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SUMMARY

In this paper we report exploratory analyses of high-density oligonucleotide array data from the
Affymetrix GeneChipR© system with the objective of improving upon currently used measures of gene
expression. Our analyses make use of three data sets: a small experimental study consisting of five
MGU74A mouse GeneChipR© arrays, part of the data from an extensive spike-in study conducted by
Gene Logic and Wyeth’s Genetics Institute involving 95 HG-U95A human GeneChipR© arrays; and part
of a dilution study conducted by Gene Logic involving 75 HG-U95A GeneChipR© arrays. We display
some familiar features of the perfect match and mismatch probe (P M and M M) values of these data,
and examine the variance–mean relationship with probe-level data from probes believed to be defective,
and so delivering noise only. We explain why we need to normalize the arrays to one another using
probe level intensities. We then examine the behavior of theP M and M M using spike-in data and
assess three commonly used summary measures: Affymetrix’s (i) average difference (AvDiff) and (ii)
MAS 5.0 signal, and (iii) the Li and Wong multiplicative model-based expression index (MBEI). The
exploratory data analyses of the probe level data motivate a new summary measure that is a robust multi-
array average (RMA) of background-adjusted, normalized, and log-transformedP M values. We evaluate
the four expression summary measures using the dilution study data, assessing their behavior in terms of
bias, variance and (for MBEI and RMA) model fit. Finally, we evaluate the algorithms in terms of their
ability to detect known levels of differential expression using the spike-in data. We conclude that there
is no obvious downside to using RMA and attaching a standard error (SE) to this quantity using a linear
model which removes probe-specific affinities.
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An R package with the functions used for the analyses in this paper is part of the Bioconductor project
and can be downloaded (http://www.bioconductor.org). Supplemental material, such as color versions of
the figures, is available on the web (http://www.biostat.jhsph.edu/∼ririzarr/affy).

1. INTRODUCTION

High-density oligonucleotide expression array technology is now widely used in many areas of
biomedical research. The system (Lockhartet al., 1996) uses oligonucleotides with length of 25 base pairs
that are used to probe genes. Typically, each gene will be represented by 16–20 pairs of oligonucleotides
referred to asprobe sets. The first component of these pairs is referred to as a perfect match (P M) probe.
Each P M probe is paired with a mismatch (M M) probe that is created by changing the middle (13th)
base with the intention of measuring non-specific binding. TheP M and M M are referred to as aprobe
pair. See the Affymetrix Microarray Suite User Guide (1999) for details. RNA samples are prepared,
labeled and hybridized with arrays. Arrays are scanned and images are produced and analysed to obtain
an intensity value for each probe. These intensities represent how much hybridization occurred for each
oligonucleotide probe. Of interest is finding a way to combine the 16–20 probe pair intensities for a given
gene to define a measure of expression that represents the amount of the corresponding mRNA species.

Wedenote the intensities obtained for each probe as

P Mi jn andM Mi jn, i = 1, . . . , I, j = 1, . . . , Jn, andn = 1, . . . , N

with n representing the different genes,i representing different RNA samples, andj representing the
probe pair number (this number is related to the physical position of the oligonucleotide in the gene).
The number of genesN usually ranges from 8 000 to 20 000, the number of arraysI ranges from one to
hundreds, and the number of probe pairs within each geneJn usually ranges from 16 to 20. Throughout
the text indices are suppressed when there is no ambiguity.

Section 2 describes the three data sets used in this paper. Section 3 explores various interesting features
of the data with the objective of defining an effective measure of gene expression using the probe level
data. Section 4 describes normalization. Some expression measures, for example AvDiff and Li and
Wong’s MBEI, are based onP M − M M . Other measures, for example Affymetrix’s Average Log Ratio,
are based on log(P M/M M). In Sections 3 and 4 we also explore the behavior of these quantities. Section
5 describes four measures of expression. Section 6 assesses the four expression measures in terms of
bias, variance, and model fit. Section 7 examines the ability of the four methods at detecting differentially
expressed probe sets. Section 8 presents our conclusions.

