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Abstract

The increasing availability of brain imaging technologies has led to intense
neuroscientific inquiry into the human brain. Studies often investigate brain
function related to emotion, cognition, language, memory, and responses
to numerous other external stimuli, as well as resting-state brain function.
Brain imaging studies also attempt to determine the functional or structural
basis for psychiatric or neurological disorders and to examine the responses of
these disorders to treatment. Neuroimaging is a highly interdisciplinary field,
and statistics plays a critical role in establishing rigorous methods to extract
information and to quantify evidence for formal inferences. Neuroimaging
data present numerous challenges for statistical analysis, including the vast
amounts of data collected from each individual and the complex temporal
and spatial dependencies present in the data. I briefly provide background on
various types of neuroimaging data and analysis objectives that are commonly
targeted in the field. I also present a survey of existing methods aimed at
these objectives and identify particular areas offering opportunities for future
statistical contribution.
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Figure 1

1. INTRODUCTION

Neuroimaging utilizes powerful noninvasive techniques to capture properties of the human brain
in vivo. Imaging studies reveal insights about normal brain function and structure, neural pro-
cessing and neuroanatomic manifestations of psychiatric and neurological disorders, and neural
processing alterations associated with treatment response. Several imaging modalities are widely
used, including magnetic resonance imaging (MRI), functional MRI (fMRI), diffusion tensor
imaging (DTI), positron emission tomography (PET), electroencephalography (EEG), and mag-
netoencephalography (MEG), among others. These modalities leverage different physiological
characteristics to reflect properties of either brain structure or function. This review largely fo-
cuses on fMRI, which captures correlates of neural activity, but some of the ideas presented
incorporate or extend to other modalities.

1.1. Imaging Modalities

fMRI quantifies brain activity by measuring correlates of blood flow and metabolism. A funda-
mental concept behind fMRI is that in-vivo neural activity is associated with localized changes
in metabolism. As a brain area becomes more active, for example, to perform a memory task,
there is an associated localized increase in oxygen consumption. To meet this additional demand,
oxygen-rich blood flow to the active brain area increases. Thus, activated brain areas show a rela-
tive increase in oxyhemogloblin and a relative decrease in deoxyhemoglobin because the increased
supply of oxygen outpaces the increased demand for it.

The most common form of fMRI works by leveraging the magnetic susceptibility properties
of hemoglobin in capillary red blood cells. Hemoglobin, which delivers oxygen to neurons, is dia-
magnetic when oxygenated and paramagnetic when deoxygenated. The MR scanner records blood
oxygenation level-dependent (BOLD) signals that vary according to the degree of oxygenation.
Thus, fMRI can be used to produce distributed maps of localized brain activity (see Figure 1a).
Notably, although I use the phrase brain activity, the BOLD signal measured in fMRI is several
steps removed from the actual neuronal activity. MRI works in a conceptually similar manner,
except that the MR signal varies according to tissue type, enabling the production of structural
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Images of (#) distributed patterns of brain activity based on a blood oxygenation level-dependent (BOLD) fMRI scan; () an anatomical
scan revealing gray matter, white matter, and cerebral spinal fluid; and (c) probable white-matter tracts based on a tractography algorithm.
Abbreviations: DTT, diffusion tensor imaging; fMRI, functional magnetic resonance imaging; MRI, magnetic resonance imaging.
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Figure 2

Images displaying results from (#) a localization study highlighting brain regions exhibiting increased neural activity from a baseline
measure to a posttreatment scanning session for cocaine addicts relative to control subjects, (4) a complex network analysis reflecting
whole-brain functional connectivity (Simpson et al. 2011), and (c) a model yielding predicted maps of postbaseline neural activity,
shown here as predicted regional glucose uptake for an Alzheimer’s disease patient six months post baseline (Derado et al. 2012).

(i.e., anatomical) images that distinguish gray matter, white matter, and cerebral spinal fluid (see
Figure 15).

DTT is an MRI technique that provides information regarding the structure of white mat-
ter in the brain. Neurons are the basic unit of the brain, and humans amazingly have approx-
imately 86 billion neurons (Herculano-Houzel 2012); longstanding estimates are as high as
100 billion neurons (Soc. Neurosci. 2012). Axons are neuron fibers that serve as lines of trans-
mission in the nervous system, and they form (millions of) bundles of textured fibers in the
white matter. This extensive system of white-matter bundles directly links some brain struc-
tures; association bundles join cortical areas within the same hemisphere, commissural bundles
link cortical areas in separate hemispheres, and projection fibers connect areas in the cerebral
cortex to subcortical structures (Hendelman 2005). DTT noninvasively maps these white-matter
fiber tracts in the brain by measuring the diffusion of water molecules. This technique reveals
the presence, integrity, and direction of white-matter fibers because water molecules are more
likely to diffuse in the direction of these fibers than perpendicular to them. Further, white-
matter fiber tracking techniques portray axonal fibers and structural brain connectivity (see
Figure 1¢) (Behrens et al. 2003, 2007). Recent National Institutes of Health (NIH) (2009) initia-
tives such as the Human Connectome Project provide evidence of widespread interest in mapping
the structural and functional connectivity of the human brain.

1.2. Common Analysis Objectives

Neuroimaging studies seek insights about normal brain function and structure, neural mani-
festations of mental and neurological disorders, and neural plasticity associated with treatment
response. Associated statistical analyses often center on objectives that target localization,
brain connectivity, and prediction or classification. Localization is predicated on the theory of
functional specialization—that is, the notion that different areas in the brain are specialized for
different functions. Thus, in properly designed studies, one can perform statistical analyses to
identify localized changes in the brain that correspond to changes in tasks performed in the
scanner. These analyses produce images highlighting statistically significant (or highly probable)
task-related changes in neural activity, as illustrated in Figure 24. Localization studies, also
referred to as activation (or neuroactivation) studies, can be extended to identify localized
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differences in brain function between groups of subjects (e.g., between schizophrenia patients and
healthy controls) and/or between scanning sessions (e.g., differences reflecting treatment-related
alterations). To illustrate, Figure 24 highlights brain regions, such as the middle frontal gyrus
and left and right thalamus, that exhibit high probabilities of increased inhibitory control-related
neural activity from a baseline measure to a posttreatment period for cocaine addicts relative to
corresponding activity changes in control subjects.

Functional connectivity studies seek to identify multiple brain areas that exhibit similar tem-
poral activity profiles, either task-related or at rest. These studies may determine links between
a selected seed brain region and all other regions (nodes) considered, dissociate particular brain
networks, or generate complex whole-brain networks (see Figure 2b). Researchers may compare
functional connectivity properties among subgroups of subjects and between different scanning
sessions. Whereas functional connectivity analysis merely targets associations between brain ac-
tivity in distinct regions, effective connectivity analysis seeks to establish a stronger relationship
that reflects the influence that one brain region exerts on another.

Prediction or classification analyses stand to have a significant translational impact. For exam-
ple, one can use baseline imaging and clinical data to generate maps forecasting metabolic activ-
ity in the brain of an Alzheimer’s disease patient at a six-month follow-up visit (see Figure 2c).
Another example involves the use of imaging and other clinical or biological data to blindly classify
individuals into one or more groups, for instance, as either a treatment responder or nonrespon-
der. Such models would have important clinical applications such as aiding in treatment decisions,
predicting disease progression, and being used as diagnostic tools when costs are not prohibitive.

