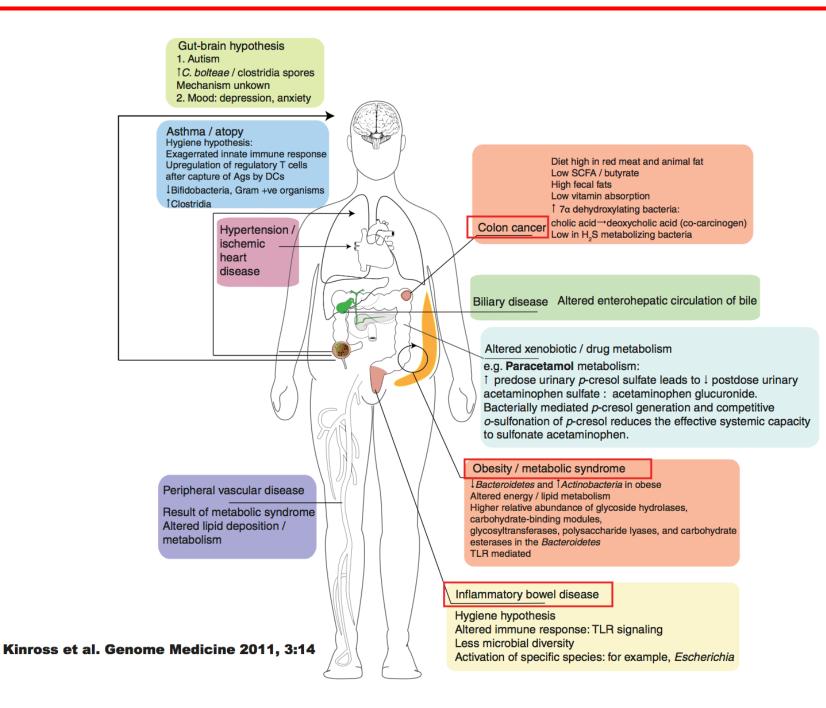
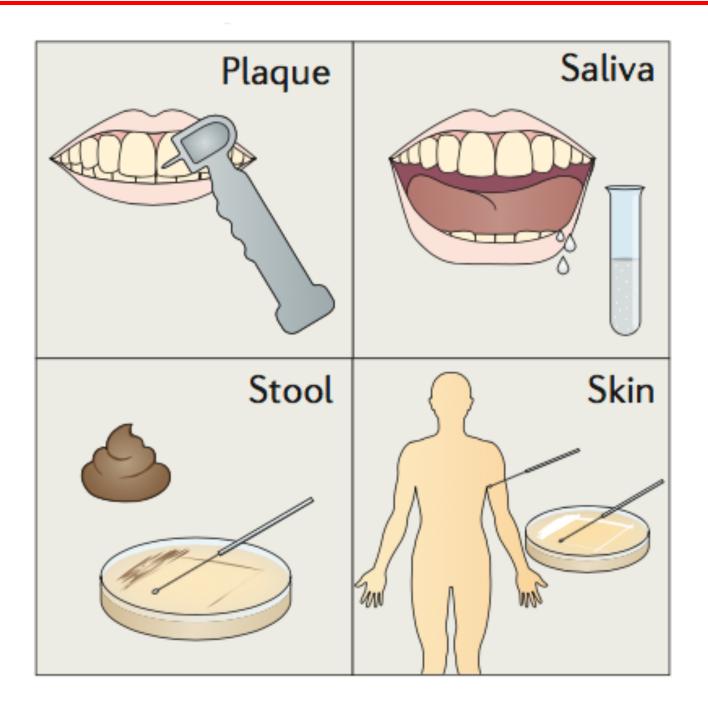
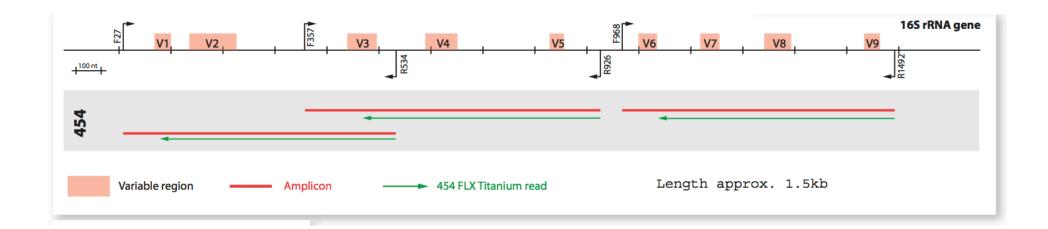

