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Abstract
In recent years, a very large variety of statistical methodologies, at various levels of complexity, have been
put forward to analyse genotype data and detect genetic variations that may be responsible for increasing the
susceptibility to disease. This review provides a concise account of a number of selected statistical methods
for population-based association mapping, from single-marker tests of association to multi-marker data mining
techniques for gene^gene interaction detection.
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INTRODUCTION
Statistical genetics is an area at the convergence of

genetics and quantitative analysis. Over the last few

years it has experienced a drastic shift of paradigm,

from a mostly theoretical subject with little room

for empirical evidence to a heavily data-oriented

discipline where the existence of large repositories

of genetic data allows researchers to generate and

explore new scientific hypotheses.

With the advent of relatively cost-efficient high-

throughput genotyping technology (with recent

proposals from the US National Institutes of

Health to decrease these costs further to 0.001

USD per genotype) it is now feasible to investigate

the aetiology of complex diseases, the biological

processes through which DNA is inherited and

the evolutionary histories of human populations.

From a medical perspective, advances in the design

and analysis of pharmacogenetics studies, i.e. studies in

which genetic variability is correlated to drug

response, may ultimately lead to the development of

a ‘personalised medicine’ approach to healthcare. Each

of these areas of investigation requires, of course,

specialised inferential and computational techniques.

This review of statistical methods in genetics is

confined to associationmapping: a powerful methodol-

ogy that is believed will help understand the

genetic basis of human diseases and other phenotypes

of interest.Rather than attempting a broad coverage of

association mapping methods, the exposition is

narrowed to include only data analysis approaches for

case-control studiesor for situationswhenonlydiseased

individuals are available. The aim of this review is to

embark the reader on a non-technical tour around a

number of selected statistical methods currently used

for gene mapping.

PRINCIPLES OFASSOCIATION
MAPPING
The distinctive feature of a case-control design is that

the subjects included in the sample are randomly

selected from a given population by their disease

status, retrospectively. The genetic make-ups of

individuals belonging to the two groups, cases and

controls, are compared in the hope that their

differences, in some narrow regions of the genome,

may offer a causal explanation for the disease status.

Among different types of genetic markers, single-

nucleotide polymorphisms (SNPs) play a central

role for mapping complex diseases. Across the

human genome, there are at least 10 million SNPs

with frequency >1% which are thought to account

for around 90% of human genetic variation [1].

A fundamental notion in association mapping

is that of linkage disequilibrium (LD) between

a genetic marker and the locus that affects the trait

under study. LD captures a deviation from probabil-

istic independence among alleles or genetic markers.

For instance, LD between two alleles, say A and B,
can be quantified by measuring the difference

between pAB, the probability of observing haplotype

Giovanni Montana, Department of Mathematics, Imperial College London, Huxley Building Room 532, 180 Queen’s Gate, London

SW7 2AZ, UK. Tel, þ44 (0) 207-594-8577; E-mail, g.montana@imperial.ac.uk

GiovanniMontana is a Lecturer of Statistics in the Mathematics Department, Imperial College London, UK. He is interested in data

mining and statistical pattern recognition.

BRIEFINGS IN BIOINFORMATICS. VOL 7. NO 3. 297^308 doi:10.1093/bib/bbl028

� The Author 2006. Published by Oxford University Press. For Permissions, please email: journals.permissions@oxfordjournals.org

 at U
niversity of M

aine at A
ugusta -- U

niversity C
ollege of B

angor L
ibrary on O

ctober 28, 2013
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

 at U
niversity of M

aine at A
ugusta -- U

niversity C
ollege of B

angor L
ibrary on O

ctober 28, 2013
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

 at U
niversity of M

aine at A
ugusta -- U

niversity C
ollege of B

angor L
ibrary on O

ctober 28, 2013
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

 at U
niversity of M

aine at A
ugusta -- U

niversity C
ollege of B

angor L
ibrary on O

ctober 28, 2013
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

 at U
niversity of M

aine at A
ugusta -- U

niversity C
ollege of B

angor L
ibrary on O

ctober 28, 2013
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

 at U
niversity of M

aine at A
ugusta -- U

niversity C
ollege of B

angor L
ibrary on O

ctober 28, 2013
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

 at U
niversity of M

aine at A
ugusta -- U

niversity C
ollege of B

angor L
ibrary on O

ctober 28, 2013
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

 at U
niversity of M

aine at A
ugusta -- U

niversity C
ollege of B

angor L
ibrary on O

ctober 28, 2013
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

 at U
niversity of M

aine at A
ugusta -- U

niversity C
ollege of B

angor L
ibrary on O

ctober 28, 2013
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

 at U
niversity of M

aine at A
ugusta -- U

niversity C
ollege of B

angor L
ibrary on O

ctober 28, 2013
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

 at U
niversity of M

aine at A
ugusta -- U

niversity C
ollege of B

angor L
ibrary on O

ctober 28, 2013
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

 at U
niversity of M

aine at A
ugusta -- U

niversity C
ollege of B

angor L
ibrary on O

ctober 28, 2013
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/


AB (i.e. the linear arrangement of the two alleles

on the same chromosome, inherited as a unit), and

the product pApB, where pA and pB are the

probabilities of observing alleles A and B, respec-
tively. Haplotypes, however, are not directly

available in most cases and their frequencies must

be inferred probabilistically from genotype data.