Numerous statistical tools have been developed to address these common objectives in brain
imaging studies. This review is not intended to offer a complete description of existing approaches
in the field; rather, it provides the reader with an overview of select methods for addressing central
substantive issues, highlights the analytic challenges that statisticians face in applying existing
methods and in developing new ones, and discusses important areas for future research that will
benefit from statistical thinking. I begin by describing the data collected in fMRI studies and
highlighting attributes of these data that are important for statistical modeling.

2. DATA DESCRIPTIONS, ANALYTIC CHALLENGES,
AND PREPROCESSING

fMRI yields dynamic three-dimensional (3D) maps giving second-to-second depictions of dis-
tributed brain activity patterns. Studies commonly acquire scans every two to three seconds and
may yield hundreds of scans in a single session, but the acquisition speed and duration vary ac-
cording to study objectives. At the time of statistical analysis, each scan is often arranged in a
91 x 109 x 91 array in which each volume element (or voxel) contains a localized measure of
neural activity. Figure 2¢ displaysa 91 x 109 array for a selected axial slice across the z-dimension.
The temporal evolution of brain activity at a single location (voxel), denoted Y;(v)(S x 1), forms
a time series, as Figure 3 illustrates for two distinct locations. Thus, fMRI data may be regarded
either as a collection of hundreds of thousands of time series arising from spatially distinct sources
or as a movie of dynamic 3D brain maps. Either of these perspectives reveals the massive amount
of data produced in an imaging study: Tens of millions of spatiotemporal neural activity measures
are obtained for each subject, and billions of measures are obtained across all subjects in many
studies. The enormity of the data set poses challenges for statistical modeling and computation.
Incorporating known biological information into statistical models is often beneficial, but the
complexity of the brain presents challenges. One challenge stems from the intricate and massive
systems of brain networks, which render correlations that do not necessarily decay with increasing
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Figure 3

Functional magnetic resonance imaging scans for a single individual may be regarded as tens or hundreds of
thousands of time series, two of which are illustrated here. Each time series represents the evolution of
measured brain activity at a particular location.

distances. Figure 44 shows correlations between the fMRI profile for a selected voxel and those
from all other voxels in the image. Note that high correlations exist between the selected voxel and
many neighboring voxels, voxels at approximately the same location in the opposite hemisphere,
and those in some distant areas. These data show obvious departures from an assumption that
the strengths of associations decrease with increasing distance (see Figure 4b), thereby posing
a major challenge for modeling spatial dependence. Another analytic challenge arising from the
ultra-high dimensionality of the data is that many objectives seek to make inferences at each voxel.
Thus, one has to cope with multiplicity issues because tens or hundreds of thousands of statistical
tests are needed to make such inferences.

Once the data are retrieved from the scanner, they are subjected to a series of processing
steps prior to statistical analysis, generally referred to as the preprocessing pipeline. Detailed
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Figure 4

Images displaying (4) spatial patterns reflecting correlations between the BOLD signal from a selected voxel
(indicated by the cross hairs) and the signals from all other voxels in the image and (b) a hypothetical correlation
model in which correlations decrease with increasing distance from the selected voxel. The figure reveals
that a covariance function specified on the basis of Euclidean distances may be inappropriate for the data.
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coverage of preprocessing is beyond the scope of this review, but it is important for the reader
to have knowledge of these steps as they may substantially impact subsequent statistical analysis.
Our brief remarks omit processing that occurs prior to retrieving data from the scanner. Typical
preprocessing steps include (#) slice timing correction because each 3D scan representing a single
time point actually consists of several 2D slices acquired at slightly different times, (b)) motion
correction to adjust for head movement, (¢) registration of the fMRI scans to an anatomical
MRI scan, (d) normalization to warp each individual’s set of scans to a standard space for group
analysis, (¢) temporal filtering to address temporal correlations and to remove nonphysiologic
trends such as scanner drift, and (f) spatial smoothing methods such as convolution with a Gaussian
kernel to adjust for residual between-subject neuroanatomic differences that persist following
normalization. Spatial smoothing also helps support the assumptions underlying random field
theory (discussed in Section 3.2), which is a popular technique to address multiple testing. These
preprocessing steps are covered in more detail by Strother (2006), and they are implemented in
several neuroimaging software packages, some of which are freely available.

3. SURVEY OF EXISTING METHODS

3.1. Methods for Localization

Localization or activation analyses rely heavily on linear statistical models linking a measure of
neural activity to various experimental tasks. The typical strategy uses a so-called mass-univariate
approach that fits univariate linear models at each distinct brain voxel (or region) to localize brain
areas exhibiting task-related changes. In what follows, I present the basic linear model framework
for localization analyses and extensions that fit joint linear models across spatial locations and
multiple scanning sessions.

3.1.1. The general linear model. The general linear model (GLM) has been a cornerstone of
neuroimaging analyses targeting localization (Friston et al. 1995). A linear mixed model is con-
ceptually well suited for neuroactivation analyses, as it can incorporate subject-specific effects,
group-level parameters, and correlations between repeated measures obtained from each individ-
ual. The massive amount of data, however, precludes routine use of the mixed model owing to
heavy computational demands. As an alternative, a two-stage modeling approach is employed, in
which the first stage, a single-subject GLM, is given by

Y, (v) = X;,B;(v) + Hiyy,;(v) + €;(v), L.

where Y;(v)(S x 1) is a vector of S serial brain activity (BOLD) measures for subject 7 at voxel
v, X;,(S x ¢) is the design matrix containing ¢ independent variables, B;(v)(¢ x 1) represents
the parameter vector linking experimental tasks to the fMRI responses, H;,(S x ) contains 7
additional covariates that are not of substantive interest (e.g., high-pass filtering to remove low-
frequency signal drift), and &;(v)(S x 1) is a vector containing random error about the ith subject’s
mean (Worsley etal. 2002). I assume &;(v) ~ Normal(0, 72V), where 72 is unknown, and V reflects
the correlations between serial BOLD measures.

The BOLD response to neuronal activity is governed by properties of a hemodynamic re-
sponse function (HRF) (see Figure 5). To accommodate the HR properties, researchers gen-
erally convolve the design matrix with the HRF using the following equation: (b * x)(s) =
J°2 b(x)x(s — T)dr. Often, a single HRF model is specified for all voxel locations, but some
more flexible methods allow analysts to spatially vary HRFs across voxels (Woolrich et al. 2004a).
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Figure 5

The hemodynamic response function (HRF) following a stimulus-evoked neuronal response. Signal changes
include a period of increased blood flow and oxygenation that peaks after roughly five or six seconds, after which
the signal falls back toward and temporarily below baseline and is characterized by the poststimulus undershoot.

Next, one models the individualized experimental effects in terms of group-level parameters
using a second-stage GLM:

Bi(v) = p(v) +di(v), 2.
where B;(v) contains regression coefficients from Equation 1, u(v) is the group-level mean vector,
d;(v) contains random errors, and d;(v)~ Normal(0, »?R). One often considers linear contrasts

Cp;(v) rather than modeling the entire vector. This two-stage procedure implies the following
linear mixed model:

Y:(v) = X, n(v) + X;,d;(v) + Hy,p;(v) + €;(v), 3.

which includes fixed effects given by X;, u(v), random subject-specific effects given by X;,d;(v),
and random error introduced by &;(v). The two-stage approach substantially reduces the compu-
tational burden because estimation in both GLMs uses least-squares and avoids using either the
Newton—Raphson procedure or alternative iterative algorithms required for Equation 3. In prac-
tice, one replaces f;(v) in Equation 2 with estimates, say B,(v), thereby sacrificing some efficiency
relative to fitting the linear mixed model given by Equation 3 directly.

