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Meta-Analysis of Genome-Wide Association Studies: No Efficiency
Gain in Using Individual Participant Data
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To identify genetic variants with modest effects on complex human diseases, a growing number of networks or consortia
are created for sharing data from multiple genome-wide association studies on the same disease or related disorders.
A central question in this enterprise is whether to obtain summary results or individual participant data from relevant
studies. We show theoretically and numerically that meta-analysis of summary results is statistically as efficient as joint
analysis of individual participant data (provided that both analyses are performed properly under the same modeling
assumptions). We illustrate this equivalence with case-control data from the Finland-United States Investigation of NIDDM
Genetics (FUSION) study. Collating only summary results will increase the number and representativeness of available
studies, simplify data collection and analysis, reduce resource utilization, and accelerate discovery. Genet. Epidemiol.
34:60–66, 2010. r 2009 Wiley-Liss, Inc.
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INTRODUCTION

Genome-wide association studies (GWAS) have yielded
new findings for many complex human diseases. Because
complex diseases are influenced by an array of genetic
variants mostly with small to moderate effects, it is
difficult for one GWAS to provide unequivocal findings.
Indeed, the odds ratios of disease with SNPs that have
been observed in GWAS thus far are typically less than 1.5,
and the majority of positive findings have emerged only
after aggressive data sharing across multiple studies. For
example, the initial findings from individual type 2
diabetes GWAS were ambiguous, but a number of disease
loci with odds ratios of 1.1–1.4 were identified conclu-
sively after combining results from several studies [Saxena
et al., 2007; Scott et al., 2007; Zeggini et al., 2007, 2008].

Recognizing the need and benefits of data sharing, GWAS
investigators have formed various networks or consortia to
share data on the same disease or related disorders
[Kavvoural and Ioannidis, 2008]. For example, the Psychia-
tric GWAS Consortium we are involved with has enrolled 47
studies in five major disorders [The Psychiatric GWAS
Consortium Steering Committee, 2009]. Some of these
consortia have attempted to obtain raw data on individual
participants, as opposed to summary results that are used in
traditional meta-analysis. The raw data from all available
studies can then be analyzed simultaneously. Such analysis is
commonly called joint analysis or mega-analysis. We will use
the term mega-analysis and refer to the traditional method of
combining summary results as meta-analysis.

A major motivation for obtaining raw, individual-level
data is the general perception that mega-analysis is

statistically more efficient than meta-analysis since it
utilizes much more detailed information. However, ob-
taining raw data is difficult, costly, and time-consuming.
Some investigators are unwilling or unable to share raw
data. For the Tobacco and Genetics Consortium we are
involved with, the majority of the investigators were
unable to provide raw data due to IRB issues and/or study
policies that prohibit the sharing of raw data. Excluding
studies that do not contribute raw data will reduce
statistical power and limit the generalizability of the
findings. Furthermore, the sheer scale of GWAS data
poses significant practical challenges in storing and
analyzing raw data from a large number of studies.

We show in this article that meta-analysis (when
performed properly) is as efficient as mega-analysis in that
the estimates of any genetic effect produced by the two
methods have approximately the same variance. Thus, there
is no need to obtain raw data. Even if raw data are available,
one can analyze the data for each study separately and then
combine the summary results through meta-analysis. This
will greatly facilitate the analysis, especially if raw data are
available only on a subset of studies.

METHODS

We wish to combine results from K studies with nk

participants in the kth study. For the analysis of each SNP,
the data consist of ðYki;XkiÞ, where Yki is the disease status
(1 5 disease, 0 5 no disease) for the ith participant of the
kth study, and Xki is the corresponding genotype score.
(Under the additive mode of inheritance, the genotype
score is the number of minor alleles; under the dominant
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model, the genotype score indicates, by the values 1 vs. 0,
whether or not the individual has at least one minor allele;
under the recessive model, the genotype score indicates,
by the values 1 vs. 0, whether or not the individual has two
minor alleles. For an untyped SNP, the unknown genotype
score may be imputed by the expected genotype score.) We
assume the following logistic regression model:

PrðYki ¼ 1Þ ¼
eakþbXki

1þ eakþbXki
; ð1Þ

where the ak’s are study-specific intercepts, and b is the log
odds ratio representing a common genetic effect across
studies.