Inferential methods based on variants of the

expectation-minimization (EM) algorithm, an itera-

tive technique for obtaining maximum likelihood

estimates in missing-data models, are popular choices

for obtaining sample haplotype frequencies [2, 3].

The EM algorithm’s accuracy for estimating haplo-

type frequencies, under a variety of simulation designs

and as a function of allele frequencies as well as many

other factors, has been documented [4]. Recent

developments exploit the observation that, over short

regions, haplotypes in a population tend to cluster into

groups, and this clustering tends to vary along the

chromosome. It has been noted that the resulting

patterns of genetic variation can be described well by

hidden Markov models, and parameter estimates have

been carried out by an EM algorithm in order to infer

haplotypic phase as well as missing genotype data [5].

Alternatively, a measure of composite genotypic

disequilibrium can be computed directly from two-

locus genotypic data [6]; under the assumption of

random mating, it corresponds to the aforementioned

allelic LD measure. A number of other common LD

coefficients and their properties have been studied

both analytically and via simulations [7, 8]. Once LD

is created by a number of evolutionary forces, it is

subjected to recombination events taking place

between loci, which cause it to decay with time.

The essential idea is that a marker in strong

LD with a disease locus is expected to be located

nearby. But how is LD used to map a gene? After

all, when one of the loci of interest is the gene that is

being mapped, we have no information about its

allele or genotype frequencies. Association mapping

techniques attempt to detect LD indirectly, by

measuring the association between a candidate

marker and the phenotype of interest, provided

there is a rich pattern of LD between some of the

typed markers and the real, unobserved causal

variant. How dense this map of markers should be

and what the distribution of LD looks like in modern

human populations are crucial issues being exten-

sively explored [1, 9]. Notably, the HapMap project

is enabling the characterisation of genome-wide

patterns of LD in several populations [10].

In what regions of the genome do we look for

disease-bearing genes? In candidate-gene approaches,

it is assumed that prior biological hypotheses

about plausible locations of the candidate gene

have been previously obtained, and therefore the

search is localised to those regions of interest.

Genome-wide studies, on the other hand, screen the

entire genome, thus enabling a more comprehensive

search for genetic risk factors. These studies will

soon be less expensive, and therefore more routinely

employed. From a statistical and computational

standpoint, genome-wide explorations introduce

non-trivial challenges due, among other causes, to

the very large amount of markers to be included

in the analysis compared to the usually smaller

sample sizes; these issues will be considered further

later.

Another question generating much discussion,

and fuelling the development of new analytical

methods, is whether complex diseases are caused

by a single common variant or many variants having

small effects. The common disease/common variant
hypothesis states that the genetic risk for common

diseases will often be due to disease producing

alleles found at relatively high frequencies [11–13].

So far, evidence in its favour has been limited.

It is plausible to assume that common diseases are

expected to be controlled by more complex genetic

mechanisms characterised by the joint action of

several genes, with each gene having only a small

marginal effect, perhaps because natural selection

has removed the genes having larger effects. In

this scenario, groups of markers should be tested

jointly for association, which can be done in

two main ways: by grouping markers together in

multi-locus genotypes so that the basic unit of

statistical analysis is still the individual, or via

haplotypes, thus effectively doubling the sample

size. We next review a number of selected

techniques, starting from the simplest case of

single-marker analysis.

SINGLE-MARKER ANALYSES
Common tests and other
likelihood-based methods
Suppose we are investigating the effects of biallelic

markers, e.g. SNPs, on disease. In a case-control

setting, counts of either the two alleles or the three

genotypes at a locus in the two groups, affected

and controls, are compared. If there is a difference
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in frequencies between the two samples, there is

evidence that the marker is in LD with the

gene affecting the disease susceptibility. Since allelic

and genotypic distributions in the samples can be

arranged in a standard Fisherian contingency table

of dimension 2� 2 and 2� 3, respectively, a number

of well-known statistical tests exist to assess the null

hypothesis of no association [14].

A simple test for independence is the Pearson’s

chi-squared test statistic, at both the allelic and

genotypic level. However, it has been noted that

this test is not robust to departures from Hardy–

Weinberg equilibrium (HWE) in control subjects

[15]. HME implies the statistical independence

of the two alleles at a locus so that, for instance,

the proportions of genotypes AA, Aa and aa are p2A,
2pA(1� pA) and (1� pA)

2, respectively. The utility of

single-marker LD testing that uses a case-control

study design with either diallelic or multiallelic

markers is discussed in [16]. In this work, under the

alternative hypothesis of unequal marker allele

frequencies between cases and controls, the asymp-

totic distribution of the chi-squared test is expressed

as a function of G2, a genetic distance measure,

which depends on the population history; using a

simple deterministic population genetic model

accounting for a single mutation and ignoring

genetic drift, the value of G2 can be computed and

the power of the test obtained under various disease

models and population histories. A more robust test

statistic is Cochran–Armitage (CA) trend test, a

method of directing chi-squared tests towards

narrow alternatives [17]. This test should be used at

the genotypic level when HWE fails to hold for both

cases and controls [15, 18].

