
Single-cell	sequencing



Background
• Most	of	the	biological	experiments	are	performed	on	
“bulk”	samples,	which	contains	a	large	number	of	
cells	(millions).

• The	high-throughput	data	we	introduced	so	far	are	
all	“bulk”	data,	which	measures	the	average	(gene	
expression,	TF	binding,	methylation,	etc.)	of	many	
cells.

• The	bulk	measurement	ignores	the	inter-cellular	
heterogeneities:	
– Different	cell	types.
– Biological	variation	among	the	same	type	of	cell.	



Single-cell	biology

• The	study	of	individual	cells.
• The	cells	are	isolated	from	multi-cellular	organism.	
• Experiment	is	performed	for	each	cell	individually.	
• Provides	more	detailed,	higher	resolution	
information.

• High-throughput	experiments	on	single	cell	is	
possible.



Single	cell	sequencing

• Perform	different	types	of	sequencing	at	the	single-cell	
level:
– DNA-seq
– ATAC-seq	
– BS-seq
– RNA-seq

• Very	active	research	field	in	the	past	few	years.	
• Major	challenges:	

– Cell	isolation.
– Amplification	of	genomic	material.
– Data	analysis.



Basic	experimental	procedure

• Isolation	of	single	cell.	Techniques	include
– Laser-capture	microdissection (LCM)
– Fluorescence-activated	cell	sorting	(FACS)
– Microfluidics

• Open	the	cell	and	obtain	DNA/mRNA/etc.
• PCR	amplification	to	get	enough	materials.
• Perform	sequencing.
• Note	that	single	cell	sequencing	usually	has	higher	
error	rates	than	bulk	data.	



Single	cell	DNA-seq	(scDNA-seq)

• For	a	comprehensive	review,	read	Gawad et	al.
(2016)	NRG.	

• Examples	of	biological	applications:
– Identify	and	assemble	the	genome	of	unculturable
microorganisms.	

– Determine	the	contribution	of	intra-tumor	genetic	
heterogeneity	in	cancer	development	of	
treatment	response.	



scDNA-seq	data	analysis

• Single	cell	variant	calling:
– Bulk	data	can	be	used	as	reference	to	reduce	false	
positives.	

– Combine	data	from	several	cells.
– Software:	Monovar (Zafar	et	al. 2016	Nat.	Method.)

• Determining	genetic	relationship	among	single	cells:	
– This	is	a	clustering	problem.	Cells	can	be	put	into	groups	or	
a	phylogenetic	tree	based	on	similarity	of	variants.	

– Methods	are	mostly	ad	hoc.	
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Next, we investigated the reproducibility and accuracy of scBS-seq.  
Bisulfite conversion efficiency was q97.7%, as assessed by 
analysis of non-CpG methylation (or q98.5% by examining the 
unmethylated mitochondrial chromosome in ESCs; Fig. 1c and 
Supplementary Table 1). CpG sites in MIIs were overwhelmingly 
called methylated or unmethylated, which is consistent with a 
highly digitized output from single cells (Supplementary Fig. 4). 
As expected, global methylation of MIIs was highly homogeneous 
(33.1 o 0.8%; o s.d.) and 2i ESCs were hypomethylated compared 
to serum ESCs13. Yet both 2i ESCs and serum ESCs exhibited 5mC 
heterogeneity (serum, 63.9 o 12.4%; 2i medium, 31.3 o 12.6%;  
Fig. 1c). Global 5mC levels measured in individual MIIs were 
slightly lower than in the bulk sample (39.0%), but merging all 
MII datasets resulted in 38.8% global methylation.

To test the technical reproducibility of scBS-seq, we deter-
mined the average pairwise concordance between individual 
CpGs across single oocyte libraries, which was 87.6% genome-
wide (range, 85.3–88.9%) and 95.7% in unmethylated CpG islands 
(CGIs), a highly homogeneous genomic feature (Fig. 1d). CpG 
concordance in ESCs was lower (serum, 72.7%; 2i medium, 
69.8%), which reflected the heterogeneity of these cells (Fig. 1d  
and Supplementary Fig. 5). At 2-kilobase (kb) resolution, we 
observed high correlation between individual MIIs (average R = 
0.92), and between individual MIIs and bulk (average R = 0.95) 
(Fig. 1e). In addition, for each MII, we obtained methylation  
information on an average of 61.5% of all CGIs (range, 46.3–82.7%);  

of 1,615 CGIs identified as methylated from bulk libraries 
and informative in individual MIIs, q92% were called methyl-
ated by scBS-seq, with a0.3% incorrectly called unmethylated 
(Supplementary Fig. 6).

Mapped scBS-seq reads were distributed across the genome 
and provided information on all genomic contexts, including reg-
ulatory regions (Supplementary Table 2); however, the enrich-
ment in exons, promoters and CGIs observed in bulk libraries 
was exaggerated in scBS-seq libraries (Supplementary Fig. 7). 
Yet the fact that we obtained ~20% coverage of CpGs per cell 
means that the proportion of sites that can be compared across 
samples will depend on the nature of the analytic units (features, 
window size, etc.); conversely, in silico merging of individual 
datasets rapidly increased the number of CpGs with information 
(Supplementary Fig. 8). We could largely reproduce the entire 
5mC landscape of oocytes using only 12 single cells (Fig. 1e,f 
and Supplementary Fig. 9). This capability is particularly ben-
eficial for analyses of homogeneous cell populations and makes 
scBS-seq an important tool to investigate the 5mC landscape in 
very rare material.

To explore 5mC heterogeneity in ESCs, we used a 3-kb sliding  
window to estimate the methylation rate across each ESC genome 
as well as the mean methylation rate and variance across all 
ESCs (Fig. 2a). We clustered cells on the basis of methylation 
rates while penalizing estimation uncertainty owing to low read 
counts. We identified two distinct clusters that represented the  

Figure 1 | scBS-seq is an accurate and reproducible method for genome-wide methylation analysis. (a) scBS-seq library preparation consists of isolating 
and lysing single cells before bisulfite conversion (‘BS’); performing five rounds of random priming and extension using oligo 1 (which carries the first 
sequencing adaptor) and purifying synthesized fragments; and performing a second random priming and extension step using oligo 2 (which carries the 
second sequencing adaptor) before amplifying the resulting fragments. (b) Number of CpGs obtained by scBS-seq as a function of mapped sequences.  
(c) Global DNA methylation in a CpG (CG) and non-CpG (CHH/G) context for single cells (SCs), in silico–merged and bulk samples. (d) Pairwise analysis  
of CpG concordance genome-wide and in unmethylated CGIs. Boxplots represent the interquartile range, with the median; whiskers correspond to  
1.5 times the interquartile range. (e) Matrix of pairwise Pearson correlations (2-kb windows) for MII bulk, individual MII and in silico–merged MII  
scBS-seq datasets. (f) CpG methylation percentage quantified over 2-kb windows for four single MII libraries and merged data from all 12 MIIs  
(MII merged), which closely resemble the landscape of the bulk MII sample. Inset, correlation between MII bulk and MII merged data. 
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Single	cell	BS-seq	(scBS-seq)
• Similar	to	scDNA-seq,	but	with	bisulfite	treatment	before	

sequencing.	
• There’s	scWGBS and	scRRBS.	
• The	methylation	levels	from	scBS-seq	should	be	0/1,	with	

some	exceptions	caused	by	technical	artifacts.	
• Merged	single	cell	and	bulk	data	have	good	correlation.	

Smallwood	et	al.	2014,	NM



scBS-seq	data	analysis

• So	far	the	data	analysis	are	mostly	descriptive:
– compute	variations	among	cells
– Cell	clustering	
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majority of 2i ESCs and serum ESCs (Fig. 2b). Outlier cells from the 
serum condition clustered with 2i ESCs, which implies that serum  
cultures contain ‘2i-like’ ESCs and demonstrates the ability of 
scBS-seq to identify rare cell types in populations. To examine 
5mC heterogeneity in ESCs in greater detail, we ranked sites by 
the estimated cell-to-cell variance and repeated the cluster analy-
sis for the 300 most variable sites (Fig. 2c). The structure of the 
resulting clusters was grossly similar to that in the genome-wide 
analysis, and all 300 variable sites followed the global trend of 
being more highly methylated in serum than 2i ESCs with high 
similarity between sites (Figs. 1c and 2b,c, and Supplementary 
Figs. 10 and 11). This observation is consistent with the genome-
wide hypomethylation observed in ESCs grown in 2i medium13 
and indicates that a major determinant of ESC heterogeneity is 
global methylation.

scBS-seq also identified sites whose methylation varied more 
than the genome average, including sites with marked heterogene-
ity even among cells from the same growth condition (e.g., clusters 
5 and 6 in serum ESCs; Fig. 2c). Regions containing H3K4me1 
and H3K27ac, marks associated with active enhancers, had the  

greatest variance in 5mC, whereas CGIs and intracisternal  
A-particle repeats had lower variance than the genome average 
(Fig. 2d and Supplementary Fig. 12). These findings are consistent 
with observations that distal regulatory elements are differentially 
methylated between tissues and throughout development15–17.

While this manuscript was in preparation, a single-cell 
reduced-representation bisulfite sequencing (scRRBS) method 
was reported18, based on the single-tube RRBS strategy we had 
previously developed19. Although scRRBS and scBS-seq could 
be seen as complementary, our methodology currently provides 
information on ~5-fold more CpGs and ~1.5-fold more CGIs at 
equivalent sequencing depth (Supplementary Fig. 13). Future 
developments will undoubtedly allow information to be recovered 
from most genomic CpGs, the key being the ability to amplify 
DNA before bisulfite conversion. The capacity to capture the  
DNA methylome from individual cells will be critical for a full 
understanding of early embryonic development, cancer progres-
sion and generation of  induced pluripotent stem cells.

Our work demonstrates that large-scale single-cell epigenetic 
analysis is achievable, and demonstrates that scBS-seq is a powerful  
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Figure 2 | scBS-seq reveals DNA methylation heterogeneity in ESCs. (a) Estimated DNA methylation rates using a sliding window in an example region 
containing the Nanog locus with some annotated features. Each single ESC is represented by a different color (bottom), and dot size is the inverse of 
estimation error. Mean methylation rate estimates across cells (black line, bottom) and cell-to-cell variance (blue line, middle; 95% confidence interval 
in light blue) are shown. Methylation rates for ‘bulk serum’ (green line) and ‘bulk 2i’ (orange line) are superimposed (bottom). (b) Genome-wide cluster 
dendrogram and distance matrix for all ESCs and bulk samples based on estimated methylation rates. Distance refers to the weighted Euclidean norm 
between estimated rates. (c) Heatmap for methylation rates of the top 300 most variable sites among single-cell ESC samples. Cluster dendrograms for 
samples (left) and sites (top) are shown. The genome-wide average methylation rate is displayed in the left track (‘all’). The main clusters of variable 
sites are indicated at the bottom. (d) Variance of sites located in different genomic contexts. Boxes represent interquartile range with the median; 
whiskers correspond to 1.5 times the interquartile range. The shaded gray region indicates the interquartile range for all genome-wide sites.
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majority of 2i ESCs and serum ESCs (Fig. 2b). Outlier cells from the 
serum condition clustered with 2i ESCs, which implies that serum  
cultures contain ‘2i-like’ ESCs and demonstrates the ability of 
scBS-seq to identify rare cell types in populations. To examine 
5mC heterogeneity in ESCs in greater detail, we ranked sites by 
the estimated cell-to-cell variance and repeated the cluster analy-
sis for the 300 most variable sites (Fig. 2c). The structure of the 
resulting clusters was grossly similar to that in the genome-wide 
analysis, and all 300 variable sites followed the global trend of 
being more highly methylated in serum than 2i ESCs with high 
similarity between sites (Figs. 1c and 2b,c, and Supplementary 
Figs. 10 and 11). This observation is consistent with the genome-
wide hypomethylation observed in ESCs grown in 2i medium13 
and indicates that a major determinant of ESC heterogeneity is 
global methylation.

scBS-seq also identified sites whose methylation varied more 
than the genome average, including sites with marked heterogene-
ity even among cells from the same growth condition (e.g., clusters 
5 and 6 in serum ESCs; Fig. 2c). Regions containing H3K4me1 
and H3K27ac, marks associated with active enhancers, had the  

greatest variance in 5mC, whereas CGIs and intracisternal  
A-particle repeats had lower variance than the genome average 
(Fig. 2d and Supplementary Fig. 12). These findings are consistent 
with observations that distal regulatory elements are differentially 
methylated between tissues and throughout development15–17.

While this manuscript was in preparation, a single-cell 
reduced-representation bisulfite sequencing (scRRBS) method 
was reported18, based on the single-tube RRBS strategy we had 
previously developed19. Although scRRBS and scBS-seq could 
be seen as complementary, our methodology currently provides 
information on ~5-fold more CpGs and ~1.5-fold more CGIs at 
equivalent sequencing depth (Supplementary Fig. 13). Future 
developments will undoubtedly allow information to be recovered 
from most genomic CpGs, the key being the ability to amplify 
DNA before bisulfite conversion. The capacity to capture the  
DNA methylome from individual cells will be critical for a full 
understanding of early embryonic development, cancer progres-
sion and generation of  induced pluripotent stem cells.

Our work demonstrates that large-scale single-cell epigenetic 
analysis is achievable, and demonstrates that scBS-seq is a powerful  
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Single	cell	ChIP/ATAC-seq

• ATAC-seq:	similar	to	DNase-seq,	profile	the	
active	genomic	regions.	Data	look	like	ChIP-
seq.	

• A	few	papers:	
– Rotem et	al.	(2015)	NBT:	scChIP-seq	
– Buenrostro et	al.	(2015)	Nature:	scATAC-seq
– Pott	and	Liet (2015)	Genome	Biology:	review



scChIP/scATAC-seq	data

• Aggregated	sc data	has	good	agreement	with	bulk.	

all cells (Fig. 2b), a metric of excess variance over the background
signal.

We first focused our analysis on K562 myeloid leukaemia cells, a
cell type with extensive epigenomic data sets17,18. To comprehen-
sively characterize variability associated with trans-factors within
individual K562 cells, we computed variability across all available
ENCODE ChIP-seq, transcription factor motifs and regions that
differed in replication timing (as determined from Repli-Seq data
sets19) (Fig. 2c, d). We found measures of cell-to-cell variability
were highly reproducible across biological replicates (Extended
Data Fig. 5). As expected from proliferating cells, we find increased
variability within different replication timing domains, representing
variable ATAC-seq signal associated with changes in DNA content
across the cell cycle. In addition, we discover a set of trans-factors
associated with high variability. These factors include sequence-
specific transcription factors, such as GATA1/2, JUN and STAT2,
and chromatin effectors, such as BRG1 (also known as SMARCA4)
and P300 (also known as EP300). Immunostaining followed by
microscopy or flow cytometry (Fig. 2e and Extended Data Fig.
6a–d) confirmed heterogeneous expression of GATA1 and
GATA2. Principal component (PC) analysis of single-cell devia-
tions across all trans-factors show seven significant PCs, with PC
5 describing changes in DNA abundance throughout the cell cycle.
This analysis suggests that high-variance trans-factors are variable
independent of the cell cycle (Fig. 2f and Extended Data Fig. 6e–g).
The remaining PCs show contributions from several transcription
factors, suggesting that variance across sets of trans-factors repres-
ent distinct regulatory states in individual cells.