The matrix V, which incorporates covariances between serial BOLD responses, is rarely known
in practice, and two strategies are used to estimate the parameters in Equation 1. Prewhitening ob-
tains an initial estimate of the temporal autocorrelation from the data and subsequently transforms
Y, (v) to remove this correlation (Woolrich et al. 2001). In contrast, precoloring introduces known
autocorrelations, say WY;(v), through a linear transformation or temporal filtering (Bullmore
etal. 1996, Friston et al. 1995, Purdon etal. 2001, Woolrich et al. 2001, Worsley & Friston 1995).
The autocorrelations introduced by temporal filtering are deemed to dominate the existing corre-
lations in V. Thus, the resulting covariance structure Var(WY;(v)) = T2WVW is approximated
by 2WW?’, and estimation proceeds using a weighted least-squares method.

3.1.2. Spatial modeling. Applying the GLM framework to brain imaging data has the apparent
limitation that the models are estimated separately for each voxel v = 1, ..., I; this estimation
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method assumes independence between voxels. Several approaches have been developed that in-
corporate spatial correlations between neural activity from different voxels. The most conceptually
straightforward approaches incorporate correlations between a voxel and its contiguous first-order
neighbors. Penny et al. (2005) incorporate correlations between in-plane neighboring voxels in a
Bayesian model in which the priors for regression parameters rely on a user-specified spatial ker-
nel matrix. Their approach assumes that BOLD responses are spatially homogeneous and locally
contiguous within each slice of an image. Katanoda et al. (2002) addressed spatial correlations
by including data (for a given voxel) from six physically contiguous voxels in three orthogonal
directions. Woolrich et al. (2004b) propose a spatiotemporal Bayesian framework that uses simul-
taneous autoregressive models for neighboring voxels; this framework allows for both separable
and nonseparable models.

As illustrated in Figure 4, spatial correlations extend beyond first-order neighbors, may not
decrease with increasing distances, and often include long-range associations. Bowman (2007)
proposed a linear mixed model (an extended version of Equation 3) that incorporates temporal
(repeated measures) correlations using random effects and that captures spatial correlations be-
tween voxels by assuming that the strengths of these correlations depend on a measure of the
functional distance dj, between the neural activity in voxels j and k£ (Bowman 2007). Specifically,
the model is given by

Y,‘IX,'[L—FZZ'(Z,'-I—E,', 4.

where Y, = [Y;(1),...,Y;(V)], Y;(v) is the same as in Equation 1, and Z; = (Iy ® 15). The
model decomposes the measured BOLD signal into localized mean components X; B, individ-
ualized mean-zero random deviations «; that induce temporal correlations between scans, and
random errors that exhibit spatial correlations defined in terms of functional distances (or func-
tional dissimilarities). The model simultaneously incorporates temporal and spatial correlations
via Var(Y;) = (®, + Is) + 0:(Iy ® Js), where Js denotes a unit matrix, and ®; handles parametric
covariance structures of the form (®i);, = o f(d ;). Despite its flexibility, this model was pro-
posed for region of interest (ROI) studies, which focus on particular neuroanatomic structures,
and intensive computations may limit its applicability to whole-brain studies.

Other methods offer broader spatial coverage for correlations by linking parameters within
and between defined brain regions. Bowman (2005) uses a simultaneous autoregressive model to
capture exchangeable spatial correlations between all pairs of voxels within functionally defined
networks. Using a known parcellation of the brain (see Figure 6), Derado et al. (2010) extend
this autoregressive model to incorporate repeated measures associations between multiple scan-
ning sessions, such as before and after treatment (Bowman 2005, Derado et al. 2010). Bowman
et al. (2008) also leverage the neuroanatomic parcellation to establish a Bayesian framework for
incorporating shorter- and longer-range correlations by pooling the jth effect from the model
given by Equation 2 across all voxels in brain region g. The second-stage likelihood function for

Bisj = (Bigi(1), ..., Bigi(Vy)) follows from

Bigil igjs ctigjs agzj ~ Normal(u,; + Lajg; + Xin,;, cr;jI), 5.
where p,; = (igj1, - - -, gjr,)'- Spatial correlations are introduced by modeling the random effects
ajg; collectively for all G brain regions, a;; = (@1}, . . ., @;g;j) , using the following prior probability

distributions:
;| T ; ~Normal(0, T';)
l';l NWishart{(bngj)’l, /?()}
Similar to the models proposed by Bowman (2005) and Derado et al. (2010), this model includes
exchangeable correlations between voxels within a neuroanatomic region, and I'; incorporates

6.
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Figure 6

Brodmann areas. Alternative parcellations, such as automatic anatomical labeling, also exist.

between-region correlations. The model provides an excellent compromise between the sophis-
tication needed to address several aspects of spatial and temporal correlations in the data and
the simplicity needed to facilitate computational demands, as it can be readily implemented with
user-friendly software that makes use of the Gibbs sampler (Zhang et al. 2012). However, this
model does not account for dependence between scanning sessions or multiple effects obtained
from each individual, and it includes only a relatively simple intraregional correlation model. To
overcome these shortcomings, Derado et al. (2012) propose an approach that augments the model
given by Equation 5. Their model, which I discuss in Section 3.4, has useful predictive capabilities.

Xu et al. (2009) present an alternative spatial modeling framework that aims to address vari-
ability in activation locations across individuals. Collectively, all of the aforementioned spatial
modeling extensions offer clear advantages over the standard two-stage GLM, including more
suitable modeling assumptions given the properties of the data and underlying neurophysiology,
increased precision for estimation, increased statistical power, and expanded interpretations con-
cerning the associations between different brain regions. Spatial smoothing prior to statistical
analysis is a standard preprocessing step for fMRI data. The analyst should consider carefully
the influence of spatial smoothing, and I recommend either forgoing this procedure during pre-
processing or performing very focal spatial smoothing to limit its impact on subsequent spatial
modeling and estimation. Despite substantial progress, spatial modeling remains an important
area for involvement by statisticians. For example, statisticians may contribute to the develop-
ment of unified (one-stage) spatiotemporal modeling that integrates supplementary information
from other imaging modalities regarding, for example, underlying structural connectivity. Such
developments may utilize nonseparable covariance models and multimodal modeling. Note that
our use of the term multimodal is consistent with the neuroimaging literature, in which the term
describes data from two or more imaging techniques that are combined for analysis, in contrast
to the conventional use of the term in statistics to describe distributions with multiple modes.

3.1.3. Unspecified stimulus onset times. Occasionally, studies are designed with unspecified
onset times for stimuli that prompt changes in neural activity. For example, if subjects trained in
Zen meditation are instructed to focus their awareness by concentrating on breathing while in the
scanner, the time at which a subjectachieves a deep meditative state may be unknown (Pagnoni etal.
2008). Robinson et al. (2010b) present a model for identifying unknown change points in the data.
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Their work estimates the time and duration of evoked changes in neural activity from baseline, and
they present a hidden Markov random field model to cluster voxels on the basis of characteristics
such as their onset, duration, and anatomical location. Independent component analysis (ICA),
which I discuss in Section 3.3, is another approach that does not require a design matrix a priori.