Fine localisation of a disease–susceptibility locus

can be accomplished by investigating deviations from

HWE among affected individuals alone [19, 20].

Hybrid tests have also been suggested, for instance a

test statistic obtained as a weighted average between

the CA trend test statistic and the difference between

test statistics based on HWE computed in cases and

controls [21, 22]. Departures from HWE can also

serve as a quality check on the data, as experience

suggests that gross deviations from HWE often

indicate genotyping errors.

Alternatively, one can explicitly model the

penetrance of the disease, that is the conditional

probability that a randomly selected individual in the

population possesses the disease, given the data.

In the logistic regression (LR) formulation, the logit

transform of the penetrance parameter is modelled as

a linear combination of the marker data. Then, by

asymptotic results of maximum likelihood estimators,

inferences can be based on standard Walk, likelihood

ratio and score methods [14]. In particular, the score

statistic in this case corresponds to the CA trend

test. An obvious advantage of this formulation is

that covariates can be easily added into the model.

In situations where the sample size is large compared

with the number of parameters, as well as in matched

case-control studies (where cases and controls are

paired according to some control variates), improved

inference can be achieved by using conditional

maximum likelihood, in a generalisation of Fisher’s

exact test for 2� 2 tables [14]. Recent developments

that allow efficient approximate conditional infer-

ence for LR models include Monte Carlo methods

and saddle-point approximations [23].

Several statistical methods for association map-

ping, including LR as well as other generalised linear

models, require the specification of a genetic model

of inheritance. For instance, in a CA test, or score

statistics from logistic regression, an additive model

can be imposed by giving genotype weights 0, 1 and

2, depending on the number of copies of the minor

allele. Forcing a specific genetic model provides

a powerful means of detecting association when the

hypothesised model is close to the true underlying

genetic mechanism, but may also lead to very low

power when the true model is different [18, 24].

Methods that do not require the specification of

a genetic model are usually recommended [25].

Methods to correct for population
stratification and cryptic relatedness
The approaches presented so far rely on two

fundamental assumptions: first, the population

under study must be genetically homogeneous, i.e.

there should be no population stratification; second,

all subjects in the samples must represent statistically

independent units drawn from that population. Tests

of association that do not protect against departures

from these two assumptions may have inflated type I

error rates.

If the target population does consist of several

subpopulations, spurious associations at a candidate

marker may occur if the disease prevalence differs

between subpopulations, i.e. when the subpopula-

tion proportions are different among cases and

controls and if allele frequencies at that marker

vary between subpopulations. When the population
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is indeed heterogeneous, family-based association

studies are generally more powerful than case-

control studies, and tests that rely on the transmission

of alleles from parents to off-springs are usually

adopted [26]. However, these study designs present

other drawbacks, most notably the difficulty of

collecting DNA from relatives of affected individuals,

especially for late-onset diseases, thus mitigating

against the recruitment of large samples. Research

in the area of case-control studies has actively

addressed these issues and several alternatives are

available.

In a genomi-control approach [27], test statistics for

the null hypothesis of no association are computed at

‘null’ markers in the genome, i.e. at markers

unlinked to affect liability. If population structure

or cryptic relatedness is present in the sample, the

variability and magnitude of the test statistics at the

null markers are inflated and tests computed at

candidate loci can be adjusted accordingly.

A different remedy, often referred to as structured
association, prescribes using loci unlinked to candidate

genes under study to infer subpopulation member-

ship and conduct a test of association within

subpopulations. The idea is that, conditional on

subpopulation, there is neither bias nor excess of

variance due to population substructure. The

method can be implemented as a two-step proce-

dure, in which subpopulation proportions are

estimated first and then incorporated into a test

statistic [28, 29] (for instance, as covariates in a LR

model), or as a unified analysis which may account

for estimation uncertainty [30, 31]. Either way, the

task of estimating subpopulation memberships from

genotype data is essentially a clustering (or unsuper-

vised learning) application, often addressed by using

finite mixture distributions [32]. Both Bayesian and

likelihood-based inferential procedures can then be

employed [33–35]. In a variation of the structured

association idea, the disease status is included in

the clustering algorithm used for inferring the

hidden population structure, leading to a supervised

clustering approach [36]. The related question

of what markers are particularly informative for

ancestry estimation is also important and has

been investigated from an information-theoretic

perspective [37]. Recently, it has also been suggested

that the use of LR alone, which dispenses

entirely with the notion of subpopulation and is

computationally faster, may be a better alternative

[38, 39].