We hypothesized that variation associated with different trans-fac-
tors can synergize, either through cooperative or competitive binding,
to induce or suppress site-to-site variability in chromatin accessibility.
For example, the most variant factors in K562 cells, GATA1 and
GATA2, display expression heterogeneity and also bind an identical
consensus sequence GATA, suggesting these factors may compete
for access to DNA sequences. In support of this hypothesis, we find

regulatory elements with both GATA1 and GATA2 ChIP-seq signals
show increased variability in accessibility, whereas sites with only
GATA1 or GATA2 show substantially less variability (Fig. 2g and
Extended Data Fig. 6h). In contrast, we find no substantial change in
variability of GATA1 binding sites that co-occur with JUN or CEBPB
(Extended Data Fig. 6i). We also find peaks unique to GATA1 binding
are significantly more accessible than peaks unique to GATA2
(Extended Data Fig. 6k–l) supporting the hypothesis that GATA1,
an activator of accessibility, competes with GATA2 to induce single-
cell variability. Extending this analysis to all transcription factor ChIP-
seq data sets revealed a trans-factor synergy landscape for accessibility
variation (Fig. 2g and Extended Data Fig. 6j). For example, chromatin
accessibility variance associated with GATA2 binding is significantly
enhanced when the same region could also be bound by GATA1,
TAL1 or P300. In contrast, CTCF, SUZ12, and ZNF143 appear to
act as general suppressors of accessibility variance, unless associated
with proximal binding of ZNF143 or SMC3, the latter a cohesin sub-
unit involved in chromosome looping18,20. Thus, single cell accessibility
profiles nominate distinct trans-factors that, in combination, induce or
suppress cell-to-cell regulatory variation.

To validate our ability to detect changes in accessibility variance, we
used chemical inhibitors to modulate potential sources of cell-cell
variability. Inhibition of cyclin-dependent kinases 4 and 6 (CDK4/
6), essential components of the cell cycle, caused a marked reduction
of variability within peaks associated with DNA replication timing
domains (Repli-Seq) (Fig. 3a). The addition of inhibitors of JUN or
BCR–ABL kinases (JNKi and imatinib, respectively) increased G1/S-
associated variability suggesting an increase in the subpopulation of
G1/S cells, which was validated with flow cytometry (Extended Data
Fig. 7). JUN variability was significantly gained in response to JNKi but
not imatinib treatment, suggesting that high-variance trans-factors
can also be specifically and pharmacologically modulated. Tumour
necrosis factor (TNF) treatment of GM12878 cells specifically modu-
lated accessibility variability at NF-kB sites (Fig. 3b), consistent with
the known stochastic and oscillatory property of nuclear shuttling in
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• Very	sparse:	one	a	few	reads	at	peak	regions.	
– Extremely	low	signal	to	noise	ratio.	
– Peak	calling	have	to	be	based	on	combined	data,	
or	rely	on	other	prior	information

this system21. Together, these results show that variability can be
experimentally modulated and further demonstrates that variability
is not solely dependent on the cell cycle.

We observe that trans-factors associated with high variability are
generally cell-type specific. Hierarchical bi-clustering of single-cell
deviations generated from three cell lines reveals cell-type specific sets
of transcription factor motifs associated with high variability (Fig. 3c).
This analysis also shows cells from different biological replicates clus-
ter with their cell type of origin (with a single exception), suggesting
scATAC-seq can also be used to deconvolve heterogeneous cellular
mixtures. Systematic analysis of all assayed cell types identified high-
variance trans-factor motifs that are generally unique to specific cell
types (Fig. 3d and Extended Data Fig. 8a). For example, regions assoc-
iated with GATA transcription factors are most variant in K562 cells,
whereas regions associated with master pluripotency transcription
factors Nanog and Sox2 are most variant in mouse ES cells, consistent
with previous observations of expression variation of these factors22,23.
We also find high variability of GATA1 and PU.1 (SPI1) binding
accessibility in EML cells, a cell type previously shown to have
.200-fold GATA1 and .15-fold PU.1 expression differences within
clonal cellular subpopulations1. The complete set of identified high-
variance trans-factors contains a number of transcription factors prev-

iously reported to dynamically localize into the nucleus, including NF-
kB, JUN and ETS/ERG21,24,25, suggesting that temporal fluctuations in
transcription factor concentration may be driving observed chromatin
accessibility heterogeneity. Finally, we find BJ fibroblasts and HL-60
cells exhibit less variance among this set of annotated trans-factor
motifs, suggesting differences in the global levels of trans-factor vari-
ability across cell lines. Specific chromatin states and histone modifi-
cations26 are also sometimes associated with accessibility variation in
single cells (Extended Data Fig. 8b, c). Overall these findings suggest
that trans-factors promote cell-type specific chromatin accessibility
variation genome-wide.

Patterns of variation in accessibility along the linear genome in
individual cells reveal an unexpected connection to higher-order chro-
mosome folding. We calculated single-cell deviations within sliding
windows across the genome, each encompassing a fixed number of
peaks (n 5 25) (Fig. 4a). We determined which windows co-varied
within individual cells by calculating the co-correlation of each win-
dow across all others within the same chromosome within individual
cells (Extended Data Fig. 9a, b). We further enhanced this co-correla-
tion matrix using a secondary correlation analysis using methods sim-
ilar to those used in chromosome conformation studies10 (Methods).
The resulting matrix, which identifies pairs of positions in the genome
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Figure 2 | Trans-factors are associated with single-cell epigenomic
variability. a, Schematic showing two cellular states (transcription factor high
and transcription factor low) leading to differential chromatin accessibility. TF,
transcription factor. b, Analysis infrastructure, which uses a calculated
background signal (BS; see Supplementary Methods, section 3.2) to calculate
transcription factor deviations and variability from scATAC-seq data. The
transcription factor value is calculated by subtracting the number of expected
fragments from the observed fragments per cell (see Supplementary Methods,
section 3.1). c, Observed cell-to-cell variability within sets of genomic features
associated with ChIP-seq peaks, transcription factor motifs, and replication
timing (error estimates shown in grey, see Methods for details). Variability

measured from permuted background (see Methods) is shown in grey dots.
d, Distribution of normalized deviations from expected accessibility signal for
GATA1 sites in individual cells, histogram of cells shown in grey, density profile
shown in purple (see Methods). e, Immunostaining of GATA1 (green) and
GATA2 (red) shows protein expression in K562 cells. f, Principal components
ranked by fraction of variance explained from observed deviation data (purple)
and permuted data (orange). Bar plot of observed data shown in grey.
g, Calculated changes in associated variability of factors when present together
versus independently, depicting a context-specific trans-factor variability
landscape (see Methods). Venn-diagrams show variability associated with
GATA1 and/or GATA2 and CTCF and/or SMC3 (co-)occurring ChIP-seq sites.
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Single	cell	RNA-seq	(scRNA-seq)

• The	most	active	in	the	sc field.	
• Scientific	goals:
– Understand	the	gene	expression	heterogeneity	within	
the	same	sample.

– Composition	of	different	types	of	cell	in	complex	
tissues,	such	as	brain,	cancer,	etc.	

– Above	can	be	explored	spatially,	temporally,	or	under	
different	biological	condition.	

• Raw	data	are	the	same	as	bulk	RNA-seq,	can	be	
aligned	using	the	same	software.



Experimental	procedure

…



Taken from
Macosko et	al.		2015	Cell	



Some	data	characteristics
• Number	of	transcripts	detected	is	much	lower	
compared	to	bulk	RNA-seq,	due	to	low	capture	and	
reverse	transcription	efficiencies.	
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variation. This was not seen in the other single-cell methods and 
is perhaps attributable to the sequencing depth of these samples. 
In general, the microfluidic single-cell data had a more well-
defined relationship, with less scatter, between expression level 
and variation than the single cells measured in tubes.

Nanoliter sample preparation improves RNA-seq sensitivity
We constructed saturation curves for each preparation method by 
subsampling the raw reads from each library and determining the 
number of genes detected (Fig. 5). The number of genes detected 
with confidence (FPKM > 1) approached saturation at roughly  
2 million reads for all methods; in fact, the majority of genes were 
detected within the first 500,000 reads—and for most methods, 
>90% of all genes detected at 30 million reads were already detected 
at a sequencing depth of 2 million (Supplementary Fig. 7a).  
There was a large difference in the sensitivity of each method, 
with a wide range of saturation points. The synthetic ensemble 
experiment matched the bulk experiment generated with the 
same method (SMARTer): both reached saturation at 2 million 
sequenced reads at almost identical rates. This again suggests that 
there is less bias when performing cDNA synthesis in smaller 
reaction volumes. With less bias, low-abundance transcripts have 
better representation at lower sequencing depths, and the overall 
assay sensitivity thus improves. Further confirming this hypoth-
esis is the observation that for individual transcriptomes gener-
ated using the microfluidic platform, the average number of genes 
detected at any sequencing depth is higher than with any other 
single-cell method (Fig. 5 and Supplementary Figs. 1 and 7).

DISCUSSION
We used microfluidic automation to quantitatively compare the 
accuracy and precision of single-cell RNA-seq to qPCR. Using two 
distinct methods, each of which has different biases and sources 
of error, enabled us to estimate the absolute accuracy of single-
cell gene expression. Our study shows that single-cell RNA-seq 
can generate results that are quantitatively comparable to qPCR, 
in particular when sample preparation is done in nanoliter-scale 
reaction volumes, as in a microfluidic device. Bias that is typically 
introduced during sample preparation is reduced, and correlation 
further improves. It is not yet clear whether this bias is a funda-
mental limitation of microliter-volume amplification schemes or 
whether with further optimization, these approaches will also 
be able to yield fully accurate transcriptome measurements.  

We expect that the availability of low-bias, high-throughput  
single-cell RNA-seq will make studies of primary tissue involving  
diverse subsets of cell types and hundreds or thousands of  
individual cells routine.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Gene Expression Omnibus: GSE51254 . All  
analysis was performed using custom R scripts, available for 
download at http://sourceforge.net/projects/arwu-scrnaseq/files/
C1_hiseq_analysis_for_paper_revision.R/download.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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• Bulk	and	aggregated	single	cell	expressions	
have	good	correlation.	
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Combining single-cell data recapitulates bulk RNA profile
We created a synthetic ensemble data set by computationally 
pooling raw reads from all the single-cell RNA-seq data to mimic 
a bulk RNA-seq experiment. The correlation between the true 
bulk gene expression and the single-cell ensemble was remarkably 
high (Fig. 4a); there was little distortion as demonstrated by the 
Loess regression curve being virtually linear with a slope close 
to 1 in this regime, and the Pearson correlation coefficient was 
0.870. This analysis confirmed that an ensemble of single cells 
indeed recapitulates the bulk11. However, it is worth noting that 
the opposite is generally not true: bulk measurements cannot be 
used to accurately infer ‘typical’ single-cell expression values, nor 
can they be used to infer the variation in expression value from  
cell to cell (T.K., P.D., S.S., M.F.C. and S.R.Q., unpublished data).

Next we examined variation among RNA-seq replicates by 
looking at how dispersion about the median FPKM depends on 
median gene expression for each method (Fig. 4b). In general, 
genes with low expression levels exhibited greater variation, and 
the degree of variability was gene dependent. But as expression 
level increased, the amount of variation decreased, presum-
ably because genes with high expression are also those that are 
expressed stably. Low-expression genes that were reliably detected 
with low variation among replicates were only found in bulk RNA-
seq and synthetic ensemble data sets. Interestingly, despite the 

uniform behavior of ERCC spike-ins (Supplementary Fig. 6b), 
inter-replicate variation among individual C1 single-cell data 
sets appeared to monotonically decrease with gene expression 
level; that is, low-expression genes always had a high intersample  
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• Expression	levels	for	a	gene	in	different	cells	
sometimes	show	bimodal	distribution.	
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Combining single-cell data recapitulates bulk RNA profile
We created a synthetic ensemble data set by computationally 
pooling raw reads from all the single-cell RNA-seq data to mimic 
a bulk RNA-seq experiment. The correlation between the true 
bulk gene expression and the single-cell ensemble was remarkably 
high (Fig. 4a); there was little distortion as demonstrated by the 
Loess regression curve being virtually linear with a slope close 
to 1 in this regime, and the Pearson correlation coefficient was 
0.870. This analysis confirmed that an ensemble of single cells 
indeed recapitulates the bulk11. However, it is worth noting that 
the opposite is generally not true: bulk measurements cannot be 
used to accurately infer ‘typical’ single-cell expression values, nor 
can they be used to infer the variation in expression value from  
cell to cell (T.K., P.D., S.S., M.F.C. and S.R.Q., unpublished data).

Next we examined variation among RNA-seq replicates by 
looking at how dispersion about the median FPKM depends on 
median gene expression for each method (Fig. 4b). In general, 
genes with low expression levels exhibited greater variation, and 
the degree of variability was gene dependent. But as expression 
level increased, the amount of variation decreased, presum-
ably because genes with high expression are also those that are 
expressed stably. Low-expression genes that were reliably detected 
with low variation among replicates were only found in bulk RNA-
seq and synthetic ensemble data sets. Interestingly, despite the 

uniform behavior of ERCC spike-ins (Supplementary Fig. 6b), 
inter-replicate variation among individual C1 single-cell data 
sets appeared to monotonically decrease with gene expression 
level; that is, low-expression genes always had a high intersample  
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• Negative	correlation	between	mean	expression	
and	biological	variation	(same	as	in	bulk).	
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conventional manner. We determined the pairwise correla-
tion coefficients (Fig. 2a–c) and visualized typical examples as  
scatterplots (Fig. 2d,e,g,h). As expected, the quantitative preci-
sion was improved, especially at low molecule counts. The techni-
cal reproducibility was excellent, as demonstrated by correlation 
coefficients >0.95 for ERCC spike-in control RNA (Fig. 2a).

An important consequence of counting molecules is that the 
data can be displayed on an absolute and biologically meaningful 
scale, with a defined zero. The scales for read-count scatterplots 
(Fig. 2g,h) are arbitrary, as the total number of reads differs 
between wells (and could be increased arbitrarily through addi-
tional sequencing runs). Normalizing to reads per million (RPM) 
amounts only to scaling by a constant factor, and affects neither 
correlation coefficients nor scatterplots. (Normalizing to RPKM 
would distort the results, as we sequenced only the 5` end of each 
mRNA, and thus read number was not proportional to gene length; 
Supplementary Fig. 7). In contrast, scales for molecule-counting 
scatterplots (Fig. 2d,e) are absolute and would not change appreci-
ably if the number of reads were increased. We observed a smooth 
distribution of the number of counted molecules, consistent with 
accurate counting and approaching the theoretically optimal 
Poisson distribution (Fig. 2h and Supplementary Fig. 8).

Examining noise as a function of mRNA abundance, we found 
that the ERCC spike-in controls closely tracked the expected 
Poisson distribution (Fig. 3a). However, at low levels of expres-
sion, the capture efficiency limited our power to detect noise.  
This can be seen in the difference between the ERCC spike-in 
controls and the curve for a fully lossless and perfectly accurate 
measurement (Poisson). Nevertheless, this result demonstrates 
that little noise above that caused by inefficient reverse transcrip-
tion was introduced during sample preparation.

Next, we examined endogenous transcriptional noise in ES cells. 
We would expect noise across these measurements to include the 
sampling noise introduced by reverse transcription as well as bio-
logical noise due to stochastic or bursty transcription and to oscil-
latory and regulated gene expression. We were surprised to find that 
most genes were expressed at noise levels approaching the Poisson 
limit (Fig. 3a). At all levels of expression, the noise measured as 
coefficient of variation (s.d. divided by the mean) closely tracked 

the predicted Poisson limit, but with a slight excess above the tech-
nical noise (compare ERCC controls with endogenous genes).

Although most genes showed low levels of noise, using a 
conservative threshold (see Online Methods) we found a set of 
118 significantly noisy genes in ES cells (P = 0.05; Fig. 3a and 
Supplementary Table 1). Interestingly, several of these noisy 
genes have been previously demonstrated to show heterogeneous 
(Zfp42, also known as Rex)14 or oscillatory (Hes1)15 expression 
in ES cells. Nanog was also heterogeneously expressed (P < 0.05), 
as expected16, but was excluded by our stringent noise criterion. 
Furthermore, pathway analysis identified an over-representation 
of genes involved in the transforming growth factor–B signaling 
pathway (Id2, Id3, Fst, Lefty1 and Lefty2), which has recently been 
shown to regulate ES cell heterogeneity and self-renewal17. These 
results directly validate our approach and suggest that the noisy 
genes we discovered were not simply affected by stochastic tran-
scription but reflect more complex biological heterogeneity.