3.1.4. Spectral modeling. Alternatives to modeling fMRI data in the time domain may be
based on Fourier or wavelet transformations of the data. Performing such transformations
has the primary benefit of simplifying analyses in the transformed space, e.g., because Fourier
coefficients are approximately uncorrelated across frequencies and because wavelets have similar
decorrelating properties. The approach by Katanoda et al. (2002) discussed above conducts a
Fourier domain analysis for their model, which captures spatial correlations between six nearest
neighbor voxels. Ombao et al. (2008) present a spatiospectral model that accounts for spatial
and temporal correlations using spatially varying temporal spectra to characterize the underlying
spatiotemporal processes.

Kang et al. (2012) proposed a spatiospectral mixed-effects model that is conceptually similar
to the one in Equations 5 and 6. The linear mixed-effects model is specified for a given frequency
band €, as follows:

ng(ﬂl) = X(SZZ)[I'Lg + bgv] + dg(sz/) + sgv(szk)v 7.

where g = 1,..., G represents the ROIs; v = 1, ..., V, indexes the voxels in ROI g; and by,
d, (), and &4, (), are mutually independent and normally distributed. Analysis performed in the
frequency domain has associated components for real and imaginary parts, indexed by j € {R, I}.
Correspondingly, do(®,) = df(2) + id}(R,), where (@{(R0), ..., d{(®)) ~ Normal(0, =});
(bgl, e bng)’ ~ Normal(0, £7,) for stimulus p; and () = e*(,) + ie' (), where &/(2) ~
Normal(0, 0.5 £(,)I) and f(R) is the spectrum at frequency band ;. The matrix X/,  introduces
correlations between the V, voxels within ROI g and assumes that the covariance elements are
determined as a function of the Euclidean distances between the corresponding voxels within
the ROI. ¥/ models correlations between the G ROISs, and the simplified covariance structures
resulting from the frequency domain model are given by Var(e/(£2,)).

Raw fMRI data (usually prior to retrieval from the scanner) are in the Fourier domain, and an
inverse Fourier transform converts these data into magnitude, frequency, and phase components.
With the raw data, one has the opportunity to model both the magnitude and phase components
directly. Rowe (2005) presents a model for complex fMRI data that describes their magnitude and
phase and that can be used to test for task-related changes in magnitude, phase, or both. Zhu et al.
(2009) also present a Rician regression model that characterizes noise contributions to fMRI data,
along with associated estimation and diagnostic procedures.

3.2. Statistical Inferences

Statistical inferences in neuroactivation studies seek to identify localized task-related alterations
in brain activity, localized differences in neural activity between groups of subjects, and treatment-
related (or other session-related) changes in localized activity. One may target these objectives
via a set of null hypotheses Hy = {H oy, ..., Hor }, addressed by linear combinations of group-
level effects, e.g., Cp. For frequentist approaches, one proceeds by calculating an appropriate test
statistic, T, at each voxel. These statistics are often #- or F-statistics based on the underlying
modeling assumptions. One may also consider nonparametric alternatives such as permutation
testing for localized inferences (Nichols & Holmes 2002). The goal for any of these approaches,
whether frequentist or Bayesian, is to produce activation maps similar to those shown in Figure 24,
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which reveal locations exhibiting significant or highly probable changes (or differences) in neural
activity. Given the massive number of tests performed, typically hundreds of thousands, it is
desirable to establish some control over the collective testing errors.

For a given search region R, controlling familywise error at a significance level « involves se-
lecting a threshold #, such that Pr[UI,/:1 (T, > ty)|Hop, R] < a. Common methods for addressing
multiplicity in neuroimaging data include uncorrected approaches that specify an arbitrarily small
significance level such as « = 0.005, Bonferroni-type procedures, random field theory, permu-
tation testing, and false discovery rate (FDR) approaches. Of these, the Bonferroni, random field
theory, and permutation testing methods control familywise error.

The widely used Bonferroni approach selects a threshold #, such that for each voxel Pr[T', >
ty|Ho,v € R] < a/V, which by Boole’s inequality ensures that the familywise error is con-
trolled. The number of voxels Vis extremely large for whole-brain studies and the test statistics
at each voxel are not statistically independent, making the Bonferroni procedure highly conser-
vative. Therefore, this approach rarely yields statistical significance, and in practice, Bonferroni
corrections are often adapted to consider the size of an activated cluster.

Random field theory is a mathematically elegant approach that regards a map of localized test
statistics as a continuous random field, e.g., a Gaussian, #, F, or x? distributed random field. Any
threshold 7, applied to the test statistic map has an associated excursion set containing the voxels
for which the localized statistic exceeds the threshold. Random field theory uses a topological
property called the Euler characteristic to summarize this set, which Worsley et al. (1992, p. 903)
heuristically describe as “the number of isolated parts of the excursion set, irrespective of their
shape, minus the number of ‘holes’,” although the formal definition involves the curvature of
the boundary of the excursion set at tangent planes (Adler 1981). As simple examples, the Euler
characteristicis 1 for a solid ball and 0 for a doughnut. If no holes are present, then this characteristic
counts the number of isolated regions of suprathreshold activation in an image. Figure 7 illustrates
the appearance of isolated regions (blobs) and holes for lower thresholds applied to the #-statistic
map (see Figure 74,b), whereas only isolated regions remain for higher activation thresholds (see
Figure 7¢,d). The thresholded maps shown here reflect increases in brain activity associated with
increased working memory demands in patients with schizophrenia.

a t-map b t-map C t-map d t-map

Figure 7

t-Statistic maps with various levels of thresholding. The maps reflect working memory-related differences among individuals with
schizophrenia. Features of the Euler characteristic, blobs and holes, appear in panel #; only blobs remain as the threshold increases.
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Under the null hypothesis for a given search region R, the critical value #, satisties Pr[7T . >
ty |R] < a. If 2, is large, then the exceedence probability for the maximum is approximated by the
expected value of the Euler characteristic, E(x,, ). This probability is given by

Pr[Tmax > toc' R] ~ E(Xm)
~ VA Q)2 (5 — e 8.
~ R(4log, 2)/*Qm) (2 — De /2,

where A is a matrix of partial derivatives of the random field with respect to the dimensions x, y,
and z that can (under a set of assumptions) be approximated as |A|'/? = (FWHM, x FWHM, x
FWHM.,) (4 log, 2)*/* using the full widths at half-maximum (FWHM) of the Gaussian smooth-
ing kernel, and the variable R, given by R = J//(FWHM, x FWHM, x FWHM.,), is a measure
of the number of resolution elements (resels) in the search volume (Worsley et al. 1992).

The random field theory approach is widely used in the neuroimaging community and is easily
implemented using available software packages. Criticisms largely target the required assumptions,
which are clearly delineated by Nichols & Hayasaka (2003). Considering the Gaussian case, one
assumes that under the null hypothesis, the test statistic image can be modeled by a smooth,
homogeneous, mean-zero Gaussian random field with unit variance. The level of smoothness
should be sufficient to reflect properties of a continuous random field. The random field theory
approach works well with extensive levels of smoothing, for example, 10 voxels FWHM, but
low smoothness may yield conservative results. The spatial autocorrelation function (ACF) must
be twice differentiable at the origin. The random field theory approach assumes that the data
are stationary or are stationary after a deformation of space (Worsley et al. 1999). Also, the
roughness or smoothness is assumed to be known without appreciable error. Random field theory
becomes more conservative with decreasing sample sizes and yields thresholds comparable to those
produced by the Bonferroni procedure for data analyses with low degrees of freedom (Nichols &
Hayasaka 2003).