Unlike genomic control, structured association

alone does not protect against cryptic relatedness, and

more specialised solutions are needed. However, a

recently developed theory to predict the amount of

cryptic relatedness expected in random mating

populations suggests that confounding effects in this

situation are particularly serious only in special cases

[40]. On the other hand, even moderate levels of

population stratification may lead to an increased

number of false positives [41], especially in large

case-control studies [42] and even in well-designed

studies [43] or when the population under study is

believed to be homogeneous [44].

Methods to correct for multiple testing
In a single-marker analysis, a test statistic is computed

at each candidate marker. When M hypothesis tests

are conducted with the same significance level �,
the probability of finding at least one significant

result among the M tests is greater than �. To deal

with this multiple-testing problem, one has to resort

to some form of correction that preserves the

probability of observing unusually ‘large’ values of

a test statistic and not just at a specific locus, in

the usual point-wise sense, but anywhere in the

region being tested.

One way to deal with this situation is to control

the family-wise error rate (FWER), i.e. the prob-

ability of making one or more type I errors among all

the hypotheses when performing multiple pair-wise

tests. Suppose we have obtained the p-values pi,
i¼1, . . .,M, from each individual test. A common

one-step adjustment is the Bonferroni correction: an

hypothesis i is rejected when pi��/M. Since this

correction is too conservative when M is large,

leading to power loss, a number of step-wise

procedures have been developed. For instance, in

the Hochberg’s procedure [45], the individual

p-values are initially ordered; then, starting from

i¼M, all the hypothesis for i� j are rejected once

the p-value at position j��/(M� jþ 1).

An alternative multiple hypothesis testing error

measure is the false discovery rate (FDR) [46], which

is loosely defined to be the expected proportion

of false positives among all significant hypotheses.

The FDR is especially appropriate for exploratory

analyses in which one is interested in finding several

significant results among many tests. After ordering

the p-values, all the hypotheses for i � j are rejected
if pj� j�/M. As a special case, when all the

hypotheses are true, this error rate equals the FWER.
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One way to account for all hypotheses simulta-

neously is to form the product of all p-values at less
than a preset threshold [47, 48]; as a variation along

these lines, one can form the product of the L<M
most significant p-values only, which is an appro-

priate choice when the aim is to detect a small

set of fixed effects among a large number of null

effects [49].

It must be noted that there are substantial

correlations among test statistic values along the

map induced by LD between genetic markers.

As a result of this correlation, the ‘effective’

number of independent tests, say M*, is expected

to be smaller than M. One way to compute M* and

correct for multiple testing is via spectral decom-

positions of the LD matrix [50], as in the adaptive

principal component test [51]. Generally, it is

difficult to formally account for this serial correlation.

For instance, distributions for products of p-values
are only known when the tests are independent.

Monte Carlo procedures are commonly used, for

instance by randomly permuting phenotypic labels

[52] or by using permutation sampling for fitting

extreme value distributions [53]. However, many

simulation-based methods become extremely time

consuming when applied to large studies. Other

approaches deal with this problem by sequentially

decorrelating the tests, either by application of

a single transformation derived from the

correlation matrix [47] or by successive greedy

transformations [54].

MULTI-MARKER ANALYSES
Methods for combining information
from single-marker coefficients
Under simple models of evolution, ignoring popula-

tion-specific history and structure, the probability of

recombination is a monotonic function of genetic

distance, and the degree of LD across a chromosome

is expected to follow a unimodal curve with a peak

at the true location of the disease mutation. Under

this assumption, a strategy to combine information

from single markers in a region is to fit a smooth

curve to the LD coefficients computed at all markers

and then look for its mode. In practice, however, the

pattern of observed LD may fluctuate substantially,

even erratically, across contiguous genomic regions

[1]. The gene-mapping problem then becomes one

of pattern recognition: the task is to look for regions

with a consistent overall pattern of LD supporting

the existence of a disease-associated marker.

Non-parametric curve-fitting methods embracing

this idea have been initially developed for fine-

mapping, thus assuming that the region under study

does contain a true peak [55, 56]. However, in

large exploratory scans, the possibility that the data

may have a varying number of true signals, or

even no signal at all, has to be taken into account.

In this respect, a curve-fitting method based on

Bayesian adaptive regression splines with a variable

number of knots has been applied with some

success [57, 58].

A different proposal consists of fitting a semi-

Bayesian hierarchical model, where a pair-wise

LD measure is first estimated for each locus using a

first-stage model, and then spatially smoothed along

the candidate region using a second-stage model

that can include information on genetic or physical

distances as well as haplotype structure [59].

An alternative solution for combining informa-

tion from neighbouring markers consists of forming

sums of single-marker test statistics and then testing

the null hypothesis that none of the selected markers

in each sum is associated with the disease, in what has

been called the set association approach [60–62].