Microbiome Data Analysis

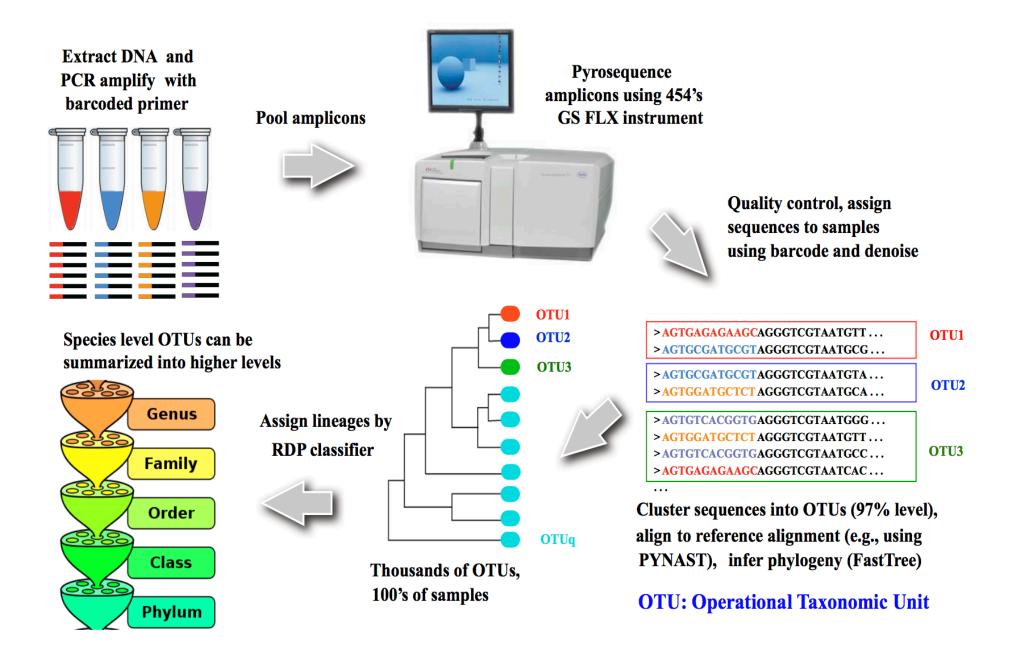

Yijuan Hu 2019-9-26

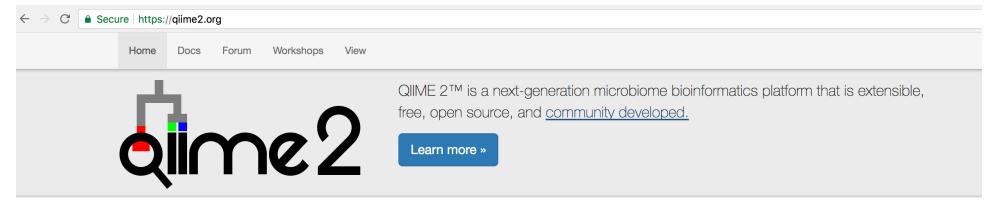

- Microbiome and Human Diseases
- Sequencing + Bioinformatics Pipelines
- Human Microbiome Project (HMP), Metagenomics of the Human Intestinal Tract (MetaHIT)
- Statistical Analyses
- Study Design and Power

- Microbiome as extended human genome
 - -10^{13} human cells vs 10^{14} bacterial cells
 - Consist of bacteria, fungi, and viruses
 - More than 3×10^6 genes provided by our gut microbiome
 - Distinctive microbiomes at different body sites
 - The human microbiome may explain the missing link between genetic variation and disease
- The human microbiome in health
 - Digestive enzyme activity
 - Synthesis of vitamins
 - Interaction with the immune system
 - Protection from pathogens, etc.



