subjects in group g

Yg
Obs over time(T) Obs over time(T) Obs over time(T)
Node 1 b
Node 2 cee
. .
. . cee .
. . .
Node P cee
PxT PxT PxT

Total data matrix size for each group: P X TN,
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Network Estimation - Gaussian Graphical Model

» Model the observed data across the p nodes for group g at time t as
Yo~ Np(0.92,") fort =1,..., TN,

» Estimate a sparse precision matrix - elements that are 0 correspond to
absent edges, elements that are non-zero correspond to edges. Larger |wy|
are stronger connections.

Graph Example

16/52
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Graphical Models

View the brain as a graph - set of regions (nodes) and the connections between
them (edges). Edges represent functional connections.

» Use anatomically defined ROIls as nodes & P

average across voxels within each ROL. s ”S‘ ,
LY /W Te
» We use the Power atlas having 264 regions é“‘t?,«’/ 4 . ;”)/
(Glasser et al., 2016). »«*“;;‘} JERIA T
» Normality assumption reasonable for ’%ngé,"k" e
modeling fMRI data - GGMs & 2

» Edges can be determined based on the
patterns of zeros in sparse precision matrix
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Penalized Network Estimation

» Key is getting sparse estimates of the precision matrix - one possibility is
penalized approaches

» Graphical lasso (GL) approach is popular (Friedman et al., 2008).

Q = argmin {tr(SQ) log det(2) + 4 Z Iwkll}

2 Kl
where S := sample covariance, A is a penalty term (larger A implies more
sparse networks), and wy is the (k, /)th element of Q (FC strength).

» Not equipped to jointly compute multiple networks
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Joint Estimation Approaches

Penalized Approaches Extend idea of graphical lasso by penalizing the
differences between the two estimated graphs (Guo et al., 2011;
Danabher et al., 2014). Example of fused lasso penalty from JGL

P(R) = Z Z lwgul + A2 Z Z lwgn — Wy il

k#l g= k<l g#g’

Edge differences across groups

Bayesian Approaches Typically operates by jointly learning probabilities for each
edge across multiple networks. Limited development and not
scalable to high dimensions (Peterson et. al, 2015). Some recent
work on jointly estimating multiple temporally dependent brain
networks (Qiu et al., 2016; Lin et al., 2017) not applicable here
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Joint Estimation - Motivation & Goals

> Similar edge structure does not mean similar edge strengths - smoothing
over edge strength in JGL may fail to capture this.

» Penalized approaches, although often scalable, only provide point estimates
- can have a direct adverse influence when comparing networks

» Bayesian approaches characterize uncertainty but often not scalable

» Our goal: Develop scalable Bayesian model to pool information across
groups to estimate the edges without forcing similarity in the edge strengths.

» Use edge probabilities to compare networks

» We introduce a flexible model for edge probabilities that pool information
across experiments while also allowing network specific differences

20/52
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Bayesian Joint Network Learning (BJNL) - Overview

» Assume G experimental conditions, with Ty, ..., Tg scans respectively

» The pre-whitened fMRI measurements for g-th experimental condition are
modeled as Y((g) ~ Np(0.RQ,"), t =1,...,NT,,g =1...., G, where

P
= 05;1 H E wg kkr = {]_[ Wy, k/N Wg Kl 0 Tgk/) (1 - Wg.k/)DE(ng’k/;/lo)}

k<l
> Here Q, ¢ M;, space of all p X p symmetric pd matrices

» 1(82g4) looks like the Bayesian GL prior but has a spike & slab flavor to it

» We denote 7(£2,) as the spike and slab graphical lasso prior

21/52
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Group-Specific Edge Strengths

v

The spike and slab graphical lasso prior induces sparsity in ©

v

For edge k, I in group g this prior is akin to

(W1l Wg i, T;k,, Ao) o Wy g N(wg,; 0, T;k/) +(1 — wy ) DE(wg.u; Ao)
—_———— —_— ——
slab spike

v

The edge weights w4 are the probability of a connection between nodes k
and /in group g

v

Larger Ay leads to sharper spike

v

We pool information across groups to model the edge probabilities

22/52
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Pooling Information across networks

> We use h(Wg k) = Bou + X a—i Baklig=gy h(-) == link function
> Uses information across all groups to estimate the shared effect 5o /-

» Non-zero differential effects S « define edge differences across networks

» How do we model the shared and differential effects?

» p nodes imply @X(G + 1) coefficients - curse of dimensionality

» Cluster the edge probabilities using a Dirichlet Process Mixture prior:

Wi = h(Bo.sBaxi)s Bosi ~ for Baw ~ Ty
fy ~ DP(MPy), f; ~ DP(MP,), Py = N(0,0%) is base measure

23/52
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The model is purposely overcomplete, i.e. G + 1 parameters in the weights
model when G parameters would suffice.