Resampling testing procedures, including wavelet-based procedures and traditional permuta-
tion testing, have been proposed as alternatives for making statistical inferences about neuroimag-
ing data (Bullmore et al. 2001, 2003, 2004; Nichols & Holmes 2002). Nichols & Holmes (2002)
use permutation testing to construct an empirical distribution for the maximum statistic 7 yx.
Implementing this technique for fMRI group-level analyses involves permuting labels across in-
dividuals that define contrasts or subgroups, computing the voxel test statistics, and determining

the 7! for each permutation sample # = 1,..., B. This computation yields the permutation
distribution from the ordered values of the maximum statistic 7). < T@ < ... < T® At

significance level «, the critical value is determined from this empirical distribution by the small-
est b* such that (1 — b*/B) < a. Once b* has been identified, any voxel with T, > T¢") may
be declared statistically significant, and exact p-values may be determined directly from the per-
mutation distribution. Permutation testing has the key advantage that it does not require strong
assumptions about the distribution of the data, in contrast to the random field theory approach.
Nichols & Holmes (2002) showed that, relative to other testing procedures, permutation tests
may yield increases in power with small sample sizes.

FDR has received attention in several large-scale data areas. In contrast to familywise error
control, FDR protects against the expected rate of false discoveries (or false positives) among the
significant tests (Benjamini & Hochberg 1995, Genovese et al. 2002) and is defined to be 0 when
no tests are rejected. FDR offers control according to the following: E(FDR) < myw, where 7
is the unknown proportion of null hypotheses that are true and o is the user-specified level of
control. In many neuroimaging applications, 7y & 1 because most voxels will not show any effect.
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Thus, although setting 7y = 1 is often reasonable, this estimate may be conservative when 7
is substantially smaller than 1. Adaptive FDR procedures seek less conservative approaches by
estimating the unknown quantity 7. Reiss et al. (2012) reveal vulnerabilities with adaptive FDR,
including astonishing paradoxical cases in which adaptive FDR yields more liberal results than
not making any correction for multiplicity (Reiss et al. 2012). FDR is easily implemented, for
a specified rate w, by ordering the p-values py < po) < .-+ < pw) for the I/ voxels and then
determining the largest 7, say 7*, such that

*w

pev = I E— 9.
v[xlasm)
This procedure declares voxels corresponding to py, ..., p(+) as significant.

FDR is a flexible approach for addressing multiplicity because it is implemented using
p-values, which can be produced by a range of models and testing frameworks. FDR does not
require smoothed data and, in fact, is more powerful for unsmoothed data. This is a relative
strength compared with random field theory, which often requires aggressive smoothing for good
performance. Some view FDR as a technique that is best suited to situations in which one seeks
to control the number of discoveries that prove to be false at a subsequent validation phase, as for
applications targeting preliminary discovery. In neuroimaging, however, activation results from
whole-brain analyses tend to be the final goal; neuroimaging studies are not routinely designed
with plans to conduct subsequent validation analyses on discovered findings.

3.3. Connectivity

Connectivity analyses stand to reveal insights about the functional interplay between distinct brain
regions or between regions in identified networks. Moreover, such analyses may determine the
roles that disruptions to these functional associations play in mental and neurological disorders.
Below, I describe popular techniques and analytic challenges involved in performing connectiv-
ity studies. I present methods for determining undirected associations (functional connectivity)
between brain regions as well as stronger directional relationships.

3.3.1. Functional connectivity. Functional connectivity refers to the temporal coherence in
neural activity between spatially remote brain regions (Friston et al. 1993) and is examined using
various undirected measures of association such as Pearson’s correlation coefficient, partial cor-
relation, mutual information, and spectral coherence. Seed-based methods represent one simple
approach to determine functional connectivity. These techniques simply identify a set of brain
regions, usually via hypothesis-driven selection, and calculate the associations between these seed
regions and every other brain region considered, producing correlation images such as that de-
picted in Figure 44. To mitigate the impact of varying hemodynamics for different brain regions,
one may accommodate time lags between brain regions 7 and j, e.g., using the following equation:

py = mae | St D10 =3l = 5]

uelU 5‘,'5‘]-

10.

An area of growing interest for seed-based (and other) connectivity approaches concerns the
potential dynamic nature of functional associations or networks, whereby connectivity patterns
change dynamically over time. Seed-based procedures remain popular because they are simple to
implement and interpret. However, they may miss important findings because they are inherently
limited in scope by considering a small number of seed regions. These methods are typically
hypothesis driven, but the exact seed locations may heavily influence the findings.
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Figure 8

(@) Subregions (orange dots) thought to be associated with depression, (b) subregions representing larger regions from an exhaustive
brain parcellation, and (c) a matrix of correlations between each pair of regions in panel # in which the correlations reflect associations
between resting-state brain activity profiles (time series) from pairs of distinct brain regions. Abbreviations: FC, functional connectivity;
ROL, region of interest.

Researchers may also determine connectivity by selecting a set of brain regions to serve as
nodes and then calculating associations between all nodal pairs. The nodes may target brain
regions chosen in a hypothesis-driven manner, such as the putative depression-related regions in
Figure 84, or they may represent subregions drawn from an exhaustive parcellation of the brain;
an example is shown in Figure 8b. In either case, associations are computed between every pair of
nodes, producing a complete functional connectivity matrix. For example, the connectivity matrix
in Figure 8¢ corresponds to the 90 whole-brain ROIs shown in Figure 85: the matrix intensities
reflect correlations between the resting-state brain activity profiles from pairs of distinct brain
regions. Depending on the objectives, one may scale up to include a larger number of regions to
generate whole-brain connectivity networks (see Figure 25). Ultimately, functional connectivity
studies often seek to determine group- or treatment-related differences in connectivity patterns.

Partitioning approaches organize the brain into collections of voxels that have shared proper-
ties, for which differences between groupings are larger than those between members of a single
group. Two such procedures are independent component analysis (ICA) and cluster analysis. ICA
is often motivated by the classic cocktail party problem, in which a researcher seeks to isolate
a single voice (or discussion) among those of a group of people who are talking simultaneously
in a room. The human brain is quite adept at handling such tasks. Signal processing approaches
regard this problem as one of blind source separation, in which the goal is to dissociate a mixture of
signals into their originating sources without a priori information about the sources or the mixing
process and assuming that the sources are statistically independent.

Letting Y(T' x V') represent an individual’s fMRI data from 7 scans, ICA decomposes the data
into linear combinations of spatiotemporal source signals:

Y=MS+E, 11.

where M(T x ¢) is a nonsingular mixing matrix with columns containing latent time series for
each of the ¢ independent components, S(g x V) is a matrix with rows containing statistically
independent spatial signals and columns that are assumed to be non-Gaussian, and E(T" x V) is
a matrix containing noise or variability not explained by the independent components for which
each column is assumed to follow a multivariate normal distribution (Beckmann & Smith 2004,
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McKeown et al. 1998). Noise-free ICA omits the error term E (McKeown et al. 1998), implying
that S = MY and thereby revealing that M~! operates as an unmixing matrix that yields statisti-
cally independent signals from the fMRI data. Several research groups have developed approaches
that extend ICA for group analyses (Beckmann & Smith 2005, Calhoun et al. 2001, Eloyan et al.
2013, Guo 2011, Guo & Pagnoni 2008).