Combining genetic main effects in this way may

facilitate the detection of susceptibility genes while

avoiding the need to characterise detailed interaction

patterns among markers. When compared with

Bonferroni or FDR procedures, the sum statistics

seem to show greater power [54].

Common methods for haplotypes
Rather than considering each marker individually,

specific combinations of allelic variants at a series of

tightly linked markers on the same chromosome,

i.e. haplotypes, can be jointly tested. Incorporating

information from multiple adjacent markers, haplo-

types preserve the joint LD structure and more

directly reflect the true polymorphisms. Therefore,

in a generalisation of the single-marker analyses

presented in the preceding text, haplotype frequen-

cies between cases and controls can be compared

instead of allelic and genotypic frequencies [63].

The simplest way to test whether there is an

association between a haplotype and the disease

status is to regard each haplotype as a distinct

category, possibly lumping all rare haplotypes

together into an additional class. This process is

generally done in two steps: first, haplotypes
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frequencies are estimated (for instance by applying

the EM algorithm) so that the H distinct haplotypes

compatible with the data are arranged in a 2�H
contingency table; then, a standard test for associa-

tion, for instance a likelihood ratio test statistic,

is calculated. To deal with the inflated variance of

the test statistic due to the haplotype estimation,

the distribution of the test under the null can be

obtained by randomly shuffling the disease status and

then re-estimating haplotype frequencies [64].

Although this approach assesses overall association

between haplotypes and disease, it does not provide

inference on the effects of specific haplotypes or

haplotype features. To address these issues, a number

of tests of specific haplotype effects are based on a

prospective likelihood of disease [65, 66], where the

disease status is treated as an outcome, and haplotypes

enter a regression model as covariates. Subjects

with ambiguous haplotypes are accommodated by

computing the expected value of the covariates

conditional on the subject’s genotypes, using inferred

haplotype frequencies estimated in the pooled

sample of cases and controls under the HWE

assumption. Alternatively, in a retrospective like-

lihood approach, the distribution of haplotypes is

treated as the outcome, conditional upon the case

and control status; this model relaxes the require-

ment of HWE and has been estimated using

an expectation-conditional-maximisation (ECM)

algorithm [67].

Recent simulation studies compare the perfor-

mance of various regression and multiple imputation

approaches for the estimation and testing of

genotype and haplotype effects in a case-control

setting [68]. Overall, the use of haplotypes derived

from phase-unknown genotype data is not always

straightforward, and the value of these techniques for

gene mapping is not yet clear [69, 70]. Missing data

are a particular problem for haplotype analysis,

especially when the data are not missing at

random, as may be the case with systematic errors

in genotyping assays.

In a more flexible setting, rather than comparing

frequencies of entire haplotypes, one can compare

the frequency of haplotype patterns, i.e. haplotypes

that are allowed to contain gaps (markers that can be

ignored). Gaps account for mutations, missing data,

errors and recombination events that may have

corrupted the ancestral haplotype shared among

cases; candidate haplotype patterns can then be tested

for association using a chi-squared test [71].

When either multiple markers or haplotypes are

available, a generalisation of Hotelling’s T2 statistics

provides another valid alternative that implicitly

accounts for LD among markers and the possibility

of multiple disease susceptibility loci [72]. This test

statistics improves, in terms of power, upon the

standard chi-squared test and has been extended to

deal with haplotype blocks with multiple haplotypes

[73]. Stochastic search procedures like the sequence-

forward floating-selection (SFFS) algorithm can be

used jointly with the T2 test to identify markers that

make the greatest contribution to disease risk [72].

Methods based on haplotype similarity
and clustering
In proximity of the disease mutation, the average

similarity among case haplotypes is expected to be

higher than among control haplotypes because of

shared ancestry. Provided that a sound similarity

measure between two haplotypes can be defined,

formal statistical tests can then be built to detect

excess of haplotype similarity, even from multi-locus

genotype data [74]. A practical analytical challenge is

the possibility that not all case chromosomes have

inherited disease-causing mutations from a common

ancestral chromosome. Moreover, disease mutations

only increase the risk of being affected, but not every

subject carrying the mutations will be affected.

A different strategy, still based on a notion of

haplotype similarity, is to form clusters of similar

haplotypes and then test the clusters for associations

with the disease rather than the individual

haplotypes. The idea is that haplotypes within a

cluster will contain many of the same polymorph-

isms, and hence, should induce similar effects on

disease predisposition. Since the number of clusters is

much lower than the number of all possible

haplotypes, the number of degrees of freedom is

reduced and statistical power is gained. The cluster-

ing approach can also be seen as a vehicle to account

for evolutionary processes indirectly, without having

to explicitly model them.

There are several procedures to detect disease-

linked, non-random clustering of haplotypes in

localised genomic regions. An elegant one is based

on a cladistic analysis: by sliding a window along the

chromosome, clades of similar haplotypes in the

whole genome are detected and incorporated

into an LR model [75]. Under the assumption

of multiplicative disease risks, the proposed model

is parameterised in terms of haplotypic log
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odds of disease. The method has also been extended

to analyse un-phased genotypes directly [76].