2. DESCRIPTION OF DATA

To properly compare summary measures of expression in terms of bias, variance, sensitivity, and
specificity, data for which we know the ‘truth’ is required. In this paper we examine three data sets for
which assessments can be performed where specific results are expected. Data set A provides probes
for which we can assume the measurements are entirely due to non-specific binding. This permits us to
study the variance–mean relationship for intensity measures. Data set B provides the results of a spike-in
experiment where gene fragments have been added at known concentrations. These data can be used to
assess bias, sensitivity and specificity. Data set C provides the results from a study in which samples were
hybridized at different dilutions. This permits us to assess bias and variance in a more ‘realistic’ scenario
than with data set B.
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Data sets B and C are available from the web at http://qolotus02.genelogic.com/datasets.nsf/. In this
section we describe them in detail for readers interested in using them. We also explain which specific
subsets of the data were used for the analyses presented in this paper.

2.1 Mouse data set A

Data set A comes from an experiment where five MG-U74A mouse GeneChipR© arrays were used.
These were hybridized with samples of lung tissue mRNA obtained from five mice exposed to different
experimental conditions. About 1/5 of the probe pairs in the MG-U74A array were incorrectly sequenced.
Wetherefore assume that the measurements read for most of these probes are entirely due to non-specific
binding.

2.2 Spike-in data sets B

Data set B consists of experiments where 11 different cRNA fragments were added to the hybridization
mixture of the GeneChipR© arrays at different picomolar (pM) concentrations. The 11 control cRNAs
were BioB-5, BioB-M, BioB-3, BioC-5, BioC-3, BioDn-5 (allE. coli), CreX-5, CreX-3 (phage P1), and
DapX-5, DapX-M, DapX-3 (B. subtilis) (Hillet al., 2000, 2001; Baughet al., 2001). The cRNA were
chosen to match the target sequence for each of the Affymetrix control probe sets. For example, for DapX
(a B. subtilis gene), the 5′, middle and 3′ target sequences (identified by DapX-5, DapX-M, DapX-3)
were each synthesized separately and spiked-in at a specific concentration. Thus, for example, on one of
the arrays DapX-3 target sequence was added to the total hybridization solution of 200µl to give a final
concentration of 0.5 pM.

There are two series of spike-in experiments. The experiments were originally carried out for the
development of normalization procedures (Hillet al., 2001). In this paper we use the data in a different
way, mainly for the comparison of expression measures.

2.2.1 The varying concentration series data set, B1. For an individual array, all of the 11 control
cRNAs were spiked-in at the same concentration and this concentration was varied across arrays, taking
the values 0.0, 0.5, 0.75, 1, 1.5, 2, 3, 5, 12.5, 25, 50, and 150 pM. For example, array 1 had all control
cRNAs spiked with 0.0 pM and array 2 had all control cRNAs spiked with 0.5 pM, etc. Of these 12
concentrations, 0, 0.5, 0.75, 1, 1.5, 2, 3 were represented on just one array, 5 and 100 on two arrays, and
the rest were in triplicate, i.e. on three arrays for a total of 27 arrays. All arrays have a common background
cRNA from an acute myeloid leukemia (AML) tumor cell line. In this paper we use only 12 arrays, one
replicate for each of the 12 concentrations. One of the probe set spike-in combinations (CreX-3) failed to
respond adequately, and data from that probe set is entirely omitted from the analysis. Thus we analyse
data from 10 spiked-in probe-sets.

2.2.2 Latin square series data set, B2. In this series each of the 11 control cRNAs were spiked-in at
a different concentration on each array (apart from replicates). The 12 concentrations used were 0.5, 1,
1.5, 2, 3, 5, 12.5, 25, 37.5, 50, 75, and 100 pM, and these were arranged in a 12× 12 cyclic Latin square,
with each concentration appearing once in each row and column. The 12 combinations of concentrations
used on the arrays were taken from the first 11 entries of the 12 rows of this Latin square. Of the 12
combinations used, 11 were done on three arrays and one on just one array. All of these arrays had the
same AML background as in data set B1.