Nat Rev Microbiol. 2011 Apr;9(4):279-90.





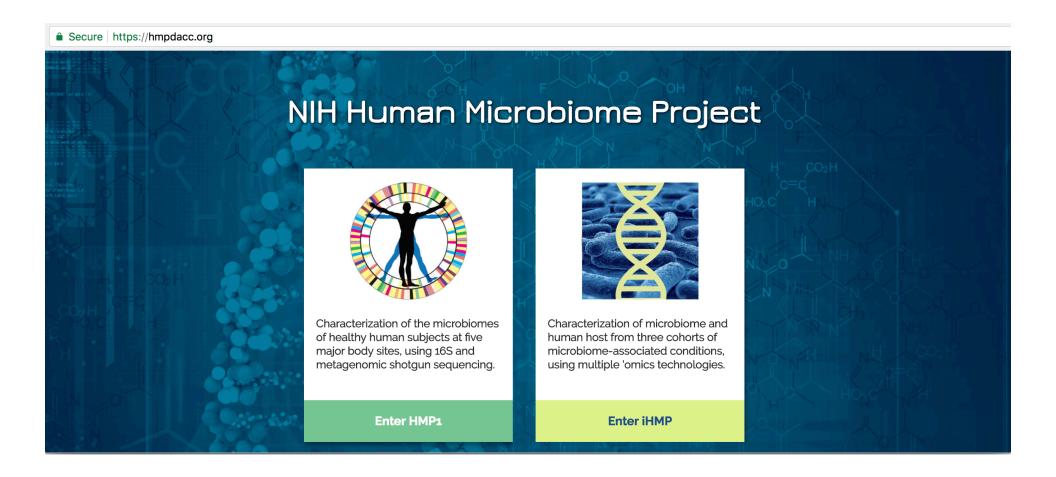
- 16S rRNA gene targeted sequencing
 - Specific to bacteria, not in fungi and viruses
 - Omnipresent in bacteria
 - Some regions are constant, allowing amplification
 - Some regions are variable, allowing identification of a particular genus and species
 - Reveals "who is there" in terms of relative abundances of bacterial taxa

- Metagnomic (whole-genome) shortgun sequencing
 - The total extracted DNA is fragmented and sequenced
 - Reveals "what can they do" in terms of the encoded functions of the sequenced microbial DNA
 - 20–30 times more expensive than 16S rRNA gene sequencing, as well as requiring additional computational costs and high-level expertise for performing metagenomic analyses
 - We focus on 16S rRNA gene sequencing data here

Automatically track your analyses with decentralized data provenance — no more guesswork on what commands were run!

Interactively explore your data with beautiful visualizations that provide new perspectives.

Easily share results with your team, even those members without QIIME 2 installed.


Plugin-based system — your favorite microbiome methods all in one place.