Allows us to pool information in a systematic manner, and ensures
computational efficiency and interpretability Does not pose any problems
w.r.t. identifiability of functionals of interest

Motivated by existing literature on modeling binary or ordered categorical
responses using mixture distributions (Kottas et al., 2005; Jara et al., 2007;
Gill and Casella, 2009; Canale and Dunson, 2011).

DP on the shared and differential effects reduces the sensitivity to the link
function and enables straightforward posterior computation.

24/52
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Posterior Computation

» Posterior computation is carried out via Markov Chain Monte Carlo.

> All updates are Gibbs

» Standard tools such as slice sampler are used for updating DP related
parameters

» The precision matrix is updated one column at a time using closed form
posteriors

25/52
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Simulation

Goal: compare performance to other sparse precision estimation techniques.
» Generate data from two groups.
» Number of nodes (p): 40, 100.

» 3 network types : Erdos-Renyi (random graphs), Watts-Strogatz (small-world
networks), scale-free networks.

> 3 levels of similarity across graphs (0.25, 0.50, 0.75).

60 subjects, each with 200 time points (typical fMRI study size), 50 replicates per
combination of settings.

26/52



Joint Estimation Techniques Separate Estimation Techniques

» Bayesian Joint Network Learning » Graphical Lasso (GL) - Estimate
(BJNL) - pool information across each group separately, L1 penalty
groups to estimate the edge on the off diagonal elements
probabilities (Friedman et al., 2008). Penalty

» Joint Graphical Lasso (JGL) - function: P(Qg) = A1 Xjux lwgjul
smooth over edge strengths to pool » Horseshoe graph estimator (HS) -
information (Danaher etal., 2014). Bayesian approach. Shrinkage of
Penalty function: R each off-diagonal element
P(S2) = A Kjur Bges Il + (Carvalho et al., 2010; Li et al.,

A2 Z/#k Zgig’ |(Ug,jk - wg’,jkl 201 9)

JGL has two tuning parameters, GL has one. We find the optimal values for them
using a grid search over 30 values. Computationally demanding
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C - 40 Nodes
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Erdos-Renyi Random Graphs

L1 Error

- 40 N
Exdos-Renyi Network Simlations

TPR

FPR
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Boxes, left to right: BJNL (blue), JGL (green), GL (red), Horseshoe (HS)
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Simulation Results - Scale-Free Random Graphs

AUC L1 Error TPR FPR
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Simulation Summary

» BJNL outperforms the other methods in both edge detection, differential
edge detection, and L1 error.

» JGL is too conservative - misses many of the differential edges. We believe
this is due to smoothing over the edge strengths, which makes it more
difficult to identify edges with differential edges.

31/52
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Stroop Task - fMRI Data

» 45 Healthy, right handed subjects

» Average age 21.9
» Stroop task and resting-state data collected. Groups are:

> Task performance and resting state
~ Exertion and Relaxed task performance

where the data are collected from the same subjects. Our interest is in
comparing across conditions.

» Data in AAL 90 node system (Tzourio-Mazoyer et al., 2002).

32/52
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Stroop Task - Edge Differences

Edges with significantly different strengths, organized by brain functional module.

Task vs Resting State Exertion vs Task Performance

FPL . FPL .

FPR

FPR
EC EC
Aud . Aud
SM SM
DMN DMN
lat vis lat vis
op vis . op vis
med vis med vis

qé o 0 CIEJ =] -—
(5o, iorent sdges [ # possibis scges)  °® 085 010 [ 015 . oL



Background
Model

Simulation
Stroop Task Data
Summary

Bayesian Joint Network Learning

Important Brain Networks

PO
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BOGH O

N

X ; LOE e E
h S B B B dh 4 £l :
SHHEBEHE
EC - cognition, action inhibition, emotion, pain
FPL - perception, cognition/language
FPR - cognition/language

5Image from Smith et al. (2009)
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Bayesian Joint Network Learning

In contrast for EXR vs RLX, permutation p-values did not yield any
significant edges for the GL, and only 2 significant edges for JGL.

For TASK vs REST, JGL identified no differential edges and 624 common
edges (versus 763 differential edges and 1211 common edges under BJNL).

GL was able to identify 136 edges with differential strengths (27 of which
overlap with those identified by the BJNL), and 661 common edges.

Absence of differential edges between EXR vs RLX under GL, and between
TASK vs REST under JGL, seems unrealistic
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Summary

» Bayesian approach to joint estimation of multiple brain networks.

» Pools information to model edge probabilities instead of edge strengths.
» Demonstrated through simulations that BJNL works better for two-group
simulations when the edge strengths are not constrained to be the same.
Applied BJNL to stroop task data.