A different procedure scans all markers available,

one by one, and clusters haplotype segments of a

specified length, centred at the marker under

examination, by using a density-based clustering

algorithm. A standard chi-squared test based on the

contingency table derived from the numbers of case

haplotypes and control haplotypes in a cluster is then

used to test the null hypothesis of no association

between the cluster and the disease status [77].

Another way to embed haplotypes in a metric

space, so that similar haplotypes convey similar risks,

is to first introduce a Voronoi tessellation structure

and assign each haplotype to the nearest cluster

centre [78]; the distance between a haplotype and

the cluster centre, which represents the putative

ancestral haplotype, is computed by counting the

number of matching markers flanking the location

of the causal location. As a further refinement of

this approach, rather than using all possible clusters,

one can restrict the search to the largest ones,

and adopt a similarity measure that accounts for allele

frequencies and for occasional mismatches [79].

Different procedures to group haplotypes use tree-

based methods [80] and other clustering techniques

[81, 82].

Methods based on population admixture
In human populations formed by relatively recent

mixing of distinct ancestral groups, like African-

Americans, LD extends over greater distances than

in other, less heterogeneous populations. For diseases

that vary in prevalence between two or more

ancestral populations, this long-range LD can be

exploited to search for genetic variants responsible

for the ethnic difference in disease risk [83].

The fundamental observation is that, in admixed

populations, markers in LD with a locus responsible

for an ethnic difference in disease risk will have a

greater than expected proportion of ancestry from

the high-risk population. Gene mapping can be

carried out by searching for narrow genomic regions

that show excessive ancestry proportions from one

of the constituent ancestral populations in a

methodology called admixture mapping.

Population memberships at each locus, for all

subjects, need to be statistically estimated from the

typed markers. A commonly used probability model

to describe the stochastic variation in ancestry

assumes that chromosomes can be represented by

blocks of common ancestry, with breakpoints

between adjacent blocks occurring as a Poisson

process and transitions between adjacent ancestral

blocks governed by a Markov chain [84]. Several

Bayesian inferential methods have been built

around this model to estimate the ancestry of

diseased chromosomes and detect over-represented

ancestral populations [85–87]. Simulation studies

and analytical computations suggest that admixture

mapping has several advantages over established

approaches for population-based mapping, e.g. it

requires far fewer markers to search the entire

genome and is less affected by allelic heterogeneity

[86, 88].

Data mining methods for interaction
detection
When several disease genes contribute to a trait,

one may detect them jointly by modelling the

complex interaction pattern among loci. However,

while standard regression techniques can provide

insight into the main marginal effects while control-

ling for potential confounders, these techniques may

be inadequate for identifying gene–gene interactions

given sample size limitations. For instance, in an LR,

when high-order interactions are modelled, many

cells in the corresponding contingency table may

contain no observations, a problem that can lead to

very large coefficient estimates and standard errors.

More advanced methods are therefore called for.

Classification trees are non-parametric models

offering advantages over typical logistic regression in

that they may uncover interactions among genes

even when these do not exhibit strong marginal

effects [89–91]. A classification tree model is built

through an iterative process known as recursive

partitioning, in which the data is split into partitions:

the first step finds the best split of the data into two

groups, or nodes, by one of several predictor markers

that captures the most information in the response’s

variability; succeeding steps then find the best splits

of the data within each node, conditional on prior

splits, which results in an easily interpreted binary

tree structure. A specific adaptation of this metho-

dology for association mapping implements a

different mechanism for the selection and combina-

tion of predictors while retaining the simple tree

structure [92].

A random forests model is an ensemble of

individual classification trees. Such a model is

grown on bootstrap samples of observations, using
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a random subset of predictors to define the best

split at each node. The observations left out of the

bootstrap samples are used to estimate the prediction

error. Random forests are highly accurate classifiers

that can handle a very large number of markers

and can estimate the importance of each marker as a

predictor of disease status. Simulation studies under

simple genetic models suggest that markers selected

according to the importance measure computed with

random forests perform better than markers selected

according to standard Fisher’s exact tests [93].

A predictive importance index for pairs of predictors

has been derived, and its behaviour has been studied

over a range of two-locus disease models [94]. To

date, recursive partitioning methods have been

applied to a number of association studies, for

instance for the analysis of alcoholism and smok-

ing [95] and ischaemic stroke [89], and are

considered a useful exploratory tool in pharmacoge-

netics [96, 97]. It has also been found that combining

clustering techniques with recursive partitioning, so

that individuals are initially grouped into homo-

geneous genotypic groups, may lead to better

predictive models [98].

Multivariate adaptive regression splines (MARS)

have also proved to be potentially useful for the

detection of marker interactions in association

studies [89, 99]. MARS are non-parametric adaptive

multiple regression models particularly useful where

the data present non-linearities, complex interactions

and a large number of predictors. They form basis

functions, typically linear spline functions, from

the original data, and use these as candidates for

interaction effects. An upper limit to the maximum

order of interaction can be easily set up so that,

for instance, only pair-wise products of piece-

wise linear functions are fitted but not higher

products [100].

