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Papers

This talk is based on the following papers:

I Lukemire∗, J., Kundu, S., Pagnoni, G., and Guo, Y. (2019+). Bayesian joint

modeling of multiple brain functional networks. JASA A&CS, Accepted

conditional on reproducibility review. https://arxiv.org/abs/1708.02123.

I Higgins∗, I., Kundu, S. and Guo, Y., 2018, Integrative Bayesian analysis of

brain functional networks incorporating anatomical knowledge, NeuroImage,

Volume 181, Pages 263-278
∗ indicates student advisee

4 / 52



Introduction
Bayesian Joint Network Learning

Anatomically Guided Brain Functional Connectivity
References

fMRI Background

1

2

Blood Oxygen Level Dependent Signal

3

4D Data (width, height, depth, time series)

Preprocessing

1
https://www.ndcn.ox.ac.uk/divisions/fmrib/what-is-fmri/introduction-to-fmri

2
http://mriquestions.com/does-boldbrain-activity.html - bold signal

3
https://www.slideshare.net/rnja8c/fmri-study-design
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Functional Connectivity

There are many different approaches to studying functional connectivity, each

with their own advantages and drawbacks.

I Seed voxel/ROI analyses - pick out a region of the brain and measure the

correlation of its time course with the time courses of all other regions

I Graph Theoretical Approach - View the brain as a set of nodes and edges -

estimate the edge set.

I Based on Gaussian graphical models (GGM) which will focus for this talk
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Functional Connectivity - Challenges

Current challenges in brain network analysis:

I Often unsatisfactory reliability and reproducibility due to low signal to noise

ratio in fMRI

I Network comparisons between groups may not be straightforward

I No obvious way to fuse data across multiple fMRI experiments or across two

imaging modalities

I Others ...
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Functional Connectivity - Objectives

I We will integrate data from multiple imaging modalities and experiments in a

manner that improves network estimation accuracy and reproducibility

I In the first part, I will describe an approach for joint estimation of multiple

group level functional networks corresponding to different experimental

conditions experienced by each individual in a group

I In the second part of the talk I will describe an approach for fusing fMRI and

DTI data, with a goal to guide the estimation of functional connectivity using

structural connectivity information
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Bayesian Joint Network Learning

A Bayesian approach for joint learning of multiple related networks corresponding

to different experimental conditions, longitudinal visits and so on
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Motivating Stroop Task Application

Congruent Trial Incongruent Trial

Exertion

Relaxed
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Stroop Task - Research Questions

I How does the brain network differ between (a) exertion vs relaxed task
performance; and (b) task performance and passive fixation (resting state)?

I Data available from same subject on multiple experimental conditions
I Hence, the networks for fixation, EXR and RLX tasks share some

similarities, and also differences
I Important to develop an approach that can borrow information across

experimental conditions in order to compute these networks
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Data Format

Each subject’s prewhitened P × T data are concatenated along the time dimension for
each group:
I P: number of nodes
I T : number of observations per subject
I Ng : number of subjects in group g

Total data matrix size for each group: P × TNg
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Network Estimation - Gaussian Graphical Model

I Model the observed data across the p nodes for group g at time t as

Yg,t ∼ Np(0,Ω−1
g ) for t = 1, . . . , TNg .

I Estimate a sparse precision matrix - elements that are 0 correspond to

absent edges, elements that are non-zero correspond to edges. Larger |ωkl |

are stronger connections.

Graph Example

Ω =

A
B
C
D


1 0.2 0 −0.1
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0 0 1 0.5

−0.1 0 0.5 1
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A
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D
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Graphical Models

View the brain as a graph - set of regions (nodes) and the connections between

them (edges). Edges represent functional connections.

I Use anatomically defined ROIs as nodes &
average across voxels within each ROI.

I We use the Power atlas having 264 regions
(Glasser et al., 2016).

I Normality assumption reasonable for
modeling fMRI data - GGMs

I Edges can be determined based on the
patterns of zeros in sparse precision matrix
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Penalized Network Estimation

I Key is getting sparse estimates of the precision matrix - one possibility is

penalized approaches

I Graphical lasso (GL) approach is popular (Friedman et al., 2008).

Ω = arg min
Ω

{
tr(SΩ) − log det(Ω) + λ

∑
k,l

|ωkl |

}
,

where S := sample covariance, λ is a penalty term (larger λ implies more

sparse networks), and ωkl is the (k , l)th element of Ω (FC strength).

I Not equipped to jointly compute multiple networks
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Joint Estimation Approaches

Penalized Approaches Extend idea of graphical lasso by penalizing the

differences between the two estimated graphs (Guo et al., 2011;

Danaher et al., 2014). Example of fused lasso penalty from JGL

P(Ω) = λ1

∑
k,l

G∑
g=1

|ωg,kl |+ λ2

∑
k<l

∑
g,g′

|ωg,kl − ωg′ ,kl |︸                        ︷︷                        ︸
Edge differences across groups

Bayesian Approaches Typically operates by jointly learning probabilities for each

edge across multiple networks. Limited development and not

scalable to high dimensions (Peterson et. al, 2015). Some recent

work on jointly estimating multiple temporally dependent brain

networks (Qiu et al., 2016; Lin et al., 2017) not applicable here
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Joint Estimation - Motivation & Goals

I Similar edge structure does not mean similar edge strengths - smoothing

over edge strength in JGL may fail to capture this.