Let bbk be the maximum likelihood estimate of b by
maximizing the likelihood function of the kth study

Lðak; bÞ ¼
Ynk

i¼1

eYkiðakþbXkiÞ

1þ eakþbXki
;

and let Vk be the variance estimate of bbk. Then the inverse-
variance meta-analysis estimate of b is

XK

k¼1

V�1
k

 !�1XK

k¼1

V�1
k
bbk;

and its variance is estimated by

XK

k¼1

V�1
k

 !�1

:

To perform mega-analysis, we obtain the maximum
likelihood estimate of b and its variance estimate by
maximizing the joint likelihood functionYK

k¼1

Lðak; bÞ:

We show in the Appendix that the meta-analysis and
mega-analysis estimates of b have approximately the same
variance, so the two methods have approximately the
same efficiency.

We can add covariates to model (1) in both meta-analysis
and mega-analysis. The covariates may include environ-
mental factors or principal components [Price et al., 2006]
used to adjust for population stratification. The numbers
and types of covariates need not be the same across studies.
Meta-analysis of covariate-adjusted genetic effects is
approximately as efficient as mega-analysis using indivi-
dual-level covariate data (see the Appendix for details).

If the effects of some covariates are the same across
studies, then one can improve the efficiency of mega-analysis
by incorporating this restriction into the joint likelihood
function and thus estimating fewer parameters. However,
the efficiency gain is usually minimal because the number of
covariates is much smaller than the sample sizes of typical
GWAS. Interestingly, one can achieve the same efficiency
gain by performing a multivariate version of meta-analysis
(see the Appendix for details). The multivariate version of
meta-analysis is not generally recommended because it
requires additional summary results and the assumption of
common covariate effects may not be appropriate.

Both meta-analysis and mega-analysis assume a com-
mon genetic effect across studies. This assumption does
not affect the validity of association testing since the
genetic effects are all zero under the null hypothesis of no
association. However, it is important to determine whether
meta-analysis or mega-analysis is more powerful when the
effect sizes are unequal among studies. We show in the
Appendix that the estimates produced by meta-analysis
and mega-analysis are approximately the same and their
variance estimates are also approximately the same when
the genetic effects are unequal across studies, so that the
two methods have similar statistical powers.

RESULTS

SIMULATION STUDIES

To demonstrate the equivalence between meta-analysis
and mega-analysis, we present here some simulation
results on combining two case-control studies. We

TABLE I. Mean effect estimates, standard errors, and powers at the 10�7 significance level for meta-analysis and mega-
analysis of case-control data

Study 1 (MAF¼ 0:3) Study 2 (MAF 5 0.2) Meta-analysis Mega-analysis

OR Cases Controls OR Cases Controls Mean SE Power Mean SE Power

1.4 1,000 1,000 1.4 1,000 1,000 1.402 0.076 0.812 1.402 0.076 0.814
1,500 1,500 500 500 1.402 0.074 0.865 1.402 0.074 0.866

500 500 1,500 1,500 1.402 0.079 0.745 1.402 0.079 0.747
750 1,500 1,500 750 1.402 0.076 0.814 1.402 0.076 0.815

1,500 750 750 1,500 1.402 0.076 0.812 1.402 0.076 0.814

1.5 1,000 1,000 1.3 1,000 1,000 1.411 0.077 0.840 1.411 0.077 0.843
1,500 1,500 500 500 1.459 0.077 0.967 1.459 0.077 0.967

500 500 1,500 1,500 1.359 0.076 0.543 1.360 0.076 0.550
750 1,500 1,500 750 1.408 0.076 0.830 1.408 0.076 0.841

1,500 750 750 1,500 1.413 0.077 0.850 1.414 0.078 0.847

1.3 1,000 1,000 1.5 1,000 1,000 1.383 0.075 0.736 1.383 0.075 0.741
1,500 1,500 500 500 1.338 0.070 0.594 1.339 0.070 0.599

500 500 1,500 1,500 1.436 0.081 0.858 1.437 0.081 0.861
750 1,500 1,500 750 1.386 0.075 0.755 1.386 0.076 0.748