We hypothesized that noisy expression partially reflected a kind 
of ‘resonant state’ between pluripotency and early differentiation. 
In agreement with this idea, the genes encoding keratins 8, 18 and 
19 (Krt8, Krt18 and Krt19)—which are known to be expressed at 
low levels in mouse ES cells but highly induced upon embryoid 
body formation and in epiblast stem cells18—were among the noisy 
genes and were coexpressed in a small subset of cells (Fig. 3b).  
Using Krt8 to separate these cellular substates, we found that cells 
ranged between two extreme states characterized by high expres-
sion of Hes1, Krt8 and Krt18 (epiblast-like state) and Zfp42 and 
Lefty1 (pluripotent-like state), respectively. Thus the observed 
variations in these genes reflect a stochastic distribution of ES 
cells in regulatory substates rather than intrinsic fluctuations in 
transcription. A more detailed analysis of these findings will be 
published elsewhere.

The finding that the majority of genes expressed in ES cells had 
low levels of noise contrasts with some previous findings of large 
and widespread intrinsic transcriptional noise19,20. It is plausible  
that the discrepancy in findings can be partly explained by metho-
dological differences. It is difficult to estimate the contribution of 
technical noise in imaging-based methods, and previous authors 
have generally assumed that all observed noise was of a biological 
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Normalization	issues

• scRNA-seq	is	very	noisy.	
• Spike-in	data	is	usually	available.	
– Spike-ins	from	the	external	RNA	Control	Consortium	
(ERCC)	panel,	which	contains	92	synthetic	spikes	based	on	
bacterial	genome.

• UMI	(unique	molecule	identifier)	is	sometimes	used	
to	barcode	the	molecules	for	estimating	
amplification	noise.	

• A	combination	of	spike-in	and	UMI	can	potentially	be	
used	for	data	normalization.
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Existing	work	for	scRNA-seq	
normalization

1 

Application Note 

Normalization and noise reduction for single cell RNA-seq 
experiments 
Bo Ding1,#, Lina Zheng1,#, Yun Zhu1, Nan Li1, Haiyang Jia1,2, Rizi Ai1, Andre Wildberg1 and Wei 
Wang1,3* 
1Department of Chemistry and Biochemistry, University of California, La Jolla, CA 92093, USA, 
2 College of Computer Science and Technology, Jilin University, Changchun 130012, China. 
3Department of Cellular and Molecular Medicine, University of California, La Jolla, CA 92093, USA, 
#Equal contribution 
 
ABSTRACT 
A major roadblock towards accurate interpretation of single cell RNA-seq 
data is large technical noise resulted from small amount of input materials. 
The existing methods mainly aim to find differentially expressed genes 
rather than directly de-noise the single cell data. We present here a 
powerful but simple method to remove technical noise and explicitly 
compute the true gene expression levels based on spike-in ERCC 
molecules. 
Availability and implementation: The software is implemented by R and 
the download version is available at http://wanglab.ucsd.edu/star/GRM. 
Supplementary information: Supplementary data are available at 
Bioinformatics online. 

1 INTRODUCTION  
Single-cell RNA-seq is a promising technology with broad applications and 
discerning biological noise from technical noise is critical for correctly 
interpreting the data (Jaitin, et al., 2014). Recently, statistical methods are 
developed to model the technical noise from spike-in ERCC molecules, 
whose concentrations are presumably same across the samples, and then 
identify differentially expressed genes, whose variations across samples are 
significantly larger than technical noise(Brennecke, et al., 2013). A limit 
for such an approach is that the true gene expression level is not explicitly 
calculated, which is needed for many analyses based on quantification of 
transcriptions.  
Here we propose a novel strategy to normalize and de-noise single cell 
RNA-seq data. This method calculates RNA concentrations from the 
sequencing reads, which is opposite to the other published methods that 
model sequencing reads from RNA concentrations; it is much simpler than 
the existing methods but importantly it allows to remove technical noise 
and explicitly compute gene expression. Specifically, we fit a gamma 
regression model (GRM) between the sequencing reads (RPKM, FPKM or 
TPM) and the concentration of spike-in ERCC molecules. The trained 
model is then used to estimate the de-noised molecular concentration of the 
genes from the reads. GRM shows great power of reducing technical noise 
and superior performance compared to several popular normalization 
methods such as FPKM(Tu, et al., 2012), TMM(Robinson and Oshlack, 
2010) and FQ(Bullard, et al., 2010) in analyzing single cell RNA-seq data. 

 

2 RESULTS 

                                                           
*Correspondence: wei-wang@ucsd.edu  

2.1 Fit a gamma regression model from read counts to 
RNA concentrations 

Spike-in ERCCs can be added equally to each sample during the 
library preparation to calibrate measurements of single cell 
RNA-seq. A natural approach is to train a model to compute read 
counts such as FPKM from the concentrations of ERCC 
(FPKM=concentration). This model is then used to 
calculate the expression level or molecular concentration of each 
gene from its FPKM using the reversed relationship 
(concentration=FPKM). However, substantial 
technical noise in single cell RNA-seq makes it non-trivial to 
construct such a model(Grun, et al., 2014). In addition, it can be 
challenging to analytically or numerically solve the reverse model. 
We therefore propose to fit the “reverse” model directly 
(concentration=FPKM) using ERCCs. This way, gene 
expression levels can be directly computed from FPKM. Such a 
strategy is novel and much simpler than the published methods that 
model noise distribution without explicitly computing the 
de-noised gene expression levels.  
We choose to use gamma distribution to model the distribution of 
molecular concentrations because of its flexibility to fit diverse 
shapes. As the values of molecular concentration (10-2-104) and 
FPKM (always 0-104~5) vary in a large range, we first perform log 
transformation of these data,   FPKM (log-R) and 
  	concentration) (log-C). Instead of fitting a gamma 
regression model between  and  directly, we model the 
non-linearity of single cell signals using a polynomial function 
  ∑ 

 . The model is the following: 
~; , 	 

with the probability density function: 

The parameters are determined using maximum likelihood 
estimation (MLE). The optimal value of n is determined by an 
empirical search: we train multiple models with n=1 to n=4 and 
select n with smallest average technical noise of ERCCs. 
Using the regression model trained from spike-in ERCCs in one 
single cell sample, we compute the true expression levels of genes 
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• Log-transform	FPKM	values,	denoted	by	x.
• Assume	the	expression	value,	y,	follow	Gamma	
distribution.	The	mean	of	Gamma	is	a	polynomial	
function	of	x: 𝑦 = 𝜇(𝑥).

• Use	MLE	to	estimate	parameters	based	on	ERCC	
data.	Then	the	fitted	model	is	applied	to	all	genes	to	
estimate	concentration.	
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expression levels can be directly computed from FPKM. Such a 
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model noise distribution without explicitly computing the 
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transformation of these data,   FPKM (log-R) and 
  	concentration) (log-C). Instead of fitting a gamma 
regression model between  and  directly, we model the 
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• Results:	reduced	CV	cross	cells.	

2 

from their FPKMs by calculating the expectation of a given 
FPKM,     ̂  ∑ 

 .  

2.2 Successful de-noise of single cell RNA-seq data 
To demonstrate the effectiveness of our strategy, we need a data 
set that has a gold standard of cataloguing single cells and such a 
data set is still rare. Treutlein et al. performed single cell 
experiments at four different developmental stages (GEO 
GSE52583)(Treutlein, et al., 2014). This dataset includes 198 
individual mouse lung cells derived from 4 different 
developmental stages: E14.5 (45 samples), E16.5 (27 samples), 
E18.5 (80 samples) and adult (46 samples).  

 
We first perform gamma regression on all the spike-in ERCCs. 
Our model achieves an average Pearson correlation between the 
predicted and true concentrations of 0.866 over all the 198 samples 
(Figure 1(a)), significantly higher than a value of 0.119 if using a 
linear regression model fit between log-R and log-C. We measure 
the noise for the spike-in ERCCs across all the samples using CV2, 
which is defined as the variance divided by the square of 
mean(Brennecke, et al., 2013) (Figure 1(b), Table S1). After 
de-noise, on average the CV2 value is reduced 70%, from 1.301 to 
0.408, with the largest reduction of 90% (from 0.584 to 0.056). 
These results suggest that our strategy can drastically reduce 
technical noise. 
We next apply the model fit in each single cell to remove technical 
noise of the genes in the same single cell. Treutlein et al. selected 
124 Sftpc-positive cells to monitor the mature process of alveolar 
type 2 (AT2) cells at the four developmental stages (Sftpc is the 
marker of AT2 cells). Four distinct groups of cells are expected to 
be found corresponding to the four developmental stages. Treutlein 
et al. selected 10,946 genes that were observed in more than two 
samples and had a variance of transcript level (log2(FPKM)) 
across all the sample larger than 0.5. If all the cells are clustered 
using these genes by hierarchical clustering, single cells from 
different stages are mixed (Figure S1(a)). After de-noise, distinct 

clusters corresponding to the four developmental stages are 
observed (Figure 1(d)). Furthermore, the dendrogram of the 
hierarchical clustering correctly represent the developmental 
distance between the single cells. Namely, the adult cells are most 
distant from embryonic ones of E14.5, E16.5 and E18.5. E14.5 and 
E16.5 are most similar to each other and form the early progenitor 
branch, which is connected to E18.5. This hierarchy is consistent 
with the development of AT2 cells (Figure 1(c)). Similarly, when 
PCA is applied to all the data, the de-noised data clearly show 
significantly better separation between the single cells derived 
from different developmental stages (Figure S2(a)-(e)).  
Taken together, the significant lower noise in ERCCs and 
achievement of more biologically meaningful clusters in the AT2 
cell development indicate that our de-noise strategy can 
successfully remove technical noise in single cell RNA-seq.  

CONCLUSION 
We present here a simple but powerful method for removing 
technical noise of single cell RNA-seq data. This method is distinct 
from the existing approaches as it derives the relationship between 
RNA concentrations and sequencing read counts from ERCC 
molecules and then applies this relationship to calculate gene 
expression from read counts. We demonstrated the success of 
normalization and noise reduction of single cell RNA-seq data by 
showing significantly improved clustering of single cells after 
denoise. Furthermore, this method is general and also applicable to 
bulk RNA-seq data with spike-in ERCCs.  
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Pooling across cells to normalize
single-cell RNA sequencing data with many
zero counts
Aaron T. L. Lun1*, Karsten Bach2 and John C. Marioni1,2,3*

Abstract
Normalization of single-cell RNA sequencing data is necessary to eliminate cell-specific biases prior to downstream
analyses. However, this is not straightforward for noisy single-cell data where many counts are zero. We present a
novel approach where expression values are summed across pools of cells, and the summed values are used for
normalization. Pool-based size factors are then deconvolved to yield cell-based factors. Our deconvolution approach
outperforms existing methods for accurate normalization of cell-specific biases in simulated data. Similar behavior is
observed in real data, where deconvolution improves the relevance of results of downstream analyses.

Keywords: Single-cell RNA-seq, Normalization, Differential expression

Background
Single-cell RNA sequencing (scRNA-seq) is a powerful
technique that allows researchers to characterize the gene
expression profile of single cells. From each cell, mRNA
is isolated and reverse-transcribed into cDNA, which is
amplified and subjected to massively parallel sequenc-
ing [1]. The sequencing reads are mapped to a reference
genome, such that the number of reads mapped to each
gene can be used to quantify its expression. Alternatively,
transcript molecules can be counted directly using unique
molecular identifiers (UMIs) [2]. Count data can be ana-
lyzed to identify new cell subtypes and to detect highly
variable or differentially expressed (DE) genes between
cell subpopulations. This type of single-cell resolution is
not possible with bulk RNA sequencing of cellular pop-
ulations. However, the downside is that the counts often
contain high levels of technical noise with many dropouts,
i.e., zero or near-zero values. This is due to the pres-
ence of low amounts of RNA per cell, which decreases
the efficiency with which transcripts can be captured
and processed prior to sequencing. Moreover, the capture
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efficiency often varies from cell to cell, such that counts
cannot be directly compared between cells.
Normalization of the scRNA-seq counts is a critical

step that corrects for cell-to-cell differences in capture
efficiency, sequencing depth, and other technical con-
founders. This ensures that downstream comparisons of
relative expression between cells are valid. Two broad
classes of methods for scaling normalization are available:
those using spike-in RNA sets and those using the counts
from the profiled cellular RNA. In the former, the same
quantity of spike-in RNA is added to each cell prior to
library preparation [1]. Any difference in the coverage of
the spike-in transcripts must be caused by differences in
capture efficiency, amplification bias, or sequencing depth
between cells. Normalization is then performed by scaling
the counts to equalize spike-in coverage between cells. For
the methods using cellular counts, the assumption is that
most genes are not DE across the sampled cells. Counts
are scaled so that there is, on average, no fold-difference in
expression between cells for the majority of genes. This is
the underlying concept of commonly used methods such
as DESeq [3] and trimmed mean ofM values (TMM) nor-
malization [4]. An even simpler approach involves scaling
the counts to remove differences in library sizes between
cells, i.e., library size normalization.
The type of normalization that can be used depends on

the characteristics of the data set. In some cases, spike-in

© 2016 Lun et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.
org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

• Works	for	data	without	spike-in.
• The	goal	is	to	estimate	a	size	factor	for	each	cell.	
• The	idea	is	to	normalize	on	summed	expression	
values	from	pools	of	cells	– it’s	more	stable	than	
using	individual	cell.	
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Fig. 2 Illustration of the effect of removing stochastic zeroes (black) from the distribution of ratios across all genes. Distributions are shown for cells
with a small and b large θj . The estimated median ratio (dashed) is increased beyond the true median (full) upon removal of zeroes, which results in
overestimation of the size factor for the cell. This effect is more pronounced for cells with small θj that have greater numbers of zeroes, compared to
cells with large θj where the estimated and true medians are more similar

of an arbitrary set of cells Sk . Define Vik as the sum of Zij
across all cells in Sk , which has an expectation of

E(Vik) = λi0
∑

j∈Sk

θjt− 1
j .

The observed values of Vik across all genes constitute an
overall expression profile for the pool of cells correspond-
ing to Sk . Also define Ui as the mean of Zij across all N
cells in the entire data set, which has an expectation of

E(Ui) = λi0N− 1 ∑

j∈S0

θjt− 1
j

where S0 refers to the set of all cells in the data
set. The observed values of Ui across all genes rep-
resent the expression profile for an averaged reference
pseudo-cell.
The cell pool k is then normalized against this reference

pseudo-cell. Define Rik as the ratio ofVik toUi for the non-
DE gene i. The expectation of Rik represents the true size
factor for the pooled cells in Sk , and is written as

E(Rik) ≈ E(Vik)
E(Ui)

=
∑

Sk θjt− 1
j

N− 1 ∑
S0 θjt− 1

j
=

∑
Sk θjt− 1

j
C (1)

Fig. 3 Schematic of the deconvolution method. All cells in the data set are averaged to make a reference pseudo-cell. Expression values for cells in
pool A are summed together and normalized against the reference to yield a pool-based size factor θA . This is equal to the sum of the cell-based
factors θj for cells j = 1–4 and can be used to formulate a linear equation. (For simplicity, the tj term is assumed to be unity here.) Repeating this for
multiple pools (e.g., pool B) leads to the construction of a linear system that can be solved to estimate θj for each cell j



• Basic	idea:	one	normalization	factor	per	cell	
doesn’t	fit	all	genes.	