The analysis in this paper makes use of data from six arrays that are a pair of triplicates. The spike-
in concentrations for each of the 11 control RNAs on the two sets of triplicates is shown in Table 1.
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Table 1.Concentrations and observed ranks of each spiked-in gene in a comparison of two sets of
triplicates from the Latin square series spike-in data set

Concentration Expected Rank Observed Rank
Probe set Set of triplicates 1 set of triplicates 2 AvDiff MAS 5.0 Li & Wong RMA
BioB-5 100.0 0.5 1 6 2 1 1
BioB-3 0.5 25.0 2 16 1 3 2
BioC-5 2.0 75.0 4 74 6 2 3
BioB-M 1.0 37.5 4 30 3 7 5
BioDn-3 1.5 50.0 5 44 5 6 4
DapX-3 35.7 3.0 6 239 24 24 7
CreX-3 50.0 5.0 7 333 73 36 9
CreX-5 12.5 2.0 8 3276 33 3128 8
BioC-3 25.0 100.0 9 2709 8579 681 6431
DapX-5 5.0 1.5 10 4598 102 12203 10
DapX-M 3.0 1.0 11 165 19 13 6

Notice that relative concentrations of the spike-ins are three fold or more, which permits us to check the
sensitivity of expression indices.

2.3 Dilution data set C

Two sources of cRNA, A (human liver tissue) and B (central nervous system cell line), were hybridized to
human array (HG-U95A) in a range of proportions and dilutions. In this publication, we study data from
arrays hybridized to source A starting with 1.25µg cRNA, and rising through 2.5, 5.0, 7.5, 10.0 to 20.0
µg. There were five replicate arrays for each tissue: that is, each generated cRNA was hybridized on five
HG-U95 GeneChipR© arrays. Five scanners were used in this study. Each array replicate was processed
in a different scanner.

3. FEATURES OF PROBE LEVEL DATA

Figure 1(a) shows histograms of log ratio, log2(P M/M M), stratified by quantiles of abundance,
log2

√
P M × M M , with gray scale representing height of histogram (light is high and dark is low) for one

array from data set A. The histograms have been scaled so that the mode of each histogram is represented
with the same gray scale. This figure shows that, in general,M M grows with P M . Furthermore, for
larger values of abundance the differences have a bimodal distribution with the second mode occurring
for negative differences. The same bimodal effect is seen when we stratify by log2(P M), thus it is not an
artifact of conditioning on sums. In Figures 1(b)–1(e), four histograms with a broader stratification clearly
show this effect. The figure also displays (in darker grays) the histograms of the defective probes where
the bimodal distribution is also seen. Notice, there are many probe pairs withM M >> P M . Finally,
notice that for about 1/3 of the probesM M > P M . The number of probe pairs within probe sets for
which M M > P M varies from 0 to 14. The distribution across probe sets is the following:

# of timesM M > P M 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
# of probe sets 7401 481 628 819 1123 1461 1759 1906 1555 1200 760 345 152 50 14

All these effects have been seen in many arrays.
The defective probes are used to assess the variance–mean relationship. Intensities obtained from

probe j in arraysi = 1, . . . , I , P Mi jn , are expected to have the same mean and variance. If standard
deviations (SDs)

√{(I−1)−1 ∑
(P Mi jn− ¯P M · jn)2} and averages¯P M · jn = I −1 ∑

i P Mi jn are computed
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Fig. 1. (a) Histograms of log ratio log2(P M/M M), stratified by quantiles of abundance, log2
√

P M × M M , with
gray scale representing height of histogram (light grays are high and dark grays are low) for one array from the mouse
data set. The histograms have been scaled so that the mode of each histogram is represented with the same gray scale.
(b) Histogram of log ratios for first quartile of abundance with the histogram for the defective probes represented by
a darker gray. (c) Like (b) for abundance values between first and third quartile. (d) Like (b) for abundance values in
the last quartile excluding the highest 5 percent. (e) Like (b) for the highest 5% of abundance.
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for a random sample of 2000 defective probe sets, the SD increases from roughly 50 to 5000, a factor of
100-fold, as the average increases on its entire range. After a log transformation of theP M intensities
there is only a 1.5-fold increase.