I Penalized approaches, although often scalable, only provide point estimates

- can have a direct adverse influence when comparing networks

I Bayesian approaches characterize uncertainty but often not scalable

I Our goal: Develop scalable Bayesian model to pool information across

groups to estimate the edges without forcing similarity in the edge strengths.

I Use edge probabilities to compare networks

I We introduce a flexible model for edge probabilities that pool information

across experiments while also allowing network specific differences
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Bayesian Joint Network Learning (BJNL) - Overview

I Assume G experimental conditions, with T1, . . . , TG scans respectively

I The pre-whitened fMRI measurements for g-th experimental condition are

modeled as Yt (g) ∼ Np(0,Ω−1
g ), t = 1, . . . ,NTg , g = 1, . . . ,G, where

π(Ωg) = C−1
g

p∏
k=1

E(ωg,kk ;
α

2
)

{∏
k<l

wg,klN(ωg,kl ; 0, τ−1
g,kl ) + (1 − wg,kl )DE(ωg,kl ; λ0)

}

I Here Ωg ∈ M+
p , space of all p × p symmetric pd matrices

I π(Ωg) looks like the Bayesian GL prior but has a spike & slab flavor to it

I We denote π(Ωg) as the spike and slab graphical lasso prior
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Group-Specific Edge Strengths

I The spike and slab graphical lasso prior induces sparsity in Ω

I For edge k , l in group g this prior is akin to

π(ωg,kl |wg,kl , τ
−1
g,kl , λ0) ∝ wg,kl N(ωg,kl ; 0, τ−1

g,kl )︸             ︷︷             ︸
slab

+(1 − wg,kl ) DE(ωg,kl ; λ0)︸          ︷︷          ︸
spike

I The edge weights wg,kl are the probability of a connection between nodes k

and l in group g

I Larger λ0 leads to sharper spike

I We pool information across groups to model the edge probabilities
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Pooling Information across networks

I We use h(wg,kl ) = β0,kl +
∑G

g′=1 βg,kl I{g=g′}, h(·) := link function

I Uses information across all groups to estimate the shared effect β0,kl .

I Non-zero differential effects βg,kl define edge differences across networks

I How do we model the shared and differential effects?

I p nodes imply p(p−1)
2 X(G + 1) coefficients - curse of dimensionality

I Cluster the edge probabilities using a Dirichlet Process Mixture prior:

wg,kl = h(β0,kl , βg,kl ), β0,kl ∼ f0, βg,kl ∼ fg

f0 ∼ DP(MP0), fg ∼ DP(MP0), P0 ≡ N(0, σ2
η) is base measure
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Modeling of edge weights: comments

I The model is purposely overcomplete, i.e. G + 1 parameters in the weights

model when G parameters would suffice.

I Allows us to pool information in a systematic manner, and ensures

computational efficiency and interpretability Does not pose any problems

w.r.t. identifiability of functionals of interest

I Motivated by existing literature on modeling binary or ordered categorical

responses using mixture distributions (Kottas et al., 2005; Jara et al., 2007;

Gill and Casella, 2009; Canale and Dunson, 2011).

I DP on the shared and differential effects reduces the sensitivity to the link

function and enables straightforward posterior computation.
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Posterior Computation

I Posterior computation is carried out via Markov Chain Monte Carlo.

I All updates are Gibbs

I Standard tools such as slice sampler are used for updating DP related

parameters

I The precision matrix is updated one column at a time using closed form

posteriors
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Simulation

Goal: compare performance to other sparse precision estimation techniques.

I Generate data from two groups.

I Number of nodes (p): 40, 100.

I 3 network types : Erdos-Renyi (random graphs), Watts-Strogatz (small-world

networks), scale-free networks.

I 3 levels of similarity across graphs (0.25, 0.50, 0.75).

60 subjects, each with 200 time points (typical fMRI study size), 50 replicates per

combination of settings.
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Simulation Setup - Methods Comparison

Joint Estimation Techniques
I Bayesian Joint Network Learning

(BJNL) - pool information across
groups to estimate the edge
probabilities

I Joint Graphical Lasso (JGL) -
smooth over edge strengths to pool
information (Danaher et al., 2014).
Penalty function:
P(Ω) = λ1

∑
j,k
∑G

g=1 |ωg,jk |+
λ2
∑

j,k
∑

g,g′ |ωg,jk − ωg′ ,jk |

Separate Estimation Techniques
I Graphical Lasso (GL) - Estimate

each group separately, L1 penalty
on the off diagonal elements
(Friedman et al., 2008). Penalty
function: P(Ωg) = λ1

∑
j,k |ωg,jk |

I Horseshoe graph estimator (HS) -
Bayesian approach. Shrinkage of
each off-diagonal element
(Carvalho et al., 2010; Li et al.,
2019).