1,500 750 750 1,500 1.380 0.074 0.720 1.381 0.074 0.737
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simulated data from model (1), in which the SNP of
interest had population minor allele frequencies (MAFs) of
0.3 and 0.2 in studies 1 and 2, respectively, and Xki was the
number of minor alleles. We set a1 ¼ �3, a2 ¼ �2:2, and
b ¼ log 1:4. We also considered unequal values of b for the
two studies. Note that eb pertains to the odds ratio (OR) of
disease with the SNP under the additive mode of
inheritance. We obtained various combinations of the
numbers of cases and controls for the two studies. For each
combination of the simulation parameters, we generated
10 million data sets and performed meta-analysis and
mega-analysis of each data set under model (1). The results
are summarized in Table I.

When the SNP effects are the same between the two
studies, the mean estimates of the SNP effects and the

standard errors are identical up to the third decimal point
between meta-analysis and mega-analysis, and the powers
are identical up to the second decimal point. When the SNP
effects are different between the two studies, there are
some slight differences between the two methods, and
either method can be slightly more powerful than the other.

FUSION DATA

For illustration with empirical data, we considered the
Finland-United States Investigation of NIDDM Genetics
(FUSION) study [Scott et al., 2007]. The FUSION study
genotyped 1,161 Finnish type 2 diabetes (T2D) cases and
1,174 Finnish normal glucose-tolerant (NGT) controls on
317,503 SNPs on the Illumina HumanHap300 BeadChip in

Fig. 1. Analysis of stages 1 and 2 data from the FUSION study. The top left panel compares the individual estimates of odds ratios
between stages 1 and 2; the top right panel compares the combined estimates of odds ratios between meta-analysis and mega-analysis;

the bottom left panel compares the standard error estimates between the two methods; and the bottom right panel compares the �log10

(P-values) between the two methods. In each panel, the red line indicates where the values on the two axes are equal.
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stage 1 of a two-stage design. Based on the stage-1 results
and the findings of other studies, the study genotyped 224
SNPs in an additional 1,204 Finnish T2D cases and 1,253
Finnish NGT controls. The subjects with missing geno-
types on a particular SNP were excluded from the analysis
of that SNP. All subjects have age and sex information.

We performed meta-analysis and mega-analysis of T2D
status on the 224 SNPs that were genotyped in both stage 1
and stage 2 of the FUSION study. The results under the
additive mode of inheritance are displayed in Figure 1. The
individual estimates of odds ratios vary considerably
between stages 1 and 2. The combined estimates of odds
ratios and the corresponding standard error estimates
are virtually identical between meta-analysis and
mega-analysis, and consequently the two sets of P-values

are virtually identical. The only noticeable differences lie in
SNPs 114, 166, and 176, which have observed MAFs of
approximately 0.9, 1.6, and 3.1%. For SNPs with low
MAFs, the individual estimates of genetic effects may be
unstable, which may cause the combined estimates to be
different between meta-analysis and mega-analysis. Such
differences are unlikely to alter the rankings of the top SNPs
because the P-values associated with rare SNPs tend to be
non-significant.

For further illustration, we included age and sex as
covariates in the logistic regression model. When age and
sex are allowed to have different effects between stages 1
and 2, meta-analysis and mega-analysis again produce
virtually identical results (see Fig. 2). When age and
sex are assumed to have common effects between stages

Fig. 2. Analysis of stages 1 and 2 data from the FUSION study adjusted for age and sex. The top left panel compares the individual

estimates of odds ratios between stages 1 and 2; the top right panel compares the combined estimates of odds ratios between meta-

analysis and mega-analysis; the bottom left panel compares the standard error estimates between the two methods; and the bottom

right panel compares the �log10 (P values) between the two methods. Both meta-analysis and mega-analysis allow age and sex effects
to be different between stages 1 and 2. In each panel, the red line indicates where the values on the two axes are equal.
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1 and 2 in mega-analysis, the results between the two
methods are slightly more different (see Fig. 3).

DISCUSSION

Publication bias is a major concern in meta-analysis of
literature results. One may reduce or avoid this kind of bias
by planning GWAS meta-analysis prospectively to take
advantage of all available studies and all available SNPs. By
using summary results rather than raw data, one can increase
the number of available studies and thus enhance the power
of the analysis and the generalizability of the findings.