OTU Table — 9/25 —

# Constructed from biom file									
#OTU ID	A1	A2	B1	B2	C1	C2	D1	D2	ConsensusLineage
denovo0	1	. 0				0	0	(0 k_Bacteria
denovo1	0	1				0	0	(0 k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; f_Ruminococcaceae; g_Oscillospira; s_
denovo2	1	. 0	1	0	() 1	. 0	(0 k_Bacteria; p_Bacteroidetes; c_Bacteroidia; o_Bacteroidales; f_Bacteroidaceae; g_Bacteroides
denovo3	0	0	0	0	() 2	. 0	(0 k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; f_Veillonellaceae; g_Dialister; s_
denovo4	0	1	. 0	0	(0	0	(0 k_Bacteria; p_Firmicutes; c_Bacilli; o_Lactobacillales; f_Streptococcaceae; g_Streptococcus
denovo5	2	. 0			(0	0	(0 k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; f_Ruminococcaceae; g_Oscillospira; s_
denovo6	0	0				l 1	. 0	(0 k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; f_Ruminococcaceae
denovo7	0					3 1	. 10	1:	1 k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; f_Lachnospiraceae; g_; s_
denovo8	1	. 7				0	0	(0 k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; f_Lachnospiraceae; g_Blautia; s_
denovo9	0	0	0			0	0	(0 k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; f_Ruminococcaceae
denovo10	1	. 0	0	2	. () 1	. 1	(0 k_Bacteria; p_Proteobacteria; c_Deltaproteobacteria; o_Desulfovibrionales; f_Desulfovibrionaceae; g_; s_
denovo11	0	0	0	0	(0	0	:	k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; f_[Tissierellaceae]; g_Finegoldia; s_
denovo12	0	0	0	0	(0	0		1 k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales
denovo13	0	0	0	0	() 1	. 0	(0 k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; f_Lachnospiraceae
denovo14	12	13	6	13	12:	L 58	1	12	k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; f_Veillonellaceae; g_Dialister; s_
denovo15	30	16	0	0	(0	0	(0 k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; f_Lachnospiraceae
denovo16	0	0	0	1	. (0	0	(0 k_Bacteria; p_Firmicutes; c_Bacilli
denovo17	8	4	0			1 0	1	1	2 k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales
denovo18	0	0	1	0	(0	0	(0 k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales
denovo19	0	0	0	0	1	1 0	0	(0 k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales

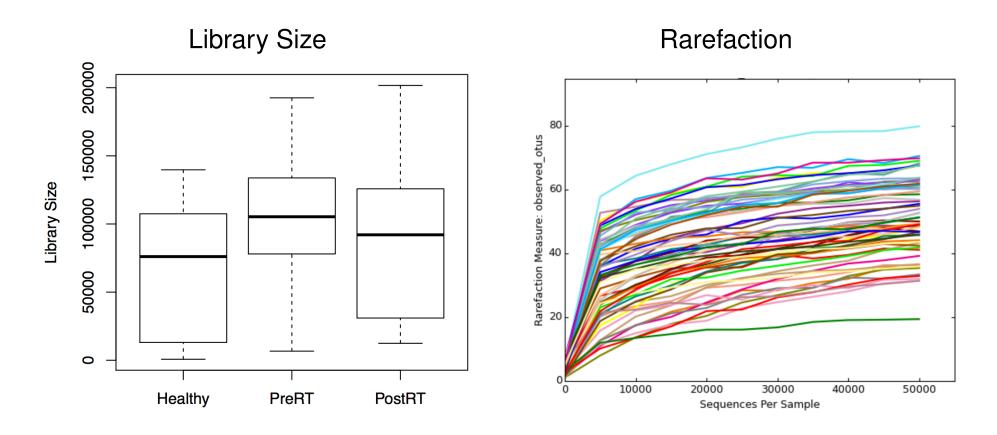
>denovo0 A1_21775

TACGTAGGTGGCAAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGCAGGCGGGAGATCAAGTCGGCTGTGACAACTACAGGCTTAACTTGTAGACTGCGGTCGAAACTGGTTTTCTTGAGTGAAGTATAGG

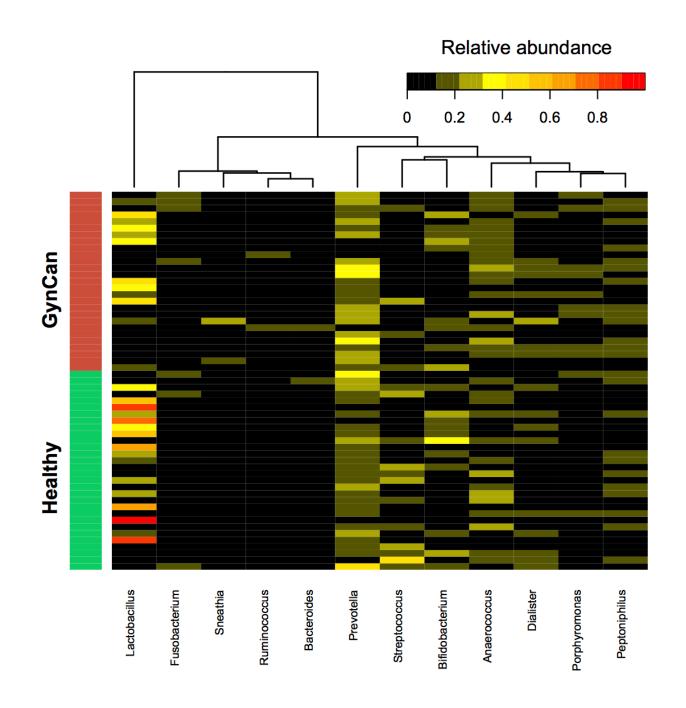
National Institutes of Health (NIH) Common Fund supported