JGL has two tuning parameters, GL has one. We find the optimal values for them

using a grid search over 30 values. Computationally demanding
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Simulation Results - Erdos-Renyi Random Graphs
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Simulation Results - Small-World Random Graphs
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Simulation Results - Scale-Free Random Graphs
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Simulation Summary

I BJNL outperforms the other methods in both edge detection, differential

edge detection, and L1 error.

I JGL is too conservative - misses many of the differential edges. We believe

this is due to smoothing over the edge strengths, which makes it more

difficult to identify edges with differential edges.
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Stroop Task - fMRI Data

I 45 Healthy, right handed subjects

I Average age 21.9
I Stroop task and resting-state data collected. Groups are:

I Task performance and resting state
I Exertion and Relaxed task performance

where the data are collected from the same subjects. Our interest is in

comparing across conditions.

I Data in AAL 90 node system (Tzourio-Mazoyer et al., 2002).
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Stroop Task - Edge Differences

Edges with significantly different strengths, organized by brain functional module.
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Important Brain Networks

4

EC - cognition, action inhibition, emotion, pain

FPL - perception, cognition/language

FPR - cognition/language

5Image from Smith et al. (2009)
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Analysis Results under JGL and GL

I In contrast for EXR vs RLX, permutation p-values did not yield any

significant edges for the GL, and only 2 significant edges for JGL.

I For TASK vs REST, JGL identified no differential edges and 624 common

edges (versus 763 differential edges and 1211 common edges under BJNL).

I GL was able to identify 136 edges with differential strengths (27 of which

overlap with those identified by the BJNL), and 661 common edges.

I Absence of differential edges between EXR vs RLX under GL, and between

TASK vs REST under JGL, seems unrealistic
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Summary

I Bayesian approach to joint estimation of multiple brain networks.
I Pools information to model edge probabilities instead of edge strengths.
I Demonstrated through simulations that BJNL works better for two-group

simulations when the edge strengths are not constrained to be the same.
I Applied BJNL to stroop task data.
I Available as a Matlab toolbox and as a Julia package.
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Anatomically Guided Brain Functional Connectivity
Using brain structural connectivity to adaptively guide the estimation

of functional connectivity
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FC-SC Relationship

5
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Motivation

I Strong evidence for the role of white matter fiber tracts in regulating FC

I Appealing to incorporate information about brain structural connectivity

when estimating functional connectivity

I Clearly desirable since it is expected to produce more accurate and

reproducible estimates of the network,

I However, several considerations need to be taken into account, such as the

complexity of the structure-function relationship, heterogeneity in FC for a

given SC, strength since FC is only partially dependent on SC
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Existing Challenges

I Limited advances in FC approaches which are guided by underlying

anatomical knowledge.

I The majority of approaches have considered group level analysis that

ignores substantial variability in cortical anatomy and function

I Only handful of recent approaches for estimating FC guided by SC for single

subject data ( Ng et al. (2012) and Pineda et al. (2014) ).

I Unfortunately these methods may not adequately capture the complex

underlying structure-function relationships and does not account for

heterogeneity in FC for a given SC strength
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Possible Solutions

I One could potentially use the earlier spike and slab graphical lasso

framework to incorporate supplemental SC knowledge when estimating FC

I However the spike and slab lasso is best applied to group level networks

I We would like to design a shrinkage based approach that specifies a flexible

FC-SC relationship and that works well for single subject data

I Single subject analysis important to avoid difficulties arising from the

variability in brain anatomy over different ages, disease groups and so on
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Proposed Model

6
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Shrinkage Property

7
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Computation

We use a coordinate descent algorithm to compute the MAP estimates.

8
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Simulation Results: Data generated from GGM

9

45 / 52



Introduction
Bayesian Joint Network Learning

Anatomically Guided Brain Functional Connectivity
References

Simulation
Philadelphia Neurodevelopment Cohort

Simulation Results: Data generated from ICA based models

10
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Philadelphia Neurodevelopment Cohort

Study comprised fMRI & DTI data from children & adolescents aged between

8-21 years. All subjects are right-handed, physically, and mentally healthy

Network based on 120 brain volumes and Power atlas (264 ROIs)

Goal is to assess gender based network differences

We also assess our methodâs ability to reliably estimate functional networks in

terms of the intraclass correlation coefficient or ICC for seven network metrics

We split each subjects’ resting state fMRI time series into two equally sized

scanning sessions (60 scans each) to compute network reproducibility

Anatomical & cortical differences in the brain prohibit group level analysis

47 / 52



Introduction
Bayesian Joint Network Learning

Anatomically Guided Brain Functional Connectivity
References

Simulation
Philadelphia Neurodevelopment Cohort

Gender Based Network Summaries

in 11
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Network Reproducibility
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Summary

I Incorporating SC information improved accuracy and reproducibility of the

estimated network
I The proposed method is scalable to high dimensional networks
I Questions?

in 13
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