• Relationships	of	read	counts	and	sequencing	
depths	vary	and	depend	on	the	expression	
levels.	
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major bias in scRNA-seq data that has not been recognized and 
reported in previous studies. Specifically, scRNA-seq data show 
systematic variation in the relationship between transcript-specific 
expression and sequencing depth (which we refer to as the count– 
depth relationship) that is not accommodated by a single scale factor 
common to all genes in a cell (Fig. 1 and Supplementary Fig. 1).  
Global scale factors adjust for a count–depth relationship that is 
assumed to be common across genes. When this relationship is not 
common across genes, normalization via global scale factors leads 
to overcorrection for weakly and moderately expressed genes and, in 
some cases, undernormalization of highly expressed genes (Fig. 1).

To address this, SCnorm uses quantile regression to estimate 
the dependence of transcript expression on sequencing depth for 
every gene. Genes with similar dependence are then grouped, and 
a second quantile regression is used to estimate scale factors within 
each group. Within-group adjustment for sequencing depth is then 
performed using the estimated scale factors to provide normal-
ized estimates of expression. Although SCnorm does not require 
experimental RNA spike-ins, performance may be improved if 
spike-ins that span the range of expression observed in endog-
enous genes are available (Supplementary Note 1).

We evaluated SCnorm and compared it with MR3, transcripts 
per million (TPM)7, scran5, SCDE8, and BASiCS6 using simulated 
and case study data. In the first simulation (SIM I), two scenarios 
are considered where the number of gene groups having different 
count–depth relationships (K) is set to one (to mimic a bulk experi-
ment) or four (Supplementary Fig. 2). Each simulated data set con-
tains two conditions, the second condition having approximately 
four times as many reads as the first; 20% of the genes are defined 
to be differentially expressed (DE). Prior to normalization, counts 
in the second condition will appear four times higher on average 
given the increased sequencing depth. If normalization for depth 
is effective, fold-change estimates should be near one, and only 
simulated DE genes should appear to be DE. When K = 1, with the 
exception of TPM, fold-change estimates are consistently robust 
among methods (Supplementary Fig. 2a), and all normalization 
methods provide data that result in high sensitivity and specifi-
city for identifying DE genes (Supplementary Fig. 2b). However, 
when K = 4, only SCnorm maintains good operating characteristics, 
whereas approaches based on global scale factors overestimate fold 
changes for weakly to moderately expressed genes on account of 
overcorrection of sequencing depth (Supplementary Fig. 2c,d).

In the second simulation (SIM II) counts are generated as in 
Lun et al.5, following their simulation study scenarios 1, 2, 3, and 
4. Briefly, scenario 1 contains no DE genes; scenarios 2, 3, and 4 
contain moderate DE, strong DE, and varying magnitudes of DE 
genes, respectively. We found that SCnorm is similar to scran with 

SCnorm: robust 
normalization of  
single-cell RNA-seq data
Rhonda Bacher1,5  , Li-Fang Chu2,5, Ning Leng2,  
Audrey P Gasch3, James A Thomson2, Ron M Stewart2, 
Michael Newton1,4   & Christina Kendziorski4

The normalization of RNA-seq data is essential for accurate 
downstream inference, but the assumptions upon which 
most normalization methods are based are not applicable  
in the single-cell setting. Consequently, applying existing 
normalization methods to single-cell RNA-seq data introduces 
artifacts that bias downstream analyses. To address this, we 
introduce SCnorm for accurate and efficient normalization of 
single-cell RNA-seq data.

Methods used to quantify mRNA abundance introduce sys-
tematic sources of variation that can obscure signals of interest. 
Consequently, an essential first step in most mRNA-expression 
analyses is normalization, whereby systematic variations are 
adjusted to make expression counts comparable across genes and/ 
or samples. Within-sample normalization methods adjust for gene-
specific features, such as GC content and gene length, to facilitate 
comparisons of a gene’s expression within an individual sample; 
whereas between-sample normalization methods adjust for sample-
specific features, such as sequencing depth, to allow for compari-
sons of a gene’s expression across samples1. In this work, we present 
a method for between-sample normalization, although we note 
that the R implementation of our method, R/SCnorm, also allows 
gene-specific features to be adjusted (Supplementary Software 
and http://www.biostat.wisc.edu/~kendzior/SCNORM/).

A number of methods are available for between-sample nor-
malization in bulk RNA-seq experiments2,3. Most of these meth-
ods calculate global scale factors (one factor is applied to each 
sample, and this same factor is applied to all genes in the sample) 
to adjust for sequencing depth. These methods demonstrate excel-
lent performance in bulk RNA-seq, but they are compromised in 
the single-cell setting because of an abundance of zero-expression 
values and increased technical variability4.

Recent methods have been developed specifically for single-cell 
RNA-seq (scRNA-seq) normalization5,6. Like bulk methods, they cal-
culate global scale factors, and therefore they cannot accommodate a  
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major bias in scRNA-seq data that has not been recognized and 
reported in previous studies. Specifically, scRNA-seq data show 
systematic variation in the relationship between transcript-specific 
expression and sequencing depth (which we refer to as the count– 
depth relationship) that is not accommodated by a single scale factor 
common to all genes in a cell (Fig. 1 and Supplementary Fig. 1).  
Global scale factors adjust for a count–depth relationship that is 
assumed to be common across genes. When this relationship is not 
common across genes, normalization via global scale factors leads 
to overcorrection for weakly and moderately expressed genes and, in 
some cases, undernormalization of highly expressed genes (Fig. 1).

To address this, SCnorm uses quantile regression to estimate 
the dependence of transcript expression on sequencing depth for 
every gene. Genes with similar dependence are then grouped, and 
a second quantile regression is used to estimate scale factors within 
each group. Within-group adjustment for sequencing depth is then 
performed using the estimated scale factors to provide normal-
ized estimates of expression. Although SCnorm does not require 
experimental RNA spike-ins, performance may be improved if 
spike-ins that span the range of expression observed in endog-
enous genes are available (Supplementary Note 1).

We evaluated SCnorm and compared it with MR3, transcripts 
per million (TPM)7, scran5, SCDE8, and BASiCS6 using simulated 
and case study data. In the first simulation (SIM I), two scenarios 
are considered where the number of gene groups having different 
count–depth relationships (K) is set to one (to mimic a bulk experi-
ment) or four (Supplementary Fig. 2). Each simulated data set con-
tains two conditions, the second condition having approximately 
four times as many reads as the first; 20% of the genes are defined 
to be differentially expressed (DE). Prior to normalization, counts 
in the second condition will appear four times higher on average 
given the increased sequencing depth. If normalization for depth 
is effective, fold-change estimates should be near one, and only 
simulated DE genes should appear to be DE. When K = 1, with the 
exception of TPM, fold-change estimates are consistently robust 
among methods (Supplementary Fig. 2a), and all normalization 
methods provide data that result in high sensitivity and specifi-
city for identifying DE genes (Supplementary Fig. 2b). However, 
when K = 4, only SCnorm maintains good operating characteristics, 
whereas approaches based on global scale factors overestimate fold 
changes for weakly to moderately expressed genes on account of 
overcorrection of sequencing depth (Supplementary Fig. 2c,d).

In the second simulation (SIM II) counts are generated as in 
Lun et al.5, following their simulation study scenarios 1, 2, 3, and 
4. Briefly, scenario 1 contains no DE genes; scenarios 2, 3, and 4 
contain moderate DE, strong DE, and varying magnitudes of DE 
genes, respectively. We found that SCnorm is similar to scran with 
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The normalization of RNA-seq data is essential for accurate 
downstream inference, but the assumptions upon which 
most normalization methods are based are not applicable  
in the single-cell setting. Consequently, applying existing 
normalization methods to single-cell RNA-seq data introduces 
artifacts that bias downstream analyses. To address this, we 
introduce SCnorm for accurate and efficient normalization of 
single-cell RNA-seq data.

Methods used to quantify mRNA abundance introduce sys-
tematic sources of variation that can obscure signals of interest. 
Consequently, an essential first step in most mRNA-expression 
analyses is normalization, whereby systematic variations are 
adjusted to make expression counts comparable across genes and/ 
or samples. Within-sample normalization methods adjust for gene-
specific features, such as GC content and gene length, to facilitate 
comparisons of a gene’s expression within an individual sample; 
whereas between-sample normalization methods adjust for sample-
specific features, such as sequencing depth, to allow for compari-
sons of a gene’s expression across samples1. In this work, we present 
a method for between-sample normalization, although we note 
that the R implementation of our method, R/SCnorm, also allows 
gene-specific features to be adjusted (Supplementary Software 
and http://www.biostat.wisc.edu/~kendzior/SCNORM/).

A number of methods are available for between-sample nor-
malization in bulk RNA-seq experiments2,3. Most of these meth-
ods calculate global scale factors (one factor is applied to each 
sample, and this same factor is applied to all genes in the sample) 
to adjust for sequencing depth. These methods demonstrate excel-
lent performance in bulk RNA-seq, but they are compromised in 
the single-cell setting because of an abundance of zero-expression 
values and increased technical variability4.

Recent methods have been developed specifically for single-cell 
RNA-seq (scRNA-seq) normalization5,6. Like bulk methods, they cal-
culate global scale factors, and therefore they cannot accommodate a  
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Figure 1: For each gene, median quantile regression was used to estimate the count-
depth relationship before normalization and after normalization via MR for the H1 bulk 
RNA-seq data set (panels (a) – (d)) and the DEC scRNA-seq data set (panels (e)-(h)).  
Panel (a) shows log-expression vs. log-depth and estimated regression fits for three genes 
having low, moderate, and high expression defined as median expression among non-
zero un-normalized measurements in the 10th-20th quantile, 40th-50th quantile, and 80th-90th 
quantile, respectively. Panel (b) shows densities of slopes within each of ten equally 
sized gene groups where a gene’s group membership is determined by its median 
expression among non-zero un-normalized measurements. Panels (c) and (d) show the 
same data as panels (a) and (b), respectively, but here the data are normalized via MR. 
Panels (e)-(h) are structurally identical to (a)-(d) for the DEC scRNA-seq data set.  
Qualitatively similar results are observed if slopes are calculated via generalized linear 
models (Supplementary Section S3 and Supplementary Figure S1).  
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Solution

• Uses	quantile	regression	to	estimate	the	
dependence	of	read	counts	on	sequencing	
depth	for	every	gene.	

• Genes	with	similar	dependence	are	then	
grouped,	and	a	second	quantile	regression	is	
used	to	estimate	scale	factors	within	each	
group.

• Implemented	in	software	SCnorm.	



Differential	expression

• Traditional	methods	test	mean	changes.
• Due	to	the	biomodal distribution	of	the	GE	in	
scRNA-seq,	the	consideration	and	modeling	of	
“drop-out”	event	(non-expressed)	is	very	
important.	

• A	long	list	of	tools:	MAST,	SCDE,	BPSC,	
DEsingle,	Seurat,	Monocle,	SC2P,	scDD,	…



• SCDE	(single-cell	differential	expression).
• Use	a	mixture	of	a	Poisson	with	small	rate	(dropout)	
and	negative	binomial	(expressed)	to	model	the	
expression:	

• The	DE	is	based	on	Bayesian	inference.	But	the	
derivation	in	this	paper	is	messy.		
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standard RNA-seq analysis methods13,14, and the reported sets 
of top differentially expressed genes can include high-magnitude 
outliers or dropout events, showing poor consistency within each 
cell population (Fig. 1b). The abundance of dropout events has 
been previously noted in single-cell quantitative PCR data and 
accommodated with zero-inflated distributions15.

Two prominent characteristics of dropout events make them 
informative in further analysis of expression state. First, the overall  
dropout rates are consistently higher in some single-cell samples  
than in others (Supplementary Figs. 1 and 2), indicating that the 
contribution of an individual sample to the downstream cumula-
tive analysis should be weighted accordingly. Second, the dropout 
rate for a given cell depends on the average expression magnitude 
of a gene in a population, with dropouts being more frequent for 
genes with lower expression magnitude. Quantification of such 
dependency provides evidence about the true expression mag-
nitude. For instance, dropout of a gene observed at very high 
expression magnitude in other cells is more likely to be indicative 
of true expression differences than of stochastic variability.

We modeled the measurement of each cell as a mixture of two 
probabilistic processes—one in which the transcript is amplified 
and detected at a level correlating with its abundance and the other 
in which a transcript fails to amplify or is not detected for other 
reasons. We modeled the first, ‘correlated’ component with a nega-
tive binomial distribution13,16. The RNA-seq signal associated with 
the second, dropout component could in principle be modeled 
as a constant zero (i.e., zero-inflated negative binomial process); 
however, we used a low-magnitude Poisson process to account for 
some background signal that is typically detected for the dropout 
and transcriptionally silent genes. Importantly, the mixing ratio 
between the correlated and dropout processes depends on the 
magnitude of gene expression in a given cell population. We ana-
lyzed two single-cell data sets—a 92-cell set consisting of mouse 
embryonic fibroblast (MEF) and embryonic stem (ES) cells2 and 
a data set of cells from different stages of early mouse embryos12. 
To fit the parameters of an error model for a particular single-cell 
measurement, we used a subset of genes for which an expected 
expression magnitude within the cell population can be reliably 
estimated. Briefly, we analyzed pairs of all other single-cell samples 
from the same subpopulation (for example, all MEF cells except 
for the one being fit) with a similarly structured three-component 
mixture containing one correlated component and dropout com-
ponents for each cell (Fig. 1c and Supplementary Figs. 1 and 2). 
We deemed a subset of genes appearing in correlated components 
in a sufficiently large fraction of pairwise cell comparisons to be 
reliable. We estimated the expected expression magnitude of these 

Bayesian approach to 
single-cell differential 
expression analysis
Peter V Kharchenko1–3, Lev Silberstein3–5 &  
David T Scadden3–5

Single-cell data provide a means to dissect the composition 
of complex tissues and specialized cellular environments. 
However, the analysis of such measurements is complicated 
by high levels of technical noise and intrinsic biological 
variability. We describe a probabilistic model of expression-
magnitude distortions typical of single-cell RNA-sequencing 
measurements, which enables detection of differential 
expression signatures and identification of subpopulations of 
cells in a way that is more tolerant of noise.

Methodological advances are making it possible to examine tran-
scription in individual cells on a large scale1–4, facilitating unbiased 
analysis of cellular states5–8. However, profiling the low amounts 
of mRNA within individual cells typically requires amplification  
by more than 1 million fold, which leads to severe nonlinear distor-
tions of relative transcript abundance and accumulation of nonspe-
cific byproducts. A low starting amount also makes it more likely 
that a transcript will be ‘missed’ during the reverse-transcription  
step and consequently not detected during sequencing. This 
leads to so-called ‘dropout’ events, in which a gene is observed at 
a moderate or high expression level in one cell but is not detected 
in another cell (Fig. 1a). More fundamentally, gene expression is 
inherently stochastic, and some cell-to-cell variability will be an 
unavoidable consequence of transcriptional bursts of individual 
genes or coordinated fluctuations of multigene networks9. Such 
biological variability is of high interest, and several methods have 
been proposed for detecting it10–12. Collectively, this multifactorial 
variability in single-cell measurements substantially increases the 
apparent level of noise, posing challenges for differential expres-
sion and other downstream analyses.

Comparisons of RNA-seq data from individual cells tend to 
show higher variability than is typically observed in biological  
replicates of bulk RNA-seq measurements. In addition to strong 
overdispersion, there are high-magnitude outliers as well as dropout  
events (Fig. 1a). Such variability is poorly accommodated by 
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standard RNA-seq analysis methods13,14, and the reported sets 
of top differentially expressed genes can include high-magnitude 
outliers or dropout events, showing poor consistency within each 
cell population (Fig. 1b). The abundance of dropout events has 
been previously noted in single-cell quantitative PCR data and 
accommodated with zero-inflated distributions15.

Two prominent characteristics of dropout events make them 
informative in further analysis of expression state. First, the overall  
dropout rates are consistently higher in some single-cell samples  
than in others (Supplementary Figs. 1 and 2), indicating that the 
contribution of an individual sample to the downstream cumula-
tive analysis should be weighted accordingly. Second, the dropout 
rate for a given cell depends on the average expression magnitude 
of a gene in a population, with dropouts being more frequent for 
genes with lower expression magnitude. Quantification of such 
dependency provides evidence about the true expression mag-
nitude. For instance, dropout of a gene observed at very high 
expression magnitude in other cells is more likely to be indicative 
of true expression differences than of stochastic variability.