ICA decomposes observed fMRI data into spatially independent sources for which each com-
ponent has an associated latent time series. Researchers may make putative attributions about the
nature of the components; for example, components may be consistently task-related, transiently
task-related, or related to other physiologic and nonphysiologic sources. These task-related at-
tributions stem from relating the latent time series to the stimuli, but the interpretation of many
components is often challenging and cannot be established with certainty. ICA has a noted advan-
tage relative to modeling approaches such as the GLM in that one can still determine which brain
regions are associated with the experimental stimuli without requiring specification of a design
matrix. However, ICA does not provide a comprehensive framework for inferences concerning
the relationship between the experimental stimuli and the BOLD response. Another advantage
of ICA is that noise-related signals revealed by the procedure can be removed from the BOLD
response prior to subsequent analyses.

Cluster analysis can also be used to partition the brain into networks of voxels or regions
that exhibit similar temporal or task-related dynamics. The statistical literature provides well-
established techniques for performing cluster analysis. Several of these data-driven methods have
been successfully applied in brain imaging, including the following: K-means approaches (Balslev
et al. 2002; Goutte et al. 1999, 2001), fuzzy clustering methods (Baumgartner et al. 2000; Fadili
et al. 2000, 2001; Somorjai & Jarmasz 2003), hierarchical clustering methods (Bowman & Patel
2004, Bowman et al. 2004, Cordes et al. 2002, Goutte et al. 2001, Stanberry et al. 2003), a hybrid
hierarchical K-means approach (Filzmoser etal. 1999), and dynamical cluster analysis (Baune etal.
1999). Hierarchical clustering generally begins by treating each brain region (or node) as a single
cluster, calculating the functional distances between all pairs of brain regions (e.g., f;j = 1 — pjj,
where p;; is the partial correlation between regions 7 and j), and iteratively joining the most similar
regions or clusters (recalculating the functional distances at each step). The process ceases when
only a single cluster remains. Clustering procedures then examine each stage of the resulting
tree to determine the optimal number of clusters, often on the basis of criteria assessing both
within- and between-cluster variability. Bowman et al. (2012) present a multimodal approach
that combines fMRI with structural connectivity information derived from DTTI to determine
functional connectivity via cluster analysis. They defined a distance measure

Tij

di; = (1—7)f,-- 12.

for which 7;; € [0, 1) is the probability of structural connectivity between brain regions 7 and j,
determined using DTI, and A € [1, 0o) is an empirically optimized attenuation parameter. This
distance incorporates structural connectivity while permitting the clustering of regions (or clusters)
on the basis of f;; in the absence of structural connectivity, i.e., when 7;; — 0. This method gener-
ally improves network coherence, particularly in contexts with increased noise in the fMRI signal.

Complex functional brain network analyses have recently emerged in neuroimaging studies.
Such methods work in conjunction with approaches that specify a set of brain regions as nodes and
then quantify associations between the temporal fMRI profiles for every pair of regions. One may
view the resulting map of associations, such as the one shown in Figure 254, as a system of interacting
regions. Network analyses attempt to summarize various characteristics of these whole-brain
networks and to then conduct hypothesis tests about their properties. Typical summaries include
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graph metrics, such as clustering coefficient, path length, and efficiency, that reflect the network’s
communication ability (either local or global); centrality metrics such as degree, betweenness,
closeness, and eigenvector centrality; and community structure measures, including whole-brain
topological properties such as small-worldness (Simpson et al. 2013).

Most methods address undirected networks and thus convey information on whole-brain func-
tional connectivity. Currently, statistical input is needed for proper inference on the basis of net-
work metrics. For example, these metrics are estimated and have associated sampling distributions,
but most approaches do not take this variability into account. Comparing brain network properties
between groups of subjects also requires statistical thinking for formal inferences.

Simpson et al. (2011) develop a multivariate approach that applies exponential random graph
models (ERGMs) to functional brain networks. The approach represents global network structure
by locally specified explanatory metrics. Given 7 = 1,...,Gand j = 1,..., G, let W(G x G)
denote a random, symmetric connectivity matrix for which the (7, j)th element W;; = 1 if regions
i and j pass a minimum connection threshold, resulting in a connecting edge in the graphic
representation, and for which 17;; = 0 otherwise. ERGM:s specify

Pr(W = w|X, 0) = «(0) " exp{0'h(w, X)}, 13.

where h(w, X) is a prespecified network feature, possibly consisting of covariates that are functions
of the network (e.g., the number of paths of a specified length) and nodal covariates X (e.g.,
the location of a node), 8 is a parameter vector linking the prespecified network feature to the
connectivity matrix after accounting for the contributions of other network features in the model,
and «(@) is a normalizing constant. This model yields inferences about whether certain local
network properties are observed more than would be expected by chance.

3.3.2. Effective connectivity. Some neuroimaging analyses seek to determine stronger direc-
tional relationships than the undirected associations describing functional connectivity. For ex-
ample, effective connectivity targets the influence that one region exerts on another (Friston et al.
1993). Patel et al. (2006) present an approach that uses a Bayesian model to quantify functional
connectivity on the basis of the relative difference between the marginal probability that a voxel,
vy, is active and the probability that v; is active conditional on elevated activity in voxel v,. Larger
differences between these conditional and marginal probabilities reflect voxel pairs exhibiting
stronger functional connections. This approach also investigates the existence of a stronger hier-
archical relationship between each pair of functionally connected voxels using a measure called
ascendancy. v is ascendant to v, when the marginal activation probability of v, is larger than that
of v,. The model yields measures of the degree of functional connectivity between a voxel pair
and the degree of ascendancy of one voxel relative to the other.

Structural equation models (SEMs) have been applied to fMRI and PET to determine causal
associations between brain regions. SEMs focus on the covariance structure that reflects associa-
tions between the variables. Parameter estimation in an SEM minimizes differences between the
observed covariances and those implied by a user-defined path (or structural) model. The param-
eters of the SEM represent the strengths of connections among the brain activity measurements
in different regions and correspond to measures of effective connectivity.

Dynamic causal modeling (DCM) regards the brain as a deterministic nonlinear dynamic system
that receives inputs and produces outputs, and it uses a Bayesian modeling framework to estimate
effective connectivity (Friston 2002, Friston et al. 2003). DCM seeks to estimate parameters at
the neuronal level to produce modeled BOLD signals that are maximally similar to the observed
BOLD signals. The approach parameterizes effective connectivity in terms of coupling, which
represents the influence of one brain region on another (Friston et al. 2003).
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Granger causality (GC) has recently gained attention in the neuroimaging literature as a method
for establishing directional relationships between the neural activities of two spatially distinct

regions. Let Y, = {Y,(t),r = 1,..., T'} denote a stationary time series reflecting the measured
brain activity in voxel v. Consider the model
V@] s [ Yu=n] | eu®
— A 1 e 14.
[Yuza)} 2 re =) [0

where A;(2 x 2) is a matrix of unknown coefficients and ¢, represents model error. This model
regresses the current value of a time series for one voxel, say vy, on the histories of v; and v,.
Additionally, consider the model

»
Yo @)=Y yY 0t = j)+ e, 15.
=1
where y; is an unknown scalar coefficient relating the current neural activity in voxel v; to its own
history. Then, GC is defined as

16.