4. NORMALIZATION

In many of the applications of high-density oligonucleotide arrays, the goal is to learn how RNA
populations differ in expression in response to genetic and environmental differences. For example, large
expression of a particular gene or genes may cause an illness resulting in variation between diseased and
normal tissue. These sources of variation are referred to asinteresting variation. Observed expression
levels also include variation introduced during the sample preparation, manufacture of the arrays, and
the processing of the arrays (labeling, hybridization, and scanning). These are referred to as sources of
‘obscuring variation’. See (Harteminket al., 2001) for a more detailed discussion. The obscuring sources
of variation can have many different effects on data. Unless arrays are appropriatlynormalized, comparing
data from different arrays can lead to misleading results.

Dudoitet al. (2001) describe the need for normalization procedures for cDNA microarray data. Similar
issues are present with GeneChipR© arrays. Figures 2(a) and 2(b) show box plots of log2(P M) andP M −
M M for data set C. The different gray scales represent the six different sets of five replicates processed
on scanners 1 to 5. The scanner effect is clearly seen in Figure 2. For example, note that the log2(P M)

boxplot intensities obtained using scanner/fluidic station 1 were in general higher than those obtained
from scanner/fluidic station 5. For the replicate arrays we expect no genes to be differentially expressed.
This figure shows direct array to array comparison ofP M values warrants normalization. Figure 2(b)
boxplot shows that further normalization is needed for theP M − M M as well.

Figures 3(a) and 3(b) show log ratios,M = log2(y/x) versus abundanceA = log2
√

x × y, (MVA)
plots for x = P M1, y = P M2 and x = P M1 − M M1, y = P M2 − M M2 for two arrays (denoted
with 1 and 2) in which the BioDn-3 gene has been spiked at 5 pM and 2 pM respectively. These plots
have been used by, for example, Dudoitet al. (2002) to explore intensity related biases. Because the same
RNA background was hybridized to arrays 1 and 2, we do not expect any of the non-spiked-in genes to be
differentially expressed and therefore these plots to scatter around 0. It is clear from Figure 3 that these
data need normalization.

For cDNA arrays the normalization procedure presented in Dudoitet al. (2002) has worked well in
practice. For each array, a loess curve is fitted to the MVA plot of intensities of the red and green labels
and the residuals are considered the normalized log ratios. However, this approach is not appropriate for
GeneChipR© arrays because only one sample is hybridized to each array instead of two (red and green).
A procedure that normalizes each array against all others is needed.

Various methods have been proposed for normalizing GeneChipR© arrays. Bolstadet al. (2002)
present a review of these methods and findquantile normalization to perform best. The goal of quantile
normalization is to make the distribution of probe intensities the same for arraysi = 1, . . . , I . The
normalization maps probe level data from all arrays,i = 1, . . . , I , so that anI -dimensional quantile–
quantile plot follows theI -dimensional identity line. A possible problem with this approach is that we
risk removing some of the signal in the tails. However, empirical evidence suggest this is not a problem
in practice: see Bolstadet al. (2002) for details.

In Figures 3(c) and 3(d) the MVA plots of the normalized arrays are shown. Notice how the
normalization has removed the bias seen in Figures 3(a) and 3(b). The large points represent the 20
spiked-in probes and the small black dots represent a random sample of non-spiked-in probes. Notice
that in all plots, normalization helps identify the spiked-in probes as differentially expressed. The benefits
of this normalization at the probe level are also seen in Figures 2(c) and 2(d).
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Fig. 2. Boxplots of log2(P M) and P M − M M for the 30 arrays from data set C. BecauseP M − M M values are
usually between−2000 and 10 000, a reduced range is used to get a better view of the interquartile range. The bottom
row are the after quantile normalization boxplots. They-axis scale can be deduced from the plot titles.