Several efficient strategies that look for statistical

interactions based on logistic regression models

and Bonferroni corrections are described in [101].

A different kind of regression model that has been

recently developed to explore these interactions is

the logic regression [102]. This is another adaptive

regression methodology, but attempts to construct

predictors as Boolean combinations of biallelic

markers. In a Monte Carlo LR, a large number of

logic regression models are explored using stochastic

simulation methods based on Markov chains, in

search for the most frequently occurring interaction

patterns supported by the data. Alternatively, the

model space can be explored using stochastic search

mechanism based on genetic algorithms [103].

The Bayesian selection of interactions method is a

technique for selecting predictors in a regression

model even when the number of variables entering

the model is considerably larger than the sample size

[104]. This model builds on a well-known Bayesian

procedure for variable selection, stochastic search

variable selection [105,106], which entails the

specification of a hierarchical latent mixture prior

and uses the posterior probabilities to identify the

more promising models. Posterior distributions are

estimated by Gibbs sampling. Since association

mapping is essentially a variable selection problem

[107], we expect that more efficient variable

selection methods along these lines will be devel-

oped, especially for large genome-wide studies.

Non-parametric methods based on combinatorial

arguments have also been proposed for gene–gene

interaction detection, for instance the combinatorial

partitioning method (CPM), originally developed for

quantitative outcomes [108], and the multivariate

dimensionality reduction (MDR) method for

discrete outcomes in balanced case-control studies

[109–111]. The rationale of the latter method is

to pool multi-locus genotypes into high-risk and

low-risk groups; this effectively reduces the genotype

predictors to one dimension and enables interaction

detection in samples of relatively small sizes. MDR

may be interpreted as a special case of classification

trees [112], and has received quite a lot of interest

in recent years [113, 114].

CONCLUSIONS
Inevitably, several important statistical methods for

association mapping have not been covered, for

instance, procedures that exploit or account for the

known relatedness of individuals and for quantitative

traits mapping. The plethora of methods for selecting

representative or ‘tagging’ polymorphisms in narrow

genomic regions, based on patterns of LD, has

not been touched upon; this task essentially entails a

variable selection problem in an unsupervised setting,

i.e. with no reference to the disease status, with

the objective of effectively reducing the number of

potential predictors in genome-wide studies [115].

Most notably, a large class of inferential methods

based on approximations of the coalescent stochastic

process, which explicitly describes the effects of
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evolutionary forces that gave rise to the observed

data, has been left out.

Despite these and other omissions, we hope to

have conveyed the flavor of many statistical ideas and

tools currently being employed in population-based

gene mapping.

This review article highlights the main issues

involved in gene mapping by linkage disequilibrium

and offers a brief and non-technical overview of

selected statistical methods that have been suggested

in the literature. Initially, the most traditional single-

marker tests of association are introduced, together

with standard methodologies to correct for popula-

tion structure, cryptic relatedness and multiple

testing. More advanced data mining techniques

involving multiple markers and haplotypes are then

considered with emphasis on detecting epistatic

effects.

Ackowledgement
G.M. thanks the anonymous referees for the helpful suggestions.

References
1. Palmer LJ, Cardon LR. Shaking the tree: mapping complex

disease genes with linkage disequilibrium. Lancet 2005;366:
1223–34.

2. Excoffier L, Slatkin M. Maximum-likelihood estimation of
molecular haplotype frequencies in a diploid population.
Mol Biol Evol 1995;12:921–27.

3. Niu T. Algorithms for inferring haplotypes. Genet Epidemiol
2004;27:334–47.

4. Fallin D, Schork NJ. Accuracy of haplotype frequency
estimation for biallelic loci, via the expectation-
maximization algorithm for unphased diploid genotype
data. AmJHumGenet 2000;67:947–59.

5. Scheet P, Stephens M. A fast and flexible statistical model
for large-scale population structure in genetic association
studies. Genome Res 2006;16:290–6.

6. Weir BS. Genetic Data Analysis II. Sinauer Associates, 1996.

7. Guo SW. Linkage disequilibrium measures for fine-scale
mapping: a comparison. HumHered 1997;47:301–14.

8. Devlin B, Risch N. A comparison of linkage disequilibrium
measures for fine-scale mapping. Genomics 1995;29:311–22.

9. Risch N, Merikangas K. The future of genetic studies of
complex human diseases. Science 1996;273:1516–7.

10. The International HapMap Consortium. The International
HapMap Project. Nature 2003;426:789–96.

11. Pritchard JK. Are rare variants responsible for susceptibility
to complex diseases? AmJHumGenet 2001;69:124–37.

12. Pritchard JK, Cox NJ. The allelic architecture of human
disease genes: common disease-common variant . . . or not?
HumMol Genet 2002;11:2417–23.