Cv1~>vz = 1n|: Var(e) i| s

Var(e,,)

which gives a measure of the extent to which the past values of both v; and v, help predict the
current value of v; beyond the extent to which the past values of v; alone predict its current
value (Granger 1969). Causality is inferred if model fit improves significantly upon including the
cross-autoregressive terms.

Critics of GC have raised issues about its practical utility for functional neuroimaging (Friston
2009, Nalatore et al. 2007, Nolte et al. 2008, Tiao & Wei 1976, Wei 1978, Weiss 1984). Their
questions center on whether there is sufficient temporal resolution in fMRI data, which often have
repetition times of 2 s or more, to ascertain causality from lagged association models. Solo (2011)
notes that GC found on a slow timescale, such as that of fMRI data, does not necessarily hold on
a faster timescale. He suggests that timescale measurements on the order of milliseconds, such
as those of MEG/EEG, are necessary to pursue dynamic causality. This critique is applicable to
other effective connectivity approaches based on fMRI data. Also, hemodynamic variations across
the brain are likely to swamp any causal lag in the underlying neural time series (Friston 2009,
Roebroeck et al. 2005). Measurement noise can reverse the estimated GC direction, and temporal
smoothing can induce causal relationships (Smith et al. 2011). Smith et al. (2011) empirically
evaluated various directional measures, as well as the performances of several functional connec-
tivity approaches. They observed that although GC and other lagged methods generally perform
poorly, the approach proposed by Patel et al. (2006) performs reasonably well.

3.4. Prediction

The recent development of an increasing number of neuroimaging analyses targeting classifi-
cation and a range of prediction objectives has perhaps the greatest potential for translational
impact on functional neuroimaging. Here I consider analysis methods that involve the use of
neuroimaging data, possibly coupled with other data, to forecast future neural activity or to pre-
dict or blindly classify a clinical outcome or behavioral response. For example, prediction and
classification methodology could be used to define imaging markers of depression subtypes, to
identify neural patterns of individuals who have a high probability of developing Parkinson’s dis-
ease among members of an undifferentiated aging population, and to determine distinct neural
profiles of patients who respond to a particular therapeutic treatment.
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I begin by discussing methods aimed at forecasting future neural activity. Guo et al. (2008)
developed a Bayesian model that uses a patient’s pretreatment scans and other relevant charac-
teristics to predict the patient’s brain activity after a specified treatment regimen. The predicted
posttreatment neural activity maps provide objective, clinically relevant information that may be
incorporated into the treatment selection process. Let Y;1(v)(S; x 1) denote the vector of baseline
scans for subject 7 corresponding to voxel v, Y;;(v)(S; x 1) represent scans from a postbaseline
follow-up period, and Y;(v) = (Y;1(v), Y;2(v)). Guo et al. (2008) fit a GLM for Y;(v)(S x 1)
analogous to that specified in Equation 1, but they extended their model by assuming a linear co-
variance structure for the error term of the second-stage model (analogous to that in Equation 2)
to capture the correlations between prebaseline and postbaseline neuroimaging data. Prediction
via their proposed method proceeds using the conditional distribution of [8;,(v)|8;;, p(v)]. They
demonstrated that their prediction framework accurately forecasted posttreatment neural pro-
cessing in a PET study of working memory in individuals with schizophrenia and in an fMRI
study of inhibitory control in cocaine-dependent subjects.

Derado et al. (2012) developed an extended Bayesian spatial hierarchical framework for
predicting follow-up neural activity based on an individual’s baseline functional neuroimaging
data. Their approach increases precision by borrowing strength from the spatial correlations
present in the data while handling temporal correlations between different scanning sessions. Let
Bi;(v) = (Big1(v), Big2(v))' represent parameters for both sessions one and two from a first-stage
GLM. Extending the models given by Equations 2 and 5, Derado et al. (2012) propose

BisWliy, b @i, ¥4, ¥y ~ Normal(p, (v) + ¢,(v) + @iy + Xipy,, ¥y), 17.

where ¢,(v) is a spatial dependence parameter for local correlations, e, is a random effects vector,
and W, is a variance-covariance matrix associated with the repeated scanning sessions. Figure 9
depicts the framework for temporal and local spatial correlations. Priors addressing spatiotemporal
correlations include

oW)|P@),v#£v, X, v=1...,V ~Normal <p Z :}’”T'i’(b(v’), wi+2) (MCAR(p, X)),

> ! ~ Wishart((c,2,) 7}, ¢2), 18.
ocf-j)|I'j ~ Normal(0, T';) (a,(-j) = (j1j,---» ¥igy)),
(T;)"' ~ Wishart{(h;H )", h;} j=1,2.

Hence, their approach addresses spatial correlations between defined neuroanatomical regions via
I'; using an unstructured model, between all voxel pairs within each of the defined brain regions

Session 1 Session 2

Figure 9

Temporal correlations between repeated measures at a particular voxel location (red) and local spatial
correlations between 26 third-order neighbors within each scanning session.
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using an exchangeable covariance structure, and via a multivariate conditional autoregressive
model for the 26 immediate neighbors of each voxel (see Figure 9). Correlations due to repeated
scanning sessions are captured by the variance-covariance matrix ¥,. The method proposed by
Derado etal. (2012) demonstrated good performance in a study using PET data to predict disease
progression in Alzheimer’s disease patients, and their method is also applicable to fMRI data.

Using neuroimaging data to predict a behavioral or clinical response is an increasingly
common goal. To make such predictions, one begins with training data D = {X,y}, where
X(n x p) is a matrix of p image-derived independent variables (also called features), and y is a
response vector for which y; € {+1, —1} for binary prediction and y; € R for regression. One
then uses the training data to develop a model that yields an accurate prediction of a separate
sample y* from input variables x*. I consider the binary case for simplicity, and I include settings
in which (#) the observation of y* follows that of x* (prediction) and (§) one seeks to blindly
distinguish subgroups y; in the absence of an established temporal sequence (classification).
Prediction and classification are often based on Pr(y; = 1|x}, D). These studies face challenges
resulting from the commonly described curse of dimensionality, which occurs when the number
of measures p for each subject (possibly as many as hundreds of thousands) greatly exceeds the
number of subjects # (fewer than 50 in many cases).

Supportvector machines (SVMs) or support vector classifiers (SVCs) have been one of the most
popular tools for prediction or classification in neuroimaging analyses (Casanova etal. 2012, Cox &
Savoy 2003, Doehrmann etal. 2013, Dosenbach etal. 2010, LaConte et al. 2005, Mourdo-Miranda
et al. 2005). In its simplest form, the SVC determines linear boundaries in the feature space,
which are used to distinguish between two classes. This framework can be extended to identify
nonlinear boundaries and to consider multiclass or regression settings for continuous outcomes.
SVM methods do not perform variable selection, but they are able to cope with high-dimensional
neuroimaging data structures. The existing literature, coupled with our own experiences applying
SVM, suggests that these techniques usually perform well in practice. Chen & Bowman (2011)
developed a methodology to apply SVM techniques to longitudinal neuroimaging data; their
method uses linear combinations of features from different scanning sessions to make predictions.