We modeled the measurement of each cell as a mixture of two 
probabilistic processes—one in which the transcript is amplified 
and detected at a level correlating with its abundance and the other 
in which a transcript fails to amplify or is not detected for other 
reasons. We modeled the first, ‘correlated’ component with a nega-
tive binomial distribution13,16. The RNA-seq signal associated with 
the second, dropout component could in principle be modeled 
as a constant zero (i.e., zero-inflated negative binomial process); 
however, we used a low-magnitude Poisson process to account for 
some background signal that is typically detected for the dropout 
and transcriptionally silent genes. Importantly, the mixing ratio 
between the correlated and dropout processes depends on the 
magnitude of gene expression in a given cell population. We ana-
lyzed two single-cell data sets—a 92-cell set consisting of mouse 
embryonic fibroblast (MEF) and embryonic stem (ES) cells2 and 
a data set of cells from different stages of early mouse embryos12. 
To fit the parameters of an error model for a particular single-cell 
measurement, we used a subset of genes for which an expected 
expression magnitude within the cell population can be reliably 
estimated. Briefly, we analyzed pairs of all other single-cell samples 
from the same subpopulation (for example, all MEF cells except 
for the one being fit) with a similarly structured three-component 
mixture containing one correlated component and dropout com-
ponents for each cell (Fig. 1c and Supplementary Figs. 1 and 2). 
We deemed a subset of genes appearing in correlated components 
in a sufficiently large fraction of pairwise cell comparisons to be 
reliable. We estimated the expected expression magnitude of these 
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Single-cell data provide a means to dissect the composition 
of complex tissues and specialized cellular environments. 
However, the analysis of such measurements is complicated 
by high levels of technical noise and intrinsic biological 
variability. We describe a probabilistic model of expression-
magnitude distortions typical of single-cell RNA-sequencing 
measurements, which enables detection of differential 
expression signatures and identification of subpopulations of 
cells in a way that is more tolerant of noise.

Methodological advances are making it possible to examine tran-
scription in individual cells on a large scale1–4, facilitating unbiased 
analysis of cellular states5–8. However, profiling the low amounts 
of mRNA within individual cells typically requires amplification  
by more than 1 million fold, which leads to severe nonlinear distor-
tions of relative transcript abundance and accumulation of nonspe-
cific byproducts. A low starting amount also makes it more likely 
that a transcript will be ‘missed’ during the reverse-transcription  
step and consequently not detected during sequencing. This 
leads to so-called ‘dropout’ events, in which a gene is observed at 
a moderate or high expression level in one cell but is not detected 
in another cell (Fig. 1a). More fundamentally, gene expression is 
inherently stochastic, and some cell-to-cell variability will be an 
unavoidable consequence of transcriptional bursts of individual 
genes or coordinated fluctuations of multigene networks9. Such 
biological variability is of high interest, and several methods have 
been proposed for detecting it10–12. Collectively, this multifactorial 
variability in single-cell measurements substantially increases the 
apparent level of noise, posing challenges for differential expres-
sion and other downstream analyses.

Comparisons of RNA-seq data from individual cells tend to 
show higher variability than is typically observed in biological  
replicates of bulk RNA-seq measurements. In addition to strong 
overdispersion, there are high-magnitude outliers as well as dropout  
events (Fig. 1a). Such variability is poorly accommodated by 
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Data sets and initial abundance estimates. ES and MEF single-
cell measurements (96 cells) from Islam et al.2 were used. The 
initial RPM estimates were obtained with TopHat21 and HTSeq. 
The mouse embryo data were taken from Deng et al., with the 
read alignments described in the manuscript12.

Fitting individual error models. To identify a subset of genes 
that can be used to fit error models for particular single-cell 
measurements, all pairs of individual cells belonging to a given 
subpopulation (for example, all MEF cells) were analyzed with  
a three-component mixture model. To do so, the observed  
abundance of a given transcript in each cell was modeled as a 
mixture of the dropout (Poisson) and ‘amplification’ (negative 
binomial, NB) components. This way, the expression of a gene 
with observed RPM levels of r1 and r2 in cells c1 and c2, respec-
tively, was modeled as
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The background read frequency for the dropout components 
was set at L0 = 0.1. The mixing between the three components 
was determined by a multinomial logistic regression on a mixing 
parameter m = log(r1) + log(r2). Pseudocounts of 1 were added 
to r1 and r2 for log transformations. The mixture was fit with an 
EM algorithm, implemented under the FlexMix framework22. 
Alternatively, the initial three-component segmentation can be 
determined on the basis of a user-defined background threshold, 
which is much less computationally intensive. The genes that were 
assigned to the amplified components were noted, and a set of 
genes appearing in the amplified components in at least 20% of all 
pairwise comparisons of cells of the same subpopulation (exclud-
ing the cell for which the model was being fit) was used to fit the 
individual error models, as described below. The expected expres-
sion magnitude of these genes was estimated as a median observed 
magnitude between all the cell measurements in which a gene was 
classified to be in the amplified component. The aim of the 20% 
threshold is to have a sufficiently large number of measurements 
for a given gene so that the median expression-magnitude esti-
mate would be reliable, and the model parameters resulting from 
the fitting procedure would correlate well for a range of values 
corresponding to 6–12 cells (Supplementary Fig. 3d).

To fit an individual error model 7c for a measurement of a 
single cell c, the observed RPM values were modeled as a function 
of an expected expression magnitude, with the set of estimates for 
a subset of genes described in the previous paragraph. The RPM 
level rc observed for a gene in cell c was modeled as a mixture of a 
dropout and amplified components, as a function of an expected 
expression magnitude e, as
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with the mixing parameter m = log(e). For each cell, the model 
7c was fit with an EM algorithm based on the set of genes for 

which expected expression magnitudes have been obtained. The 
resulting estimates of parameters for the negative binomial and 
concomitant (mixing) regression were used as a description of an 
error model 7c in the subsequent analysis.

Differential expression analysis. With a Bayesian approach, the 
posterior probability of a gene being expressed at an average level x  
in a subpopulation of cells S was determined as an expected value 
(E) according to

p x E p x rS c c
c B

( ) ( | , )�
§

©

¨
¨

¶

¸

·
·�

� 7
 

where B is a bootstrap sample of S, and p(x|rc,7c) is the posterior 
probability for a given cell c, according to

p x r p x p x p x p x rc c d Poisson d NB c( | , ) ( ) ( ) ( ( )) ( | )7 � � 1

where pd is the probability of observing a dropout event in cell c  
for a gene expressed at an average level x in S, pPoisson(x) and 
pNB(x|rc) are the probabilities of observing expression magnitude 
of rc in case of a dropout (Poisson) or successful amplification 
(NB) of a gene expressed at level x in cell c, with the parameters 
of the distributions determined by the 7c fit. For the differential 
expression analysis, the posterior probability that the gene shows 
a fold expression difference of f between subpopulations S and G 
was evaluated as

p f p x p fxS G
x X
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where x is the valid range of expression levels. The posterior dis-
tributions were renormalized to unity, and an empirical P value 
was determined to test for significance of expression difference.

Comparison of differential expression performance. The 
results of SCDE, DESeq, CuffDiff2 and single-cell assay (SCA) 
were benchmarked against an expression data set by Moliner  
et al.17 that measured bulk MEF and ES cells grown with the same 
suspension growth protocol23 as used by Islam et al.2. The ability 
to recover the top 1,000 genes showing the highest expression 
difference in Moliner et al. was assessed with ROC/AUC (Fig. 2c  
and Supplementary Fig. 4), ranking genes by significance of  
differential expression as determined by different methods.

Similarity measures and subpopulation analysis. The standard 
measure of the genome-wide similarity between two single-cell 
measurements was determined as a Pearson linear coefficient  
on log-transformed RPM values. Genes that did not show  
expression signals in any of the cells were excluded from the 
analysis. The Bray-Curtis similarity measure was also calculated 
on log-transformed values (and linear-based values showed  
lower performance).

The direct dropout similarity measure aims to estimate Pearson 
linear correlation excluding likely dropout events in any given 
cell. To achieve that, we evaluated average correlation across 1,000 
sampling rounds, in each round probabilistically excluding likely 
dropout observations. Specifically, in each round, an observation 



• MAST:	“Model-based	Analysis	of	Single- cell	
Transcriptomics.”	
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Abstract

Single-cell transcriptomics reveals gene expression heterogeneity but suffers from stochastic dropout and
characteristic bimodal expression distributions in which expression is either strongly non-zero or non-detectable.
We propose a two-part, generalized linear model for such bimodal data that parameterizes both of these features.
We argue that the cellular detection rate, the fraction of genes expressed in a cell, should be adjusted for as a
source of nuisance variation. Our model provides gene set enrichment analysis tailored to single-cell data. It
provides insights into how networks of co-expressed genes evolve across an experimental treatment. MAST is
available at https://github.com/RGLab/MAST.

Keywords: Bimodality, Cellular detection rate, Co-expression, Empirical Bayes, Generalized linear model, Gene set
enrichment analysis

Background
Whole transcriptome expression profiling of single cells
via RNA sequencing (scRNA-seq) is the logical apex to
single cell gene expression experiments. In contrast to
transcriptomic experiments on mRNA derived from bulk
samples, this technology provides powerful multi-
parametric measurements of gene co-expression at the
single-cell level. However, the development of equally
potent analytic tools has trailed the rapid advances in
biochemistry and molecular biology, and several challenges
need to be addressed to fully leverage the information in
single-cell expression profiles.
First, single-cell expression has repeatedly been shown

to exhibit a characteristic bimodal expression pattern,

wherein the expression of otherwise abundant genes is
either strongly positive or undetected within individual
cells. This is due in part to low starting quantities of
RNA such that many genes will be below the threshold
of detection, but there is also a biological component to
this variation (termed extrinsic noise in the literature)
that is conflated with the technical variability [1–3]. We
and other groups [4–7] have shown that the proportion
of cells with detectable expression reflects both technical
factors and biological differences between samples. Re-
sults from synthetic biology also support the notion that
bimodality can arise from the stochastic nature of gene
expression [2, 3, 8, 9].
Second, measuring single cell gene expression might

seem to obviate the need to normalize for starting RNA
quantities, but recent work shows that cells scale tran-
script copy number with cell volume (a factor that af-
fects gene expression globally) to maintain a constant
mRNA concentration and thus constant biochemical re-
action rates [10, 11]. In scRNA-seq, cells of varying vol-
ume, and hence mRNA copy number, are diluted to an
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MAST	for	DE

• Main	ideas:	
– Use	log2(TPM+1)	as	input	data
– Both	dropout	probability	and	expression	level	
depends	on	experimental	conditions.

–Model	fitting	with	some	regularization.	
– DE	is	based	on	chi-square	or	Wald	test.	

of interest), or does it confound the treatment effect
(does it happen to co-occur with treatment)? Regardless,
the CDR-adjusted treatment estimates are interpreted as
the change in expression due to treatment, if CDR were
held constant between the two conditions.
Two other alternative uses of the CDR are of note. It is

also possible to use CDR as a precision variable (an uncorre-
lated secondary cause) by centering the CDR within each
treatment groups, which makes the CDR measurement or-
thogonal to treatment. This would implicitly assume that
the observed changes are treatment induced, while still
modeling the heterogeneity in cell volume within each treat-
ment group. An alternative approach would be to estimate
the CDR coefficient using a set of control genes assumed to
be treatment invariant, such as housekeeping or ERCC
spike-ins [25, 26] and including it as an offset to the linear
predictors in the regression. An analogous approach is
undertaken by Buettner et. al. [26]. As noted by Hicks et al.
[27], the optimal approach to handle confounding between
technical and biological effects on the CDR is to design ex-
periments with biological replicates across multiple batches.
Finally, we note that while the methodology presented here
was developed using scRNA-seq data sets, it appears ap-
plicable to other single-cell gene expression platforms
where bimodal, conditionally normal expression patterns
are seen such as single-cell RNA-seq with unique molecu-
lar identifiers.

Methods
Data sets
Data for the MAIT study were derived from a single donor
who provided written informed consent for immune re-
sponse exploratory analyses. The study was approved by
the Fred Hutchinson Cancer Research Center institutional
review board.

MAIT cell isolation and stimulation
Cryopreserved peripheral blood mononuclear cells were
thawed and stained with Aqua Live/Dead Fixable Dead Cell
Stain and the following antibodies: CD3, CD8, CD4, CD161,
Vα7.2, CD56, and CD16. CD8+ MAIT cells were sorted as
live CD3+CD8+ CD4-CD161hiVα7.2+ cells and purity was
confirmed by post-sort fluorescence-activated cell sorting
analysis. Sorted MAIT cells were divided into aliquots and
immediately processed on a C1 Fluidigm (Fluidigm, South
San Francisco, CA) machine or treated with a combination
of IL-12 (eBioscience, San Diego, CA), IL-15 (eBioscience),
and IL-18 (MBL, Worburn, MA ) at 100 ng/mL for 24 h
followed by C1 processing.

C1 processing, sequencing, and alignment
After flow sorting, single cells were captured on the Flui-
digm C1 Single-Cell Auto Prep System (C1), lysed on
chip, and subjected to reverse transcription and cDNA

amplification using the SMARTer Ultra Low Input RNA
Kit for C1 System (Clontech, Mountain View, CA). Se-
quencing libraries were prepared using the Nextera XT
DNA Library Preparation Kit (Illumina, San Diego, CA)
according to C1 protocols (Fluidigm). Barcoded libraries
were pooled and quantified using a Qubit Fluorometer
(Thermo Scientific Life Technologies, Grand Island,
NY). Single-read sequencing of the pooled libraries was
carried out either on a HiScanSQ or a HiSeq2500 se-
quencer (Illumina) with 100-base reads, using TruSeq v3
Cluster and SBS kits (Illumina) with a target depth of
>2.5 M reads. Sequences were aligned to the UCSC Hu-
man Genome Assembly version 19, gene expression
levels quantified using RSEM [28], and TPM values
loaded into R [29] for analyses. See Additional file 1 for
more details on data processing procedures.

Time-series stimulation of mouse bone-marrow derived
dendritic cells
Processed RNA-seq data (TPM) were downloaded from
the Gene Expression Omnibus [GEO: GSE41265]. Align-
ment, pre-processing, and filtering steps have been pre-
viously described [5]. Low quality cells were filtered as
described in Shalek et al. [5].

Single-cell RNA-seq hurdle model
We model the log2(TPM+ 1) expression matrix as a two-
part generalized regression model. The gene expression rate
was modeled using logistic regression and, conditioning on
a cell expressing the gene, the expression level was modeled
as Gaussian.
Given normalized, possibly thresholded (see Additional

file 1), scRNA-seq expression Y = [yig], the rate of expression
and the level of expression for the expressed cells are mod-
eled conditionally independent for each gene g. Define the
indicator Z = [zig], indicating whether gene g is expressed in
cell i (i.e., zig= 0 if yig= 0 and zig= 1 if yig > 0). We fit logistic
regression models for the discrete variable Z and a Gaussian
linear model for the continuous variable (Y | Z= 1) inde-
pendently, as follows:

logit
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The regression coefficients of the discrete component are
regularized using a Bayesian approach as implemented in
the bayesglm function of the arm R package, which uses
weakly informative priors [30] to provide sensible estimates
under linear separation (See Additional file 1 for details).
We also perform regularization of the continuous model
variance parameter, as described below, which helps to in-
crease the robustness of gene-level differential expression
analysis when a gene is only expressed in a few cells.

Finak et al. Genome Biology  (2015) 16:278 Page 10 of 13



• Monocle:	part	of	“tuxedo	suite”	for	scRNA-seq	
analysis.	