13. Reich DE, Lander ES. On the allelic spectrum of human
disease. Trends Genet 2001;17:502–10.

14. Agresti A. Categorical Data Analysis.Wiley, 2002.

15. Sasieni PD. From genotypes to genes: doubling the sample
size. Biometrics 1997;53:1253–61.

16. Chapman NH, Wijsman EM. Genome screens using
linkage disequilibrium tests: optimal marker characteristics
and feasibility. AmJHumGenet 1998;63:1872–85.

17. Armitage P. Tests for linear trends in proportions and
frequencies. Biometrics 1955;11:375–86.

18. Freidlin B, Zheng G, Li Z, etal. Trend tests for case-control
studies of genetic markers: power, sample size and
robustness. HumHered 2002;53:146–52.

19. Nielsen DM, Ehm MG, Weir BS. Detecting marker-disease
association by testing for Hardy-Weinberg disequilibrium at
a marker locus. AmJHumGenet 1998;63:1531–40.

20. Jiang R, Dong J, Wang D, et al. Fine-scale mapping using
Hardy–Weinberg disequilibrium. Ann Hum Genet 2001;65:
207–19.

21. Song K, Orloff M, Lu Q, et al. Fine-mapping using the
weighted average method for a case-control study. BMC
Genet 2005;6(Suppl 1):S67.

22. Song K, Elston RC. A powerful method of combining
measures of association and Hardy-Weinberg disequilibrium
for fine-mapping in case-control studies. Stat Med 2006;25:
105–26.

23. Corcoran C, Mehta C, Patel N, et al. Computational tools
for exact conditional logistic regression. Stat Med 2001;20:
2723–39.

24. Schaid DJ, Kk McDonnell S, Hebbring SJ, et al.
Nonparametric tests of association of multiple genes with
human disease. AmJHumGenet 2005;76:780–93.

25. Wang K, Sheffield CC. A constrained-likelihood approach
to marker-trait association studies. AmJHumGenet 2005;77:
768–80.

26. Spielman RS, McGinnis RE, Ewens WJ. Transmission test
for linkage disequilibrium: the insulin gene region and
insulin-dependent diabetes mellitus (IDDM). Am J Hum
Genet 1993;52:506–16.

27. Devlin B, Roeder K. Genomic control for association
studies. Biometrics 1999;55:997–1004.

28. Pritchard JK, Donnelly P. Case-control studies of associa-
tion in structured or admixed populations. Theor Popul Biol
2001;60:227–37.

29. Purcell S, Sham P. Properties of structured association
approaches to detecting population stratification. HumHered
2004;58:93–107.

30. Hoggart CJ, Parra EJ, Shriver MD, et al. Control of
confounding of genetic associations in stratified populations.
AmJHumGenet 2003;72:1492–504.

31. Satten GA, Flanders WD, Yang Q. Accounting for
unmeasured population substructure in case-control studies
of genetic association using a novel latent-class model. AmJ
HumGenet 2001;68:466–77.

32. McLachlan G, Peel DA. FiniteMixture Models.Wiley Series
in Probability and Statistics, 2000.

33. Pritchard JK, Stephens M, Donnelly P. Inference of
population structure using multilocus genotype data.
Genetics 2000;155:945–59.

34. Chikhi L, Bruford MW, Beaumont MA. Estimation
of admixture proportions: a likelihood-based approach
using Markov chain Monte Carlo. Genetics 2001;158:
1347–62.

Statistical methods in genetics 305



35. Yang B, Zhao H, Kranzler HR, Gelernter J.
Characterization of a likelihood based method and effects
of markers informativeness in evaluation of admixture and
population group assignment. BMCGenet 2005;6:50.

36. Kohler K, Bickeboller H. Case-control association tests
correcting for population stratification. Ann Hum Genet
2006;70:98–115.

37. Rosenberg NA, Li LM, Ward R, Pritchard JK.
Informativeness of genetic markers for inference of ancestry.
AmJHumGenet 2003;73:1402–22.

38. Wang WYS, Barratt BJ, Clayton DG, et al. Genome-wide
association studies: theoretical and practical concerns.
Nat RevGenet 2005;6:109–18.

39. Setakis E, Stirnadel H, Balding DJ. Logistic regression
protects against population structure in genetic association
studies. Genome Res 2006;16:290–6.

40. Voight BF, Pritchard JK. Confounding from cryptic
relatedness in case-control association studies. PLoS Genet
2005;1:e32.

41. Koller DL, Peacock M, Lai D, et al. False positive rates in
association studies as a function of degree of stratification.
J BoneMiner Res 2004;19:1291–5.

42. Marchini J, Cardon LR, Phillips MS, et al. The effects of
human population structure on large genetic association
studies. Nat Genet 2004;36:512–7.

43. Freedman ML, Reich D, Penney KL, et al. Assessing the
impact of population stratification on genetic association
studies. Nat Genet 2004;36:388–93.
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