5. MEASURES OF EXPRESSION

Various measures of expression have been proposed: for example see Li and Wong (2001), Naefet al.
(2001), and Holderet al. (2001). The most commonly used (at the time this paper was written) is AvDiff,
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Fig. 3. MVA plots (described in text) of log2(P M) and log2(P M − M M) for two arrays in which the BioDn-3 gene
has been spiked at 5 pM and 2 pM respectively. The large points represent the 20 spiked-in probes and the small black
dots represent a random sample of non-spiked-in probes. (a) and (c) are before normalization and (b) and (d) are after
quantile normalization.

the Affymetrix default. For each probe setn on each arrayi , AvDiff is defined by

AvDiff = 1

#A

∑
j∈A

(P M j − M M j )
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with A the subset of probes for whichd j = P M j − M M j are within 3 SDs away from the average of
d(2), .., d(J−1) with d( j) the j th smallest difference. #A represents the cardinality ofA. Many of the other
expression measures are versions of AvDiff with different ways of removing outliers and different ways
of dealing with small values.

We have observed that linear scale measures, such as AvDiff, are not optimal. Li and Wong (2001)
observed this and proposed an alternative model based expression index. For each probe setn, Li and
Wong’s measure is defined as the maximum likelihood estimates of theθi , i = 1, . . . , I obtained from
fitting

P Mi j − M Mi j = θiφ j + εi j (1)

with φ j representing probe-specific affinities and theεi jn are assumed to be independent normally
distributed errors. The estimation procedure includes rules for outlier removal.

Affymetrix also appears to have noticed that the linear scale is not appropriate and, in the new version
of their analysis algorithm MAS 5.0, are now using a log scale measure. Specifically the MAS 5.0 signal
(measure) is defined as

signal= TukeyBiweight{log(P M j − CTj )}
with CTj a quantity derived from theM Ms that is never bigger than itsP M pair. See Hubbell (2001) for
more details.

Each of these measures rely upon the differenceP M − M M with the intention of correcting for non-
specific binding. However, the exploratory analysis presented in Section 3 suggests that theM M may be
detecting signal as well as non-specific binding. Some researchers (Naefet al., 2001) propose expression
measures based only on theP M . In Figure 4 we show theP M , M M , P M/M M andP M − M M values
for each of the 20 probes representing BioB-5 in the 12 spiked-in arrays, from data set B1, plotted against
spike-in concentration. The 20 different probe pairs are represented with different symbols and line types.
As expected, theP M values are growing in proportion to the concentration. Notice also that the lines
representing the 20 probes are close to being parallel, showing there is a strong additive (in the log scale)
probe-specific effect. As evident in Figure 4(c), the additive probe-specific effect is also detected by the
M M motivating their subtraction from theP M . However, in Figure 4(d) the parallel lines are still seen
in P M − M M , demonstrating that subtracting is not enough to remove the probe effect. The fact that
parallel lines are not as obvious in Figure 4(c) shows that dividing byM M removes, to some degree,
the probe effect. However, theM M also grow with concentrations, because they detect signal as well as
non-specific binding, hence the signal inP M/M M is attenuated. Notice, in particular, thatP M/M M is
unable to distinguish between concentrations of 25 and 150. Since subtracting probe-specificM M adds
noise with no obvious gain in bias and becauseP M/M M results in a biased signal, in this paper we
propose an alternative measure to those based onP M − M M or P M/M M .

Figure 4(a) shows that on a log scale (i) theP Ms grow roughly linearly with respect to concentrations,
(ii) the variances are roughly constant and (iii) the probe-specific affinity is approximately additive. This
suggests an additive linear model for the probe set data and the averageJ−1 ∑J

j=1 log(P Mi j ) as a log
scale measure of expression. However, this measure does not account for non-specific binding. Because,
in Figure 4, the log-scale slope of theP M is less than 1, particularly for small concentrations, theP M
values should be adjusted to account for non-specific binding. To see this consider a hypothetical case with
two arrays where the signal of a probe set is twice as big in one of the arrays, but an additive signal of 100
units occurs due to non-specific binding and/or background noise in both arrays. In this case the observed
difference in the signals would be about log2(100+ 2s) − log2(100+ s) instead of log2(2s) − log2(s).
For small values ofs the incorrect