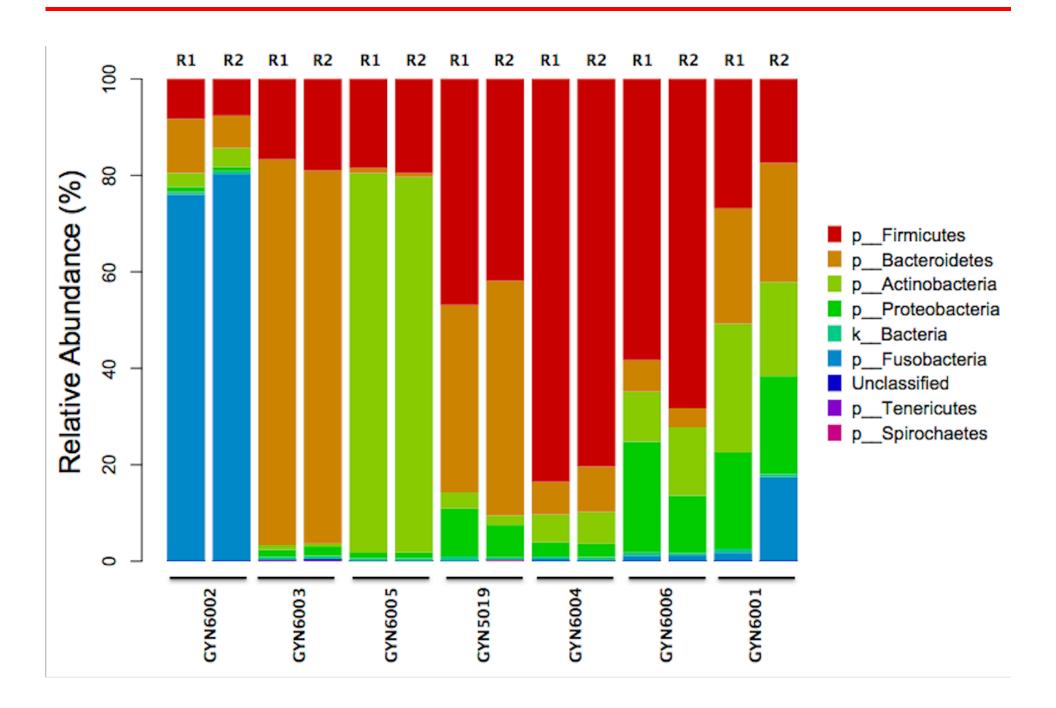
- Phase I (HMP1): established in 2008
- Phase II (iHMP): ongoing

Metagenomics of the Human Intestinal Tract (MetaHIT) — 11/25 —


- to establish associations between the genes of the human intestinal microbiota and our health and disease
- focus on two disorders of increasing importance in Europe, Inflammatory Bowel Disease (IBD) and obesity

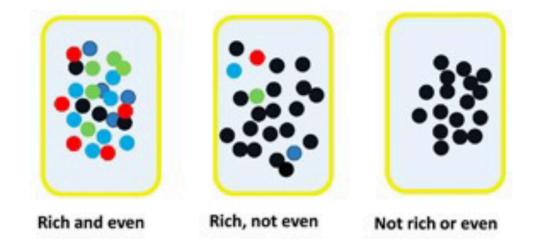
- Quality control
 - Filtering of OTUs and samples
 - Library size and Rarefaction
- Exploratory analysis
 - Relative abundance (e.g., heatmap, painter plot)
 - Alpha diversity (e.g., boxplot)
 - Beta diversity (e.g., PCoA)
- Global testing
 - Compare the overall microbiome composition across different clinical groups
- OTU-based testing
 - Detect differentially abundant OTUs across different clinical groups


There is no gold standard yet!