In many applications, it is desirable to adjust for
participant-level covariates, such as principal components
and environmental exposures. Such data are not available in

published reports. In a consortium setting, the covariate
adjustments can be made within each study and the
covariate-adjusted estimates of genetic effects can then be
combined through meta-analysis. It is logistically much
simpler to provide such adjusted estimates than to transfer
raw data. Indeed, this is the strategy adopted by the Tobacco
and Genetics Consortium and many other consortia. If the
covariate effects are the same across studies, then the mega-
analysis that incorporates that restriction tends to be more
efficient than the traditional meta-analysis. However, the
efficiency gain is generally minimal and the same efficiency
gain can be achieved by using a multivariate version of
meta-analysis (see the Appendix for details).

We have focused on binary traits. In a related paper, Olkin
and Sampson [1998] showed that, for comparing treatments
with respect to a continuous outcome in clinical trials,

Fig. 3. Analysis of stages 1 and 2 data from the FUSION study adjusted for age and sex. The top left panel compares the individual

estimates of odds ratios between stages 1 and 2; the top right panel compares the combined estimates of odds ratios between meta-

analysis and mega-analysis; the bottom left panel compares the standard error estimates between the two methods; and the bottom

right panel compares the �log10 (P-values) between the two methods. Mega-analysis assumes age and sex effects to be the same
between stages 1 and 2 whereas meta-analysis does not. In each panel, the red line indicates where the values on the two axes are equal.
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meta-analysis is equivalent to mega-analysis if the treatment
effects and error variances are constant across trials. It
follows from the arguments of the Appendix that all the
conclusions of this article hold for quantitative traits and
indeed for any traits under any study designs; the details are
given in Lin and Zeng [2009].

By working with raw data, one can ensure that all
studies use the same quality-control criteria and estimate
the same quantities. However, such standardization and
harmonization of information can be achieved by requir-
ing all participating investigators to follow a common set
of guidelines on quality control and statistical analysis so
that the data are filtered and analyzed in the same way
across studies before summary results are submitted.
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APPENDIX: TECHNICAL DETAILS

We adopt the notation of the Methods section. Let bak andbbk be the maximum likelihood estimates (MLEs) of ak and
b based on the likelihood function of the kth study, and leteak and eb be the MLEs of ak and b based on the joint

likelihood function. Note that eb is the mega-analysis

estimate of b. Write yk ¼ ðak; bÞ, byk ¼ ðbak; bbkÞ, andeyk ¼ ð eak;ebÞ. Also, define

IkðykÞ ¼
Xnk

i¼1

vkiðykÞX
2
ki

�
Xnk

i¼1

vkiðykÞXki

( )2,Xnk

i¼1

vkiðykÞ

;

where vkiðykÞ ¼ eakþbXki=ð1þ eakþbXki Þ
2. According to the

MLE theory [Cox and Hinkley, 1979], the variances of bbk

and eb are estimated by Vk ¼ I�1
k ð
bykÞ and

VarðebÞ ¼ XK

k¼1

Ikð
eykÞ

( )�1

;

respectively. The inverse-variance meta-analysis estimate
of b is

bb ¼ XK

k¼1

Ikð
bykÞ

( )�1XK

k¼1

Ikð
bykÞ
bbk; ðA1Þ

and its variance is estimated by

VarðbbÞ ¼ XK

k¼1

Ikð
bykÞ

( )�1

:

Note that VarðbbÞ takes the same form as VarðebÞ: the only

difference is that Ik is evaluated at byk in the former

and at eyk in the latter. Denote n ¼
PK

k¼1 nk. Under model
(1) of the Methods section, bak and eak converge to ak whilebbk and eb converge to b (as sample sizes nk increase), so thatbb also converges to b while Varðn1=2bbÞ and Varðn1=2ebÞ
converge to a common constant. Thus, n1=2ðbb� bÞ and

n1=2ðeb� bÞ are asymptotically normal with mean 0 and
with a common variance, which implies that meta-analysis
and mega-analysis are asymptotically equivalent.
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To accommodate covariates, we extend Equation (1) of
the Methods section as follows:

PrðYki ¼ 1Þ ¼
eakþbXkiþgT

k
Zki

1þ eakþbXkiþgT
k

Zki
; ðA2Þ

where Zki is the vector of covariates for the ith participant
of the kth study, and gk is the corresponding vector of log
odds ratios. By incorporating the unit component into Zki

and the intercept ak into gk, Equation (A2) can be written in
a more compact form

PrðYki ¼ 1Þ ¼
ebXkiþgT

k
Zki

1þ ebXkiþgT
k

Zki
:

The likelihood functions given in the Methods section are
modified to reflect the inclusion of covariates in the model.