Some researchers have proposed related methods for prediction and classification, such as
penalized regression, that incorporate a loss function and impose a penalty term on the model
complexity. Chu et al. (2011) apply two kernel regression techniques, specifically kernel ridge
regression (KRR) and relevance vector regression (RVR). The KRR method implements the dual
formulation of ridge regression to facilitate computations, and RVR considers a set of linear basis
functions as the kernel and uses sparse Bayesian methods for estimation. Michel et al. (2011a)
also present a sparse Bayesian regression approach for multiclass prediction. Their approach
initially groups features into several classes and then applies class-specific regularization, thereby
attempting to adapt the amount of regularization to the available data. Michel et al. (2011b) apply
an ¢; norm of the image gradient, also called the total variation, as regularization. Their method
tends to determine block structure, assuming that the neural processing has a sparse spatial layout
that is structured in groups of connected voxels. Bunea et al. (2011) apply the widely used Lasso
and elastic net procedures to neuroimaging data for prediction and implement a bootstrap-based
extension to provide a measure of uncertainty for the variable selection results. Marquand et al.
(2010) present a prediction model that uses Gaussian processes to forecast pain intensity from
whole-brain fMRI data.

Despite the number of studies pursuing prediction and classification, more principled appli-
cations of existing statistical methods are needed, as is the development of new methods. For
example, researchers should assess the sensitivity of various approaches to tuning parameters,
evaluate the variability involved in assessing generalization accuracy, and incorporate precision
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into variable selection techniques. In addition, statisticians have opportunities to apply or develop
techniques to leverage the vast and complicated structure present in imaging-derived variables
and to incorporate known structure from auxiliary information. Statistics may also play a role in
encouraging biological plausibility in the variable selection process.

3.5. Software

Several software packages are available for neuroimaging analysis, many of which are freely acces-
sible and serve as major assets to applied researchers. Some of these packages are fairly compre-
hensive, implementing various preprocessing steps, statistical analyses, and advanced visualization
techniques, but many are specialized for specific analytic methods or data types. I list some popular
software tools to aid readers, but I do not attempt to give a complete summary of available packages.

FMRIB Software Library (FSL), developed by the University of Oxford’s Center for Func-
tional MRI of the Brain (FMRIB), is a comprehensive library of tools for fMRI, MRI, and DTT.
Statistical Parametric Mapping (SPM) is a collection of MATLAB functions equipped with a
graphical user interface that offers broad capabilities for preprocessing and analyzing fMRI and
MRI data. Similarly, AFNI (often interpreted as an acronym for Analysis of Functional Neurolm-
ages) is a set of C programs for processing, analyzing, and displaying fMRI data. Brain Voyager is
a commercial package containing tools for the analysis of fMRI, DTI, EEG, MEG, and transcra-
nial magnetic stimulation (TMS) data. Beyond these comprehensive packages, numerous other
software tools can be used to implement specialized analytic methods or to analyze data from a
particular modality. Examples of such tools include Bayesian Spatial Model for Activation and
Connectivity (BSMac), DTT Studio, Meta-analysis Toolbox, Brain Connectivity Toolbox (BCT),
Connectome Workbench, and MedINRIA. As new statistical methods emerge, there remains a
need to develop accompanying software that will assist applied researchers in implementing these
advanced procedures.

4. DISCUSSION

Neuroimaging is an exciting and rapidly expanding field that is advancing our understanding of the
brain and impacting neuroscience, psychology, psychiatry, and neurology. This review provides
a survey of major substantive objectives and existing analytic methods, but our summary is by
no means comprehensive. Brain imaging research is an inherently interdisciplinary field in which
statistics plays a critical role by helping to define rigorous methodology for extracting information
and for quantifying statistical evidence.

One area of growing interest is multimodal imaging, which has the potential to incorporate
imaging modalities that reflect physiologically distinct, but complementary information. For in-
stance, analysts may combine information extracted from any of the following: brain function,
localized properties of tissue density, local diffusion properties, structural connections between
regions, and electrophysiological measures of neural activity. These multimodal imaging data may
lead to more accurate and reliable analytic approaches than would single-modality analyses, and
they also may expand the information content and possible interpretations. Multimodal analyses
also provide more complete information by pooling data associated with a physiologically similar
objective, such as brain function, measured via blood oxygenation, blood flow, metabolism, and
electrical activity. Moreover, various imaging modalities incorporate information across differ-
ent temporal and spatial scales. Despite the many potential advantages of using multimodal data,
these data present challenges for statistical analysis. The dimensionality may become unwieldy.
Alignment of information across different temporal scales, say milliseconds to seconds, may cause
analytic and interpretative issues. Similarly, integrating information across spatial scales may prove
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difficult. Multimodal images may be accompanied by nonimaging data, such as genomic, clini-
cal, demographic, and/or biological information, that exacerbate some of the aforementioned
challenges.

A second area for statistical contribution involves the development of methodologies that are
able to incorporate biological information. Given the rapid expansion of and intense interest in
neuroimaging research, more information will become available to incorporate in future model-
ing efforts. For example, the NIH-funded Human Connectome Project is an enormous initiative
aimed atadvancing our knowledge about the human brain and its functional and structural connec-
tivity properties. Also, US President Barack Obama announced the NIH Brain Research through
Advancing Innovative Neurotechnologies (BRAIN) Initiative, which is another substantial na-
tional investment to aid our understanding of the brain. These and other large-scale initiatives,
combined with the rapid expansion of the field more broadly, will provide insights about the brain,
offering statisticians an opportunity to develop models that are functionally and structurally better
informed. For example, such models may be developed via Bayesian frameworks by incorporating
physiologically based prior probability distributions.

Many imaging data sets have nested spatial and temporal structures, which make the Bayesian
methodology appealing. Bayesian modeling has proven to be beneficial for neuroimaging data
because it distributes the overall complexities of the data across various hierarchical levels and
enables flexible posterior inferences. These models, however, often involve many parameters,
which may bring about computational issues related to (#) Markov chain Monte Carlo methods
for posterior simulations and (b) assessments of simulation properties such as convergence and
the dependence of posterior draws for model parameters. Carefully constructed models, such as
those enabling the use of the Gibbs sampler, facilitate computations and are often reasonable
to implement in practice. For additional modeling flexibility, however, researchers may need to
consider the use of alternative posterior approximation strategies such as variational Bayes to
reduce the computational demands.

Some neuroimaging studies are using longitudinal designs instead of traditional cross-sectional
designs. The growing number of longitudinal studies and the acquisition of multimodal images
raise the issue of missing data. Data for any given subject may be missing from a single measurement
occasion or a single modality, making the common practice in neuroimaging studies of discarding
all data from subjects who have any missing data an inefficient one. Researchers may make some
immediate gains by applying existing methods in the statistical literature for handling missing data
to neuroimaging, but the enormity and complexity of imaging data prompt the need for additional
methodological development.

fMRI data show substantial variability both within and between subjects, and group studies often
have limited sample sizes, prompting the need to consider analytic techniques and study designs
thatlead to reliable findings. Meta-analyses are one important strategy for determining the degree
to which task-related changes in brain activity are consistent across studies and whether pairs or
networks of brain regions are consistently simultaneously activated (Cauda et al. 2011, Eickhoff
etal. 2009, Kang et al. 2011, Robinson et al. 2010a). Conducting studies with larger sample sizes
also yields more precise estimates and more powerful statistical tests, and larger studies including
hundreds or even thousands of subjects are beginning to emerge. In summary, neuroimaging is an
exciting and rapidly expanding field that presents numerous challenges for quantifying evidence.
Statistics should play a critical role in the growth of this interdisciplinary field.
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