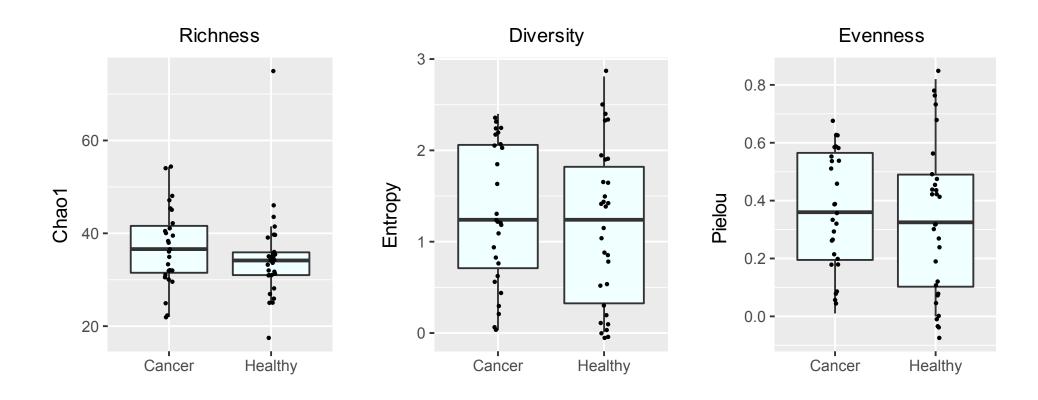

For example:

- OTU filter:
 - remove singletons (i.e., exist only in one sample)
 - remove OTUs that are present in < 10% of samples
 - remove OTUs with relative abundance < 0.5%
- Sample filter
 - remove samples with < 500 sequencing reads

- Sequencing experiments lead to an arbitrary total number of sequence reads per sample (library size); strong batch effect on library size
- Uneven library size is a strong confounder for microbiome analysis
- Rarefaction curves are used to determine the library size that all samples are rarefied to.



- Wilcoxon rank-sum test (nonparametric) for comparing two groups
- Krustal-Wallis test (nonparametric) for comparing more than two groups


Alpha diversity: measure the diversity within a sample

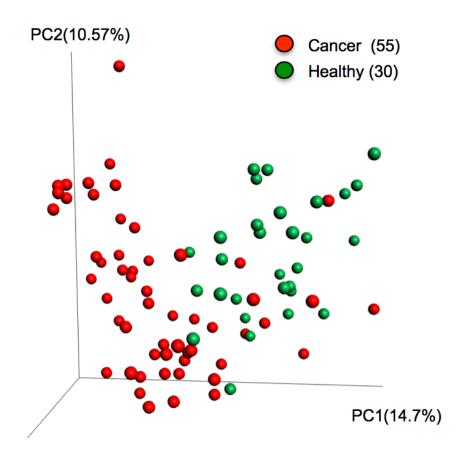
- Richness: a measure of number of species present in a sample
- Evenness: distribution of different microbes

Common used alpha diversity metrics

- ullet Observed species: measure richness only, $S_{\rm obs}$
- Chao1: measure richness only, $S_{\rm obs}$ + $(1/2)S_{\rm singleton}^{\,2}/S_{\rm doubleton}$
- Shannon: measures richness and evenness, $H' = -\sum_{j=1}^{J} p_j \ln p_j$
- **Pielou**: measure evenness only, $H'/H'_{\rm max} = H'/\ln S_{\rm obs}$

- Wilcoxon rank-sum test (nonparametric) for comparing two groups
- Krustal-Wallis test (nonparametric) for comparing more than two groups

Beta diversity: measure the distance or dissimilarity between each sample pair ⇒ distance/dissimilarity matrix