Available as a Matlab toolbox and as a Julia package.

v

v

o
File _Help
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Anatomically Guided Brain Functional Connectivity Pl

Anatomically Guided Brain Functional Connectivity
Using brain structural connectivity to adaptively guide the estimation
of functional connectivity
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FC-SC Relationship

&) EMORY [ CBIS
FC and SC ROLLINS | CanterforBlomedical
1;[ lé : I{_'l! ﬁ Imaging Statistics

Complex association between anatomical and functional connectivity

* Honey et. Al (2007,2009)
strong Structural = strong Functional

<= Subject A Subject B

Structural & Functional Association

*+ Messeé (2013)
~15% of variation in FC explained by SC

Partial Correlation
Partial Correlation
01 00 01 02 03 04 05

T
0.4

T
0.0

Anatomical Connectivity Anatomical Connectivity
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Motivation

» Strong evidence for the role of white matter fiber tracts in regulating FC

» Appealing to incorporate information about brain structural connectivity
when estimating functional connectivity

» Clearly desirable since it is expected to produce more accurate and
reproducible estimates of the network,

» However, several considerations need to be taken into account, such as the
complexity of the structure-function relationship, heterogeneity in FC for a
given SC, strength since FC is only partially dependent on SC

39/52
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Existing Challenges

» Limited advances in FC approaches which are guided by underlying
anatomical knowledge.

» The majority of approaches have considered group level analysis that
ignores substantial variability in cortical anatomy and function

» Only handful of recent approaches for estimating FC guided by SC for single
subject data ( Ng et al. (2012) and Pineda et al. (2014) ).

» Unfortunately these methods may not adequately capture the complex
underlying structure-function relationships and does not account for
heterogeneity in FC for a given SC strength
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Possible Solutions

» One could potentially use the earlier spike and slab graphical lasso
framework to incorporate supplemental SC knowledge when estimating FC

» However the spike and slab lasso is best applied to group level networks

» We would like to design a shrinkage based approach that specifies a flexible
FC-SC relationship and that works well for single subject data

» Single subject analysis important to avoid difficulties arising from the
variability in brain anatomy over different ages, disease groups and so on

41/52
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Structurally-Informed Gaussian Graphical Model (si-GGM)
(Higgins, Kundu and Guo, Neurolmage, 2018)

Parameter Interpretations

Ve ~ N,,(O.Q‘l) Ajic: structurally-informed sparsity parameter
for off-diagonal of the precision matrix

#(@l4) = C3 [["Exp (ous5) [[DE (o vis) 1@ € My )
k=1 <

j<k v : overall network sparsity
PR, = C““HLN (ki = 1Py ) wij “non-structural” sources of variations
/ \ regulating functional connection(FC)

“non-structural” variations Variations in FC related
in FC not explained by to SC py,

SC measure pj

effect of structural on functional

pj - probability of structural connection (SC)
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Shrinkage Property
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We use a coordinate descent algorithm to compute the MAP estimates.
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Simulation Results: Data generated from ICA based models

AUC Inverse Error
- 2545
0.80 E‘-\““-\
0.75:
5390
0.70
0.65 1390 o
0.60 o

8 _____________'_'-—-_

0.55 70 —‘-________X

0.50 65
T L] - i} ] T Fii] [ T T i) N ] ]
Mis-specification pet Mis-specification pet Mis-specification pet
AUC Inverse Error Kullback-Leibler Divergence
.ﬁ\ 1825 6650 /
0.8 ) | 1500 2480
& - 0
17 &0
15
13 50
0.6 "
[ e — 40 \/'/\
0.5 M
T — 70 il T Fii] [ T 1 i) N ] %10
Mis-specification pet Mis-specification pet Mis-specification pet

46/52



simulation ) EMORY | CBIS

Anatomically Guided Brain Functional Connectivity Philadelphia Neurodevelopment Cohort R Center for Blomedical
P Imaging Statistics
HEALTH

Philadelphia Neurodevelopment Cohort

Study comprised fMRI & DTI data from children & adolescents aged between
8-21 years. All subjects are right-handed, physically, and mentally healthy

Network based on 120 brain volumes and Power atlas (264 ROls)
Goal is to assess gender based network differences

We also assess our methodas ability to reliably estimate functional networks in
terms of the intraclass correlation coefficient or ICC for seven network metrics

We split each subjects’ resting state fMRI time series into two equally sized
scanning sessions (60 scans each) to compute network reproducibility

Anatomical & cortical differences in the brain prohibit group level analysis
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Gender Based Network Summaries

Young Adult
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Network Reproducibility
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Summary

» Incorporating SC information improved accuracy and reproducibility of the
estimated network

» The proposed method is scalable to high dimensional networks

» Questions?

The Statistical Methods in Imaging Conference 2020

May 1821, Atanta, Georgia

[ JEES roem et Accommoduion  Veme Spomsons a
~p X ",

SMI 2020

The Statistical Methods in Imaging (SMI) conference is the Am Stat

2020

ciation (ASA) Statistics in Imaging Section. For information about SMI

ry dot edu). 50/52
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