• Works	for	DE	and	clustering.	
• Main	idea	for	DE:	
– Model	data	with	observed	and	dropout:
– Use	a	generalized	additive	model	(GAM)	for	design:

– DE	is	tested	from	the	GAM.	
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Defining the transcriptional dynamics of a temporal  
process such as cell differentiation is challenging owing to 
the high variability in gene expression between individual 
cells. Time-series gene expression analyses of bulk cells 
have difficulty distinguishing early and late phases of a 
transcriptional cascade or identifying rare subpopulations 
of cells, and single-cell proteomic methods rely on a priori 
knowledge of key distinguishing markers1. Here we describe 
Monocle, an unsupervised algorithm that increases the 
temporal resolution of transcriptome dynamics using  
single-cell RNA-Seq data collected at multiple time points. 
Applied to the differentiation of primary human myoblasts, 
Monocle revealed switch-like changes in expression of key 
regulatory factors, sequential waves of gene regulation,  
and expression of regulators that were not known to act  
in differentiation. We validated some of these predicted 
regulators in a loss-of function screen. Monocle can in 
principle be used to recover single-cell gene expression 
kinetics from a wide array of cellular processes, including 
differentiation, proliferation and oncogenic transformation.

Cellular processes such as proliferation, differentiation and repro-
gramming are governed by complex gene-regulatory programs. 
Progress through these processes is a function not only of time but 
also of cell-cell signaling and other stimuli. During differentiation, for 
example, each cell makes independent fate decisions by integrating a 
wide array of signals from other cells and executing a complex chore-
ography of gene-regulatory changes. Thus individual cells can execute 
the same sequence of transcriptional changes over highly varying 
time scales. Unraveling the network of gene regulatory interactions 
remains a central goal of efforts to understand these processes.

Recently, several studies carried out at single-cell resolution revealed 
high cell-to-cell variation in the expression of most genes, even key 
developmental regulators, during the differentiation process2–6.  
Such high variability can complicate analysis of these experiments7. In 
general, averages of measurements from two or more distinct groups of 
data points can follow trends that qualitatively differ from the trend that 
describes each group, a phenomenon known as Simpson’s paradox8.  

Such averaging artifacts can make factors that are correlated appear 
to be uncorrelated or even make positively correlated factors  
appear negatively correlated. As a population of cells captured at  
the same time may include many distinct intermediate differen-
tiation states, considering only its average properties would mask  
trends occurring across individual cells. Solving this problem by 
experimental synchronization of cells or by stringent isolation  
of precursors at distinct stages is challenging and can sharply alter 
differentiation kinetics.

Computational analysis of gene expression data could help  
define biological progression between cellular states and reveal regulatory  
modules of genes that co-vary in expression across individual cells9. 
Previous analyses have used approaches from computational geom-
etry10,11 to order bulk cell populations from time-series microarray 
experiments by progress through a biological process independently 
of when the samples were collected. The recently developed SPD algo-
rithm can resolve progression along multiple lineages arising from a 
progenitor cell type using supervised machine learning12. However, 
because these algorithms operate on bulk expression measurements, 
they are sensitive to mixture effects arising from Simpson’s para-
dox and other averaging artifacts. Single-cell assays such as flow or 
mass cytometry1, coupled with machine learning algorithms such as 
SPADE13, can overcome these effects to reconstruct complex lineages 
and resolve intermediate stages of progress through differentiation. 
Coupled with SPADE, cytometry can track changes in up to 32 proteins  
to reconstruct complex cellular hierarchies of differentiation and 
reveal rare cell states. In principle, single-cell RNA-Seq could also 
be used to resolve cellular transitions during differentiation through 
temporal profiling of the entire transcriptome.

We hypothesized that ordering whole-transcriptome profiles  
of single cells with an unsupervised algorithm would improve  
temporal resolution during differentiation without a priori knowl-
edge of marker genes. In essence, one RNA-Seq experiment would  
constitute a time series, with each cell representing a distinct time 
point along a continuum. Monocle is derived from a previous algo-
rithm10 for temporally ordering bulk microarray samples but extends 
it to accommodate single-cell variation and to allow for multiple  
cell fates stemming from a single progenitor cell type. Monocle  
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and continuous in the embedding geometry, or rather, that transitions from 
progenitor to one of several committed cell types is marked by a smooth shift 
in transcriptional state, as opposed to an instantaneous shift to a distant part 
of the embedding geometry.

To handle this situation, we must refine our definitions of several key ideas. 
Differentiation must be expressed not as a single smooth, continuous vector-
valued function, 

G
f s( ), but rather as a piecewise smooth, continuous one. That 

is, the process begins with some initial path through the embedding geometry 
defined as before but reaches a certain point and splits into two or more seg-
ments. We write this function as 

G
f b s( , ), where b selects a branch segment in the 

process and s is the progress along that branch. The initial segment is denoted 
b0, and we denote the first cell on any branch bi as having progress (bi, s0). A 
lineage is defined as an ordered set of branches bi such that b bi jE )i,j and, if 
bi precedes and is adjacent to bj, then the left open interval of 

G
f b sj( , ) begins 

at 
G
f b si n( , ), where sn is the last state on the branch bi.
An ordering of cells from a branched process can be represented as a 

tree rooted near 
G
f b s( , )0 0 . In the unbranched case, an ordering means that 

Q Q( ) ( )i j s si jY Y� . For the branched case, we construct a tree on the index set, 
where if element i of the index set is the parent of j in the directed acyclic graph 
(DAG), then

G G
f b s f b sx i y j( , ) ( , )Y . If i has only a single child in the tree, then  

bx = by. If, however, i has multiple children, then b bx yE , and the left open interval  
of 
G
f b sy( , ) begins at 

G
f b sx i( , ).

Given the above definition for a branched ordering, the notion of pseudo-
time for a branched process can be readily updated as well:
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where Parent(b,s) denotes the parent of cell (b,s) in the ordering tree.
Each Q node is the parent of cells along an indecisive backbone that fixes 

their order in the embedding geometry. To build a branched ordering of the 
cells, each time Monocle adds a Q node to the tree, it also records the length 
of the corresponding indecisive backbone in the MST. When the PQ tree is 
complete, Monocle selects the k Q nodes with the longest indecisive backbones, 
where k is selected by the user and corresponds to the number of terminally 
differentiated cell types in the experiment. From this list, Monocle selects the 
Q node with the shortest backbone, prunes the corresponding subtree from 
the MST, and orders its cells using the above exhaustive procedure. Monocle 
then does the same for the remaining selected Q nodes.

The algorithm then reassembles the ordered subsets of the cells with a 
depth-first traversal of the PQ tree. The Q node with the longest backbone 
will always be QMain, the first one created. The second longest backbone will be 
found branching from the longest in the MST, and so on. The root cell (b0,s0) 
of the ordering tree is the first cell in the ordering of the longest backbone. The 
remaining cells under QMain are added in order, until the indecisive node that 
created the second longest backbone is reached, at which point the ordering 
tree branches, creating b1 and b2, with cells on the second longest backbone 
added as children in one branch, and the remaining cells on the longest back-
bone added to the other. This procedure is applied, creating branches in the 
ordering tree whenever one of the k longest backbone Q nodes is encountered, 
until all the cells have been added to the ordering tree.

Differential expression analysis. Monocle can identify genes and transcripts 
that are differentially expressed across distinct cell types or that change sig-
nificantly as a function of pseudotime. Generalized additive models (GAMs) 
relate one or more predictor variables to a response variable as
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where Y is a response variable, such as a particular gene’s expression level, and 
the xi’s are predictor variables36. The function g is a link function, typically the 
identity or log function. The fi’s are nonparametric functions, such as cubic 
splines or some other smoothing function. Generalized additive models are 
similar to generalized linear models but allow testing of variables in response 
to a numerically estimated trend in the predictors, alleviating the burden of 
specifying their distribution. While this necessitates some approximations 
in downstream testing, it has proven to be highly effective in many settings, 

particularly when one wishes to model the response variable as a function of 
both categorical and continuous predictors.

Monocle models each gene’s expression level across cells using a Tobit 
model35. That is, each gene’s observable (log-transformed) expression  
level Y depends on a latent variable Y*:
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where L is a detection threshold. The latent variable Y* depends on the 
variables xi, which might express the day on which each cell was collected, 
Monocle’s pseudotime value for each cell, and so forth. The parameter L is a 
user-specified value (FPKM = 0.1 by default).

Monocle’s generalized additive model is thus

E Y s b st x i( ) ( ( , ))� �Z F

where Z t x ib s( , ) denotes the assigned pseudotime of a cell and s is a cubic 
smoothing function with (by default) three effective degrees of freedom.  
The error term E is normally distributed with a mean of zero. Testing for 
differential expression is performed with an approximate C2 likelihood ratio 
test. The GAM and associated testing functions are provided through the 
VGAM package37.

Monocle also supports testing for differential expression between groups 
of cells collected on different days or otherwise categorically labeled in  
the experiment. In these tests, the GAM simply uses the categorical labels as 
predictor variables, with no smoothing.

In this study, pseudotemporally ordered myoblasts were analyzed for 
dynamically regulated genes using a GAM that described log-transformed 
FPKM values as dependent variables from the Tobit family, which varied as 
a smooth function of pseudotime. Smoothing was performed with a cubic 
spline with three effective degrees of freedom. A randomly selected set of  
15 genes was manually assessed for goodness of fits using standard criteria (for 
example, Q-Q plots) and confirmed to be well-fit by both the pseudotemporal 
and day-collected Tobit models. Significance of pseudotime dependency was 
performed with an approximate likelihood ratio test (via the VGAM lrtest() 
function) against the reduced model of no pseudotime dependence. In all 
tests, genes with an FDR < 0.05 after Benjamini-Hochberg correction were 
considered pseudotemporally regulated.

Bulk RNA-Seq libraries were analyzed with Cuffdiff 2 to call differentially 
expressed genes. Bulk RNA-Seq libraries met the widely used assumption of 
increasing fragment count overdispersion as a function of increasing expres-
sion. Cuffdiff 2, used to assess changes in bulk RNA-Seq libraries, explicitly 
models overdispersion and includes it in statistical testing.

Clustering genes by pseudotemporal expression pattern. Once Monocle has 
fit a GAM for each gene, these models can be used to predict smooth response 
curves as a function of pseudotime. Standardizing these curves allows for 
efficient K-medioid clustering of all genes in a data set across pseudotime. 
Pairwise distances between genes x and y are calculated as

d x y x y( , ) ,� 1
2

S

where Rx,y indicates the Pearson correlation of their response curves. Clusters 
correspond to genes that follow the same relative kinetic trends. Clustering 
based on the GAM response curves, rather than the raw data, produces, in 
practice, more coherent clusters with a lower root mean squared error with 
respect to the medioids and sharper kinetic trends, allowing analysis of a more 
diverse set of patterns.

In this study, clustering analysis was carried out on all detectably expressed 
genes, regardless of significance of pseudotemporal regulation. K-medioid 
clustering was performed on the predicted response of genes pseudotime GAM 
after log-transformation and standardization. Clustering was performed using 
the PAM package in R. Six clusters were generated, as this was the largest K 
that produced qualitatively distinct clusters without redundancy.

Primary human myoblast culture and treatment. Human skeletal  
muscle myoblasts (HSMM) derived from quadriceps biopsy (Lonza, catalog 

NATURE BIOTECHNOLOGYdoi:10.1038/nbt.2859

and continuous in the embedding geometry, or rather, that transitions from 
progenitor to one of several committed cell types is marked by a smooth shift 
in transcriptional state, as opposed to an instantaneous shift to a distant part 
of the embedding geometry.

To handle this situation, we must refine our definitions of several key ideas. 
Differentiation must be expressed not as a single smooth, continuous vector-
valued function, 

G
f s( ), but rather as a piecewise smooth, continuous one. That 

is, the process begins with some initial path through the embedding geometry 
defined as before but reaches a certain point and splits into two or more seg-
ments. We write this function as 

G
f b s( , ), where b selects a branch segment in the 

process and s is the progress along that branch. The initial segment is denoted 
b0, and we denote the first cell on any branch bi as having progress (bi, s0). A 
lineage is defined as an ordered set of branches bi such that b bi jE )i,j and, if 
bi precedes and is adjacent to bj, then the left open interval of 

G
f b sj( , ) begins 

at 
G
f b si n( , ), where sn is the last state on the branch bi.
An ordering of cells from a branched process can be represented as a 

tree rooted near 
G
f b s( , )0 0 . In the unbranched case, an ordering means that 

Q Q( ) ( )i j s si jY Y� . For the branched case, we construct a tree on the index set, 
where if element i of the index set is the parent of j in the directed acyclic graph 
(DAG), then

G G
f b s f b sx i y j( , ) ( , )Y . If i has only a single child in the tree, then  

bx = by. If, however, i has multiple children, then b bx yE , and the left open interval  
of 
G
f b sy( , ) begins at 

G
f b sx i( , ).

Given the above definition for a branched ordering, the notion of pseudo-
time for a branched process can be readily updated as well:
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where Parent(b,s) denotes the parent of cell (b,s) in the ordering tree.
Each Q node is the parent of cells along an indecisive backbone that fixes 

their order in the embedding geometry. To build a branched ordering of the 
cells, each time Monocle adds a Q node to the tree, it also records the length 
of the corresponding indecisive backbone in the MST. When the PQ tree is 
complete, Monocle selects the k Q nodes with the longest indecisive backbones, 
where k is selected by the user and corresponds to the number of terminally 
differentiated cell types in the experiment. From this list, Monocle selects the 
Q node with the shortest backbone, prunes the corresponding subtree from 
the MST, and orders its cells using the above exhaustive procedure. Monocle 
then does the same for the remaining selected Q nodes.

The algorithm then reassembles the ordered subsets of the cells with a 
depth-first traversal of the PQ tree. The Q node with the longest backbone 
will always be QMain, the first one created. The second longest backbone will be 
found branching from the longest in the MST, and so on. The root cell (b0,s0) 
of the ordering tree is the first cell in the ordering of the longest backbone. The 
remaining cells under QMain are added in order, until the indecisive node that 
created the second longest backbone is reached, at which point the ordering 
tree branches, creating b1 and b2, with cells on the second longest backbone 
added as children in one branch, and the remaining cells on the longest back-
bone added to the other. This procedure is applied, creating branches in the 
ordering tree whenever one of the k longest backbone Q nodes is encountered, 
until all the cells have been added to the ordering tree.

Differential expression analysis. Monocle can identify genes and transcripts 
that are differentially expressed across distinct cell types or that change sig-
nificantly as a function of pseudotime. Generalized additive models (GAMs) 
relate one or more predictor variables to a response variable as
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where Y is a response variable, such as a particular gene’s expression level, and 
the xi’s are predictor variables36. The function g is a link function, typically the 
identity or log function. The fi’s are nonparametric functions, such as cubic 
splines or some other smoothing function. Generalized additive models are 
similar to generalized linear models but allow testing of variables in response 
to a numerically estimated trend in the predictors, alleviating the burden of 
specifying their distribution. While this necessitates some approximations 
in downstream testing, it has proven to be highly effective in many settings, 

particularly when one wishes to model the response variable as a function of 
both categorical and continuous predictors.

Monocle models each gene’s expression level across cells using a Tobit 
model35. That is, each gene’s observable (log-transformed) expression  
level Y depends on a latent variable Y*:
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where L is a detection threshold. The latent variable Y* depends on the 
variables xi, which might express the day on which each cell was collected, 
Monocle’s pseudotime value for each cell, and so forth. The parameter L is a 
user-specified value (FPKM = 0.1 by default).

Monocle’s generalized additive model is thus

E Y s b st x i( ) ( ( , ))� �Z F

where Z t x ib s( , ) denotes the assigned pseudotime of a cell and s is a cubic 
smoothing function with (by default) three effective degrees of freedom.  
The error term E is normally distributed with a mean of zero. Testing for 
differential expression is performed with an approximate C2 likelihood ratio 
test. The GAM and associated testing functions are provided through the 
VGAM package37.