Common used beta diversity metrics

- Non-phylogeny based
 - Bray-Curtis: based on abundance
 - * based on absolute abundance n_{ij} , $b_{ii'} = \frac{\sum_{j=1}^{J} |n_{ij} n_{i'j}|}{n_{i+} + n_{i'+}}$
 - * based on relative abundance p_{ij} , $b_{ii'} = \sum_{j=1}^{J} |p_{ij} p_{i'j}|$
 - Jaccard: based on presence-absence
 - *: $J_{ii'} = \frac{|S_i \cap S_{i'}|}{|S_i \cup S_{i'}|}$, S_i is the set of present OTUs in sample i
- Phylogeny based (b_i the length of branch j)
 - Weighted UniFrac: based on abundance, $d_{W,ii'} = \frac{\sum_{j=1}^{J} b_j |p_{ij} p_{i'j}|}{\sum_{j=1}^{J} b_j (p_{ij} + p_{i'j})}$
 - Unweighted UniFrac: based on presence-absence,

$$d_{U,ii'} = \frac{\sum_{j=1}^{J} b_j |I(p_{ij}>0) - I(p_{i'j}>0)|}{\sum_{j=1}^{J} b_j}$$

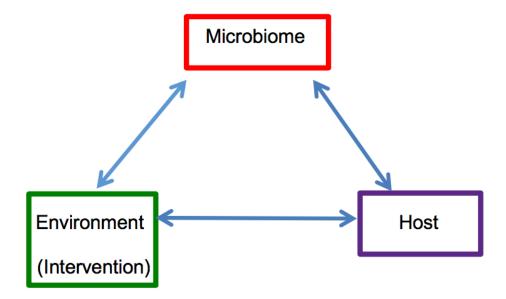
Principal Coordinates Analysis (PCoA) can be used for visualization of the data present in the beta diversity distance matrix in the form of 2-dimensional or 3-dimentional plots known as PCoA plots.

Perform eigen-decomposition of a pre-specified distance matrix and obtain eigenvectors (PC1, PC2, ...)

Statistical hypothesis: the microbiome compositions are different in the healthy and in the diseased group

PERMANOVA (Permutation-based ANOVA): based on a pre-specified distance matrix $(d_{ii'})$

- Square of distance matrix: $A = (a_{ii'})$, where $a_{ii'} = -\frac{1}{2}d_{ii'}^2$
- Gower standardization: $G = \left(I \frac{11'}{n}\right)A\left(I \frac{11'}{n}\right)$
- Hat matrix of the design matrix X: $H = X(X^TX)^{-1}X^T$
- The pseudo-F statistic (*m* covariates and *n* samples):


$$F = \frac{\operatorname{tr}(HGH)/(m-1)}{\operatorname{tr}[(I-H)G(I-H)]/(n-m)}$$

• The significance of the pseudo-F statistics is assessed based on permutations

There is no gold standard!

- **DESeq2** (Love et al., 2014)
 - Developed for detecting differentially expressed genes using RNA-seq data
 - Normalization for gene expression data (non-sparse data)
 - Assume Negative-Binomial model
- MetagenomeSeq (Paulson et al., 2013)
 - Developed for detecting differentially abundant OTUs using 16S sequencing data
 - Normalization accounts for sparse data
 - Assume a zero-inflated Gaussian (ZIG) distribution mixture model
- ANCOM (ANalysis of Composition Of Microbiomes, Mandal et al., 2015)
 - Developed for detecting differentially abundant OTUs using 16S sequencing data
 - make no distributional assumptions; use log-ratios

- Analysis of paired, clustered, or longitudinal data
- Adjustment of confounders (e.g., gender, ancestry)
- Adjustment of batch effects (e.g., library size)
- Causal inference
 - Randomized clinical trails
 - Mediation analysis

Network analyses identify co-varied OTUs

- To control batch effects
 - Randomization
 - Use control samples with known composition in each batch
 - Replicate some samples across sequencing batches
- Paired sample designs will increase power
- Longitudinal design help reveal dynamics or even causality