Write yk ¼ ðb; gkÞ. Let byk and eyk denote the MLEs of yk

based on the likelihood function of the kth study and the
joint likelihood function, respectively. Then all the results
of the previous paragraph hold with the redefinition of

IkðykÞ ¼
Xnk

i¼1

vkiðykÞX
2
ki �

Xnk

i¼1

vkiðykÞXkiZ
T
ki

( )

�
Xnk

i¼1

vkiðykÞZkiZ
T
ki

( )�1 Xnk

i¼1

vkiðykÞXkiZki

( )
;

where vkiðykÞ ¼ ebXkiþgT
k

Zki=ð1þ ebXkiþgT
k

Zki Þ
2.

If the effects of covariates are the same across studies,
then Equation (A2) becomes

PrðYki ¼ 1Þ ¼
eakþbXkiþgTZki

1þ eakþbXkiþgTZki
: ðA3Þ

By expanding Xki to include Zki, Equation (A3) can be
written as

PrðYki ¼ 1Þ ¼
eakþb

TXki

1þ eakþb
TXki

;

in which the vector b represents both the genetic effect and
the covariate effects. Redefine

IkðykÞ ¼
Xnk

i¼1

vkiðykÞXkiX
T
ki �

Xnk

i¼1

vkiðykÞXki

( )

�

(Xnk

i¼1

vkiðykÞX
T
ki

) Xnk

i¼1

vkiðykÞ;

,

where vkiðykÞ ¼ eakþb
TXki=ð1þ eakþb

TXki Þ
2. By the arguments

of the first paragraph, bb and eb are asymptotically normal
with mean b and with a common covariance matrix. Thus,
performing the multivariate version of meta-analysis on
the vector of parameters b yields an estimate of the genetic
effect that is asymptotically as efficient as the mega-
analysis estimate when covariate effects are the same
across studies.

Because model (A2) has K sets of covariate effects
whereas model (A3) only has one set, mega-analysis is
generally more efficient under model (A3) than under
model (A2). Thus, univariate meta-analysis, which is
asymptotically equivalent to mega-analysis under model
(A2), is generally less efficient than mega-analysis under
model (A3). However, the efficiency loss is minimal in
large samples. Although one can avoid the efficiency loss
by performing multivariate meta-analysis, it is more
difficult to obtain multivariate than univariate summary
statistics.

All the above results assume that the genetic effects are
the same across studies. This assumption does not affect
the type I error of association testing since all genetic
effects are zero under the null hypothesis of no associa-
tion. Nevertheless, it is of practical importance to
determine the relative power of meta-analysis vs. mega-
analysis when genetic effects are unequal. By taking the
differences between the score functions of Lkðak; bÞ andQK

k¼1 Lkðak; bÞ and applying the mean-value theorem, we
can show that

eb ¼ XK

k¼1

Ikðy
�
k Þ

( )�1XK

k¼1

Ikðy
�
k Þ
bbk;

where y�k lies between byk and eyk. Thus, eb takes the same

form as bb shown in Equation (A1), the difference being

that Ik is evaluated at y�k in the former and at byk in the latter.

As indicated before, the only difference between VarðebÞ
and VarðbbÞ is that Ik is evaluated at eyk in the former and atbyk in the latter. Note that Ik depends on yk through vkiðykÞ

only. It can be shown that vkiðykÞ does not change its values

drastically when yk varies between byk and eyk in case-

control studies with modest genetic effects. Thus, bb and eb
are approximately the same, and so are VarðbbÞ and VarðebÞ.
Consequently, the power of meta-analysis is similar to that
of mega-analysis even when genetic effects are unequal
across studies.
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