Monocle also supports testing for differential expression between groups 
of cells collected on different days or otherwise categorically labeled in  
the experiment. In these tests, the GAM simply uses the categorical labels as 
predictor variables, with no smoothing.

In this study, pseudotemporally ordered myoblasts were analyzed for 
dynamically regulated genes using a GAM that described log-transformed 
FPKM values as dependent variables from the Tobit family, which varied as 
a smooth function of pseudotime. Smoothing was performed with a cubic 
spline with three effective degrees of freedom. A randomly selected set of  
15 genes was manually assessed for goodness of fits using standard criteria (for 
example, Q-Q plots) and confirmed to be well-fit by both the pseudotemporal 
and day-collected Tobit models. Significance of pseudotime dependency was 
performed with an approximate likelihood ratio test (via the VGAM lrtest() 
function) against the reduced model of no pseudotime dependence. In all 
tests, genes with an FDR < 0.05 after Benjamini-Hochberg correction were 
considered pseudotemporally regulated.

Bulk RNA-Seq libraries were analyzed with Cuffdiff 2 to call differentially 
expressed genes. Bulk RNA-Seq libraries met the widely used assumption of 
increasing fragment count overdispersion as a function of increasing expres-
sion. Cuffdiff 2, used to assess changes in bulk RNA-Seq libraries, explicitly 
models overdispersion and includes it in statistical testing.

Clustering genes by pseudotemporal expression pattern. Once Monocle has 
fit a GAM for each gene, these models can be used to predict smooth response 
curves as a function of pseudotime. Standardizing these curves allows for 
efficient K-medioid clustering of all genes in a data set across pseudotime. 
Pairwise distances between genes x and y are calculated as
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where Rx,y indicates the Pearson correlation of their response curves. Clusters 
correspond to genes that follow the same relative kinetic trends. Clustering 
based on the GAM response curves, rather than the raw data, produces, in 
practice, more coherent clusters with a lower root mean squared error with 
respect to the medioids and sharper kinetic trends, allowing analysis of a more 
diverse set of patterns.

In this study, clustering analysis was carried out on all detectably expressed 
genes, regardless of significance of pseudotemporal regulation. K-medioid 
clustering was performed on the predicted response of genes pseudotime GAM 
after log-transformation and standardization. Clustering was performed using 
the PAM package in R. Six clusters were generated, as this was the largest K 
that produced qualitatively distinct clusters without redundancy.

Primary human myoblast culture and treatment. Human skeletal  
muscle myoblasts (HSMM) derived from quadriceps biopsy (Lonza, catalog 
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have important implications in practical applications. In agree-
ment with previous evaluations, methods developed for bulk 
RNA-seq analysis did not perform worse than those specifically 
developed for scRNA-seq data, but sometimes showed a stronger 
dependence on data prefiltering.

Figure 5  summarizes performance across the main evaluation 
criteria in our study. For each evaluation aspect, each method 
was classified as ‘good’, ‘intermediate’ or ‘poor’ (Online Methods). 
Although it is difficult to capture the full complexity of the evalu-
ation in a crude categorization, the table provides a convenient 
summary of our results and can be used to select an appropri-
ate method based on the criteria that are most important for a 
specific application.

The number of cells per group ranged between 6 and 400 in 
our data sets. Although these are relatively small numbers com-
pared with the thousands of cells that can be sequenced in an 
actual experiment, DE analysis is typically used to compare sets 
of homogeneous cells (for example, from given, well-defined cell 
types), and these collections are likely to be much smaller. Thus, 
we believe that the range of sample sizes considered in our com-
parisons are relevant for real applications and that it is important 
to know how the methods perform under these circumstances.

METHODS
Methods, including statements of data availability and any associ-
ated accession codes and references, are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Figure 5  | Summary of DE method performance across all major evaluation 
criteria. Criteria and cutoff values for performance categories are available 
in the Online Methods. Methods are ranked by their average performance 
across the criteria, with the numerical encoding good = 2, intermediate = 1,  
poor = 0. NODES and SAMseq do not return nominal P values and were 
therefore not evaluated in terms of the FPR.



Cell	clustering

• The	goals	include:
– Cluster	cells	into	subgroups.
– Model	temporal	transcriptomic	dynamics:	reconstruct	
“pseudo-time”	for	cells.	This	is	useful	for	understanding	
development	or	disease	progression.	

• Traditional	method	like	k-means	or	hierarchical	
clustering	need	to	be	used	with	caution	due	to	
dropout	events.	



Clustering	tools	for	scRNA-seq

• A	long	list	of	tools:	Seurat,	TSCAN,	SC3,	CIDR,	
Monocle,	…

• Ideas	are	similar:	
– Select	informative	genes.
– Dimension	reduction	of	GE.
– Cluster	the	cells	based	on	reduced	data.
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population of cells branched from the trajectory near the transition 
between phases. These cells lacked myogenic markers but expressed 
PDGFRA and SPHK1, suggesting that they are contaminating intersti-
tial mesenchymal cells and did not arise from the myoblasts. Such cells 
were recently shown to stimulate muscle differentiation19. Monocle’s 
estimates of the frequency and proliferative status of these cells  
were consistent with estimates derived from immunofluorescent 
stains against ANPEP (also known as CD13) and nuclear Ser10- 
phosphorylated histone H3 (Supplementary Fig. 4). Monocle thus 
enabled analysis of the myoblast differentiation trajectory without 
subtracting these cells by immunopurification, maintaining in vitro 
differentiation kinetics that resemble physiological cell crosstalk 
occurring in the in vivo niche.

To find genes that were dynamically regulated as the cells pro-
gressed through differentiation, we modeled expression of each gene 
as a nonlinear function of pseudotime. A total of 1,061 genes were 

dynamically regulated during differentiation (false discovery rate 
(FDR) < 5%; Fig. 2c). Cells positive for MEF2C and MYH2, early and 
late markers of differentiation, respectively, were present at expected 
frequencies as assayed by both immunofluorescence and RNA-Seq. 
Moreover, the pseudotime ordering of cells shows an increase in 
MEF2C+ cells before the increase in MYH2+ cells (Fig. 2d). Notably, 
genes that act at the early and late stages of muscle differentiation 
showed pseudotemporal kinetics that were highly consistent with 
expectations, with cell-cycle regulators active early in pseudotime 
and sarcomere components active later, confirming the accuracy of 
the ordering (Supplementary Fig. 5).

We next examined the pseudotemporal kinetics of a set of genes 
whose mouse orthologs are targeted by Myod, Myog or Mef2 pro-
teins in C2C12 myoblasts20 (Supplementary Fig. 6). The kinetics of 
these genes during differentiation were highly consistent with changes 
observed during mouse myogenesis, with nearly all significantly 
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population of cells branched from the trajectory near the transition 
between phases. These cells lacked myogenic markers but expressed 
PDGFRA and SPHK1, suggesting that they are contaminating intersti-
tial mesenchymal cells and did not arise from the myoblasts. Such cells 
were recently shown to stimulate muscle differentiation19. Monocle’s 
estimates of the frequency and proliferative status of these cells  
were consistent with estimates derived from immunofluorescent 
stains against ANPEP (also known as CD13) and nuclear Ser10- 
phosphorylated histone H3 (Supplementary Fig. 4). Monocle thus 
enabled analysis of the myoblast differentiation trajectory without 
subtracting these cells by immunopurification, maintaining in vitro 
differentiation kinetics that resemble physiological cell crosstalk 
occurring in the in vivo niche.

To find genes that were dynamically regulated as the cells pro-
gressed through differentiation, we modeled expression of each gene 
as a nonlinear function of pseudotime. A total of 1,061 genes were 

dynamically regulated during differentiation (false discovery rate 
(FDR) < 5%; Fig. 2c). Cells positive for MEF2C and MYH2, early and 
late markers of differentiation, respectively, were present at expected 
frequencies as assayed by both immunofluorescence and RNA-Seq. 
Moreover, the pseudotime ordering of cells shows an increase in 
MEF2C+ cells before the increase in MYH2+ cells (Fig. 2d). Notably, 
genes that act at the early and late stages of muscle differentiation 
showed pseudotemporal kinetics that were highly consistent with 
expectations, with cell-cycle regulators active early in pseudotime 
and sarcomere components active later, confirming the accuracy of 
the ordering (Supplementary Fig. 5).

We next examined the pseudotemporal kinetics of a set of genes 
whose mouse orthologs are targeted by Myod, Myog or Mef2 pro-
teins in C2C12 myoblasts20 (Supplementary Fig. 6). The kinetics of 
these genes during differentiation were highly consistent with changes 
observed during mouse myogenesis, with nearly all significantly 

a

Differentially expressed
genes by cell type

Differentially expressed
genes across pseudotime

Gene expression
clusters and trends

Reduce dimensionality Build MST on cells

Order cells in pseudotime
via MST

Label cells by type

Cells represented as
points in expression space

CDK1

ID1

MYOG

0.01

1

100

0.1

10

0.01

1

100

0 5 10 15 20
Pseudotime

CDK1

ID1

MYOG

0.1

10

1,000

0.1

10

0.1

10

1,000

0 24 48 72
Time in DM (h)

fe

0
5

10
15
20

0 10 20
Pseudotime

C
el

ls

0
25
50
75

100

0 24 48 72
Time in DM (h)

C
el

ls
 (

%
)

0
25
50
75

100

0 24 48 72 96 120
Time in DM (h)

N
uc

le
i (

%
)

MEF2C
MYH2

d

−2

−1

0

−3 −2
Component 2

C
om

po
ne

nt
 1

Proliferating
cell

Differentiating
myoblastb

Beginning of
pseudotime

End of
pseudotime

Interstitial
mesenchymal
cell

−2

−1

0

1

2

Relative
expression

Pseudotime

c

Figure 2 Monocle orders individual cells by progress through differentiation. (a) An overview of the Monocle algorithm. (b) Cell expression profiles 
(points) in a two-dimensional independent component space. Lines connecting points represent edges of the MST constructed by Monocle. Solid 
black line indicates the main diameter path of the MST and provides the backbone of Monocle’s pseudotime ordering of the cells. (c) Expression 
for differentially expressed genes identified by Monocle (rows), with cells (columns) shown in pseudotime order. Interstitial mesenchymal cells are 
excluded. (d) Bar plot showing the proportion of MEF2C- and MYH2-expressing cells measured by immunofluorescence at the time of collection (top), 
RNA-Seq at the time of collection (middle) or RNA-Seq at pseudotime (bottom). MEF2C was considered detectably expressed at or above 100 FPKM, 
MYH2 at 1 FPKM. MEF2C exhibits a bimodal pattern of expression across the cells (not shown), and a threshold of 100 FPKM separates the modes.  
(e) Expression of key regulators of muscle differentiation, ordered by time collected (cyclin-dependent kinase 1, CDK1; inhibitor of DNA binding 1,  
ID1; myogenin, MYOG). (f) Regulators from e, ordered by Monocle in pseudotime. Points in e,f are colored by time collected (0 h, red; 24 h, gold;  
48 h, light blue; 72 h, dark blue). Error bars, 2 s.d.



Use	Monocle	Bioconductor	package

First	create	a	CellDataSet object	using	
newCellDataSet function,	then:	
• Differential	expression	using	differentialGeneTest.
• Cell	ordering	(pseudo-time	estimation).	This	contains	
three	steps:	
– Select	a	list	of	genes	(often	the	DE	genes)	used	for	cell	
ordering.	Use	setOrderingFilter function	to	set	that.	

– Dimension	reduction	using	reduceDimension function.	
– Cell	ordering	using	orderCells function.	



### Create data object
pd <- new("AnnotatedDataFrame", data = sample_sheet)
fd <- new("AnnotatedDataFrame", data = gene_annotation)
dataobj <- newCellDataSet(as.matrix(expr_matrix), 

phenoData = pd, featureData = fd)
### DE test
diff_test_res <- differentialGeneTest(dataobj, 

fullModelFormulaStr=GE~cond”, 
reducedModelFormulaStr=“GE~1”)

### cell ordering
ordering_genes <- row.names(subset(diff_test_res, qval < 0.1))
dataobj <- setOrderingFilter(dataobj, ordering_genes)
dataobj <- reduceDimension(dataobj, use_irlba=FALSE)
dataobj <- orderCells(dataobj, num_paths=2, reverse=TRUE)
plot_spanning_tree(dataobj)



Clustering	method	comparison

• Duo	et	al.	(2018)	F1000

FlowSOM was more variable, and often tended to group the 
cells into one large cluster and a few very small ones (see  
Supplementary Figure 4 for an example). One consequence of 
this was that FlowSOM often showed higher ARI values for a 
larger number of clusters, while the performance of many of 
the other methods decreased with increasing k (Supplementary  
Figure 3). These methods tended to have more equally sized  
clusters for larger numbers of clusters than the true number, 
leading to a higher disagreement between the true classification  
and the clusterings (the entropy across the range of k is shown in 
Supplementary Figure 11).

The optimal number of clusters can differ from the ”true” 
one
Above, we investigated the performance and stability of the 
methods when the true number of clusters (the number of differ-
ent labels in the partitioning considered as the ground truth) was  
imposed. Whether this number of clusters actually provided 
the highest ARI value (i.e., the best agreement with the ground 
truth) mainly depended on the difficulty of the clustering task  
(Figure 3C), and the choice of method. No method achieved 
the best performance at the annotated number of clusters in 
all the data sets, although generally, the methods reached their  
maximum performance at or near the annotated number of  
clusters. The notable exception was FlowSOM, which required 
a relatively large number of clusters to reach its maximal  
performance.

SC3, CIDR, ascend, SAFE and TSCAN all have built-in 
functionality for estimating the optimal number of clusters. In 
most cases, the estimated number was close to the true one;  
however, ascend and CIDR had a tendency to underestimate 
the number of clusters, while SC3 and TSCAN instead tended to  
overestimate the number (Supplementary Figure 12). The tendency 
of SC3 to overestimate the cluster number is consistent with a 
previous publication16. The agreement with the true partition 

at the estimated number of clusters is shown in Supplementary  
Figure 13. SC3 is still the best-performing method in this  
situation.

Inconsistent degree of similarity between methods
The similarity between each pair of methods was quantified 
by means of the ARIs for each pair of consensus clusterings 
(across the five runs of each method for each data set and number 
of clusters). Figure 4 shows a dendrogram of the methods  
obtained by hierarchical clustering based on the average ARI 
values across all data sets for the true number of clusters. The  
numbers shown at the internal nodes indicate the stability of the 
subclusters, that is, the fraction of the corresponding dendro-
grams from the individual data sets where a particular subcluster  
could be found. In general, the groupings of the methods shown 
in the dendrogram were unstable across data sets, indicated by 
the low stability fractions of all subclusters. This is consistent 
with previous studies showing generally poor concordance  
that varied across data sets20,45. Even SC3 and SC3svm had  
surprisingly different clusterings; in less than a third of the 
data sets, these two methods showed the most similar cluster-
ings. In addition, no apparent association between the similarity 
of the clusterings and the type of input or the dimension  
reduction or underlying type of clustering algorithm was seen  
(Figure 4).

Ensembles often don’t improve clustering performance
Next, we investigated whether we could improve the cluster-
ing performance by combining methods into an ensemble. For 
each pair of methods, we generated a consensus clustering and 
evaluated its agreement with the true partition using the ARI.  
In general, the performance of the ensemble was worse than the  
better of the two combined methods, and better than the worse 
of the two methods (Figure 5A), suggesting that we would 
obtain a better performance by choosing a single good clustering  
method rather than combining multiple different ones. This is 

Figure 4. Clustering of the methods based on the average similarity  of their partitions across data sets, for the true number of clusters. 
Numbers on internal nodes indicate the fraction of dendrograms from individual data sets where a particular subcluster was found.
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Detect	rare	cell	type

• Rare	cell	are	“outliers”	in	the	data.
• RaceID (Grun et	al.	2015	Nature):	
– Normalize	and	log-transformed	data.	
– Filter	cells	and	genes	
– K-means	clustering	
– Detect	outliers	from	k-means	result.

• GiniClust (Jiang	et	al.	2016	GB):
– Difference	is	the	gene	filtering.	It	uses	gini-index	instead	of	
variance	to	select	genes.	



Missing	data	imputation

• Many	zeros	in	scRNA-seq	data.
• Attempts	to	impute	(fill	in)	the	zeros,	with	
information	from	similar	cells/genes.

• Available	tools:	scImpute,	drimpute,	PBLR,	
SAVER,	McImpute,	netSmooth,	…



t-SNE:	a	useful	visualization	tool

• t-SNE	(t-distributed	stochastic	neighbor	embedding):	
visualize	high-dimensional	data	on	2-/3-D	map.	

• When	project	high-dimensional	data	into	lower	
dimensional	space,	preserve	the	distances	among	data	
points.	
– This	alleviate	the	problem	that	many	clusters	overlap	on	low	

dimensional	space.	

• Try	to	make	the	pairwise	distances	of	points	similar	in	
high	and	low	dimension.

• This	is	used	in	almost	all	scRNA-seq	data	visualization.	
• Has	“tsne”	package	on	CRAN.



VAN DER MAATEN AND HINTON

 

 

(a) Visualization by t-SNE.

 

 

(b) Visualization by Sammon mapping.

 

 

(c) Visualization by Isomap.

 

 

(d) Visualization by LLE.

Figure 4: Visualizations of the Olivetti faces data set.

structure of the data. The map constructed by Sammon mapping is significantly better, since it
models many of the members of each class fairly close together, but none of the classes are clearly
separated in the Sammon map. In contrast, t-SNE does a much better job of revealing the natural
classes in the data. Some individuals have their ten images split into two clusters, usually because a
subset of the images have the head facing in a significantly different direction, or because they have
a very different expression or glasses. For these individuals, it is not clear that their ten images form
a natural class when using Euclidean distance in pixel space.

Figure 5 shows the results of applying t-SNE, Sammon mapping, Isomap, and LLE to the COIL-
20 data set. For many of the 20 objects, t-SNE accurately represents the one-dimensional manifold
of viewpoints as a closed loop. For objects which look similar from the front and the back, t-SNE
distorts the loop so that the images of front and back are mapped to nearby points. For the four
types of toy car in the COIL-20 data set (the four aligned “sausages” in the bottom-left of the t-
SNE map), the four rotation manifolds are aligned by the orientation of the cars to capture the high
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Summary	for	scRNA-seq

• The	main	interests	are	inter-cellular	
heterogeneity,	expression	dynamics,	cell	type	
discovery.

• Statistical	questions	include	normalization,	
differential	expression	and	clustering.	

• Rooms	for	model	development.		



Joint	profiling	in	single	cell
SINGLE-CELL GENOMICS

Joint profiling of chromatin
accessibility and gene expression
in thousands of single cells
Junyue Cao1,2, Darren A. Cusanovich1*†, Vijay Ramani1*, Delasa Aghamirzaie1,
Hannah A. Pliner1, Andrew J. Hill1, Riza M. Daza1, Jose L. McFaline-Figueroa1,
Jonathan S. Packer1, Lena Christiansen3, Frank J. Steemers3, Andrew C. Adey4,5,
Cole Trapnell1,6,7‡, Jay Shendure1,6,7,8‡

Although we can increasingly measure transcription, chromatin, methylation,
and other aspects of molecular biology at single-cell resolution, most assays
survey only one aspect of cellular biology. Here we describe sci-CAR, a
combinatorial indexing–based coassay that jointly profiles chromatin accessibility
and mRNA (CAR) in each of thousands of single cells. As a proof of concept,
we apply sci-CAR to 4825 cells, including a time series of dexamethasone
treatment, as well as to 11,296 cells from the adult mouse kidney. With the
resulting data, we compare the pseudotemporal dynamics of chromatin accessibility
and gene expression, reconstruct the chromatin accessibility profiles of cell
types defined by RNA profiles, and link cis-regulatory sites to their target genes on
the basis of the covariance of chromatin accessibility and transcription across
large numbers of single cells.

T
he concurrent profiling of multiple classes
ofmolecules—for example, RNA andDNA—
within single cells has the potential to reveal
causal regulatory relationships and to en-
rich the utility of organism-scale single-cell

atlases. However, to date, nucleic acid “coassays”
rely on physically isolating each cell, limiting
their throughput to a few cells per study (fig. S1A
and table S1) (1–6).
Single-cell combinatorial indexing (sci) meth-

ods use split-pool barcoding to uniquely label the
nucleic acid contents of single cells or nuclei
(7–13). Here we describe sci-CAR, which jointly
profiles single-cell chromatin accessibility and
mRNA (CAR) in a scalable fashion. sci-CAR ef-
fectively combines sci–ATAC sequencing (sci-
ATAC-seq) and sci-RNA-seq into a single protocol
(Fig. 1) by the following steps: (i) Nuclei are
extracted, with or without fixation, and distrib-
uted to wells. (ii) A first RNA-seq “index” is in-
troduced by in situ reverse transcription (RT)
with a polythymidine [poly(T)] primer that bears
a well-specific barcode and a unique molecular
identifier (UMI). (iii) A first ATAC-seq index is

introduced by in situ tagmentation with Tn5
transposase that bears a well-specific barcode.
(iv) All nuclei are pooled and redistributed by
fluorescence-activated cell sorting to multiple
plates. (v) After second-strand synthesis of cDNA,
nuclei in each well are lysed, and the lysate is
split into RNA- and ATAC-dedicated portions.
(vi) To provide a second priming site for am-
plification of 3′ cDNA tags, the RNA-dedicated
lysate is subjected to transposition with unin-
dexed Tn5 transposase. 3′ cDNA tags are am-
plified with primers corresponding to the Tn5
adaptor and RT primer. These primers also bear
a well-specific barcode that is the second RNA-
seq index. (vii) The ATAC-seq–dedicated lysate
is amplified with primers specific to the barcoded
Tn5 adaptors from (iii). These primers also bear
a well-specific barcode that is the second ATAC-
seq index. (viii) Amplicons from RNA-seq– and
ATAC-seq–dedicated lysates are respectively pooled
and sequenced. Each sequence read is associated
with two barcodes that correspond to each round
of indexing. As with other sci protocols, most
nuclei pass through a unique combination of
wells, thereby receiving a unique combination of
barcodes that can be used to group reads derived
from the same cell. Because the barcodes intro-
duced to RNA-seq and ATAC-seq libraries cor-
respond to specific wells, we can link the mRNA
and chromatin accessibility profiles of individ-
ual cells.
We applied sci-CAR to a cell-culture model of

cortisol response, wherein dexamethasone (DEX),
a synthetic mimic of cortisol, activates gluco-
corticoid receptor (GR), which binds to thousands
of locations across the genome, altering the ex-
pression of hundreds of genes (14–17). We col-
lected human lung adenocarcinoma–derived

A549 cells after 0, 1, or 3 hours of 100 nM DEX
treatment and performed a 96 well (first round
indexing)–by–576 well (second round indexing)
sci-CAR experiment. The three time points were
each represented by 24 wells during the first
round of indexing, whereas the remaining 24wells
contained a mixture of human embryonic kidney
(HEK) 293T andNIH/3T3 (mouse) cells (fig. S1B).
We obtained sci-RNA-seq profiles for 6093

cells (median 3809 UMIs) and sci-ATAC-seq pro-
files for 6085 cells (median 1456 unique reads)
(fig. S1, C to E). For both data types, reads assigned
to the same cell overwhelmingly mapped to one
species (fig. S1, F and G). We obtained roughly
equivalent UMIs per cell from “RNA-only” plates
processed in parallel, albeit at a lower sequencing
depth per cell. Aggregated transcriptomes of co-
assayed versus RNA-only plates were well corre-
lated [Pearson correlation coefficient (r) = 0.97 to
0.98; fig. S2]. By contrast, although coassayed
versus “ATAC-only” plates were similar in data
quality and well correlated in aggregate (fig. S3),
ATAC-only plates had ~10-fold higher molecular
complexity. The lower efficiency of the coassay for
ATAC is likely explained by factors including buf-
fermodifications and our use of only half the lysate.
There were 4825 cells (70% of either set) for

which we recovered both transcriptome and
chromatin accessibility data. To confirm that
paired profiles truly derived from the same cells,
we asked whether cells from mixed human-
mouse wells were consistently assigned as
human or mouse. Indeed, 1423/1425 (99%) of co-
assayed cells from those wells were assigned the
same species label from both sci-RNA-seq and
sci-ATAC-seq profiles (Fig. 2A).
We next examined the time course of GR ac-

tivation. DEX treatment of A549 cells increased
both transcription and promoter accessibility
of markers of GR activation, including genes
NFKBIA, SCNN1A,CKB,PER1, andCDH16 (14, 16)
(fig. S4, A and B). Unsupervised clustering or
t-distributed stochastic neighbor embedding
(t-SNE) visualization of either sci-RNA-seq or sci-
ATAC-seq profiles readily separated clusters cor-
responding to untreated and DEX-treated cells
(Fig. 2, B and C). Reassuringly, cells from coassay
plates and single-assay plates of either type were
intermixed (fig. S4C).
Of coassayed cells in clusters 1 and 2 of sci-

ATAC-seq data, 88 and 93% were found in cor-
responding sci-RNA-seq clusters (fig. S4, D andE).
Cells with concordant versus discordant assign-
ments did not significantly differ in read depth
(P > 0.1, Welch two-sample t test) but notably fell
on the border between clusters 1 and 2 in either
t-SNE (Fig. 2D and fig. S4F). Whereas most
discordant cells (70%) were from 0 hours, the
remainder tended to derive from 1 hour rather
than 3 hours (5% of 1-hour cells versus 1% of
3-hour cells, P = 2.2 × 10−16, Fisher’s exact test).
Although we cannot rule out that this is due to
imperfect clustering, these discordantly assigned
cells potentially reflect transitional states in GR
activation.
Differential expression (DE) analysis of sci-

RNA-seq data revealed significant changes in
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scNMT-seq enables joint profiling of chromatin
accessibility DNA methylation and transcription in
single cells
Stephen J. Clark 1, Ricard Argelaguet2,3, Chantriolnt-Andreas Kapourani 4 Thomas M. Stubbs1,
Heather J. Lee1,5,6, Celia Alda-Catalinas 1, Felix Krueger 7 Guido Sanguinetti4, Gavin Kelsey 1,8

John C. Marioni 2,3,5 Oliver Stegle 2 Wolf Reik1,5,8

Parallel single-cell sequencing protocols represent powerful methods for investigating reg-

ulatory relationships, including epigenome-transcriptome interactions. Here, we report a

single-cell method for parallel chromatin accessibility, DNA methylation and transcriptome

profiling. scNMT-seq (single-cell nucleosome, methylation and transcription sequencing)

uses a GpC methyltransferase to label open chromatin followed by bisulfite and RNA

sequencing. We validate scNMT-seq by applying it to differentiating mouse embryonic stem

cells, finding links between all three molecular layers and revealing dynamic coupling

between epigenomic layers during differentiation.
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Single	cell	GE	microarray

Single cell-derived clonal analysis of human
glioblastoma links functional and
genomic heterogeneity
Mona Meyera,1, Jüri Reimandb,c,1, Xiaoyang Lana,b, Renee Heada, Xueming Zhua, Michelle Kushidaa, Jane Bayanid,
Jessica C. Presseye, Anath C. Lionelb,f, Ian D. Clarkea,g, Michael Cusimanoh, Jeremy A. Squirei, Stephen W. Schererb,f,
Mark Bernsteinj, Melanie A. Woodine, Gary D. Baderb,c,2, and Peter B. Dirksa,b,k,2
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University of Toronto, Toronto, ON, Canada M5S 3E1 Canada; dDepartment of Transformative Pathology at the Ontario Institute for Cancer Research,
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M5S 3G5; fThe Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada M5G 1L7; gOntario College of Art and Design, Toronto,
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Glioblastoma (GBM) is a cancer comprised of morphologically,
genetically, and phenotypically diverse cells. However, an un-
derstanding of the functional significance of intratumoral hetero-
geneity is lacking. We devised a method to isolate and functionally
profile tumorigenic clones from patient glioblastoma samples.
Individual clones demonstrated unique proliferation and differen-
tiation abilities. Importantly, naïve patient tumors included clones
that were temozolomide resistant, indicating that resistance to
conventional GBM therapy can preexist in untreated tumors at
a clonal level. Further, candidate therapies for resistant clones were
detected with clone-specific drug screening. Genomic analyses
revealed genes and pathways that associate with specific functional
behavior of single clones. Our results suggest that functional clonal
profiling used to identify tumorigenic and drug-resistant tumor
clones will lead to the discovery of new GBM clone-specific treat-
ment strategies.

cancer | glioblastoma | clonal heterogeneity | genomic analysis |
functional analysis

Glioblastoma (GBM) is the most common and most aggres-
sive primary malignant brain tumor in adults. Despite major

efforts to improve GBM survival, radiation therapy with concurrent
temozolomide (TMZ) chemotherapy achieves only a median sur-
vival of 15 months with few long-term survivors. Many patients fail
to respond to TMZ, and treatment of all patients at disease pro-
gression uniformly fails.
Glioblastoma is one of the first cancer types systematically

studied at a genomic and transcriptomic level (1–3). Tran-
scriptional profiling of GBM samples has revealed a landscape
of intertumoral heterogeneity with distinct molecular tumor
subtypes, although only slight prognostic differences are ap-
parent in patients except for a clearly better prognosis in the
CIMP+/IDH1 mutant subgroup (1, 4–6). Increasing evidence
suggests that cancer tissues are more complex than previously
thought, as tumors comprise considerable intratumoral het-
erogeneity with mixtures of genetically distinct subclones that
likely escape therapy and cause disease progression (4, 7–10).
In particular, GBM is a cancer type comprised of morpholog-
ically and phenotypically diverse cells (11). Recent studies have
also uncovered genetic diversity apparent in subsamples of in-
dividual patient GBMs (12–15), and more recently in single
GBM cells (9). Disease recurrence is associated with muta-
tional events that are not shared with the primary tumor sug-
gesting evolution from minority populations present at time of
initial diagnosis (10).

Understanding the links between genetic and functional
behavior of individual GBM clones, derived from single pa-
tient samples, will be essential to decipher patient-specific
molecular mechanisms of GBM progression and therapeutic
resistance. The study of bulk tumors provides a mixture of
different signals from a heterogeneous set of clones and cur-
rent single cell approaches are amenable to genomics but not
functional studies. Here, we provide a detailed analysis of single
cell derived clones from patient GBM samples using a method
that directly links clonal molecular changes with functional
properties. Parallel phenotypic and genomic analysis of these
clones reveals a diverse landscape of functional and genetic
heterogeneity, as well as insights into drug sensitivity pathways
in glioblastoma.

Significance

Glioblastoma is an incurable brain tumor. It is characterized by
intratumoral phenotypic and genetic heterogeneity, but the
functional significance of this heterogeneity is unclear. We
devised an integrated functional and genomic strategy to ob-
tain single cell-derived tumor clones directly from patient
tumors to identify mechanisms of aggressive clone behavior
and drug resistance. Genomic analysis of single clones iden-
tified genes associated with clonal phenotypes. We predict
that integration of functional and genomic analysis at a clonal
level will be essential for understanding evolution and ther-
apeutic resistance of human cancer, and will lead to the dis-
covery of novel driver mechanisms and clone-specific cancer
treatment.
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Single	cell	lncRNA
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Grand	summary	for	scSeq

• Single-cell	biology	reveals	a	lot	of	information	
that	can’t	be	detected	from	bulk	data.	

• Data	are	much	noisier,	and	more	difficult	to	
analyze.	

• Some	rooms	for	method	developments,	but	
very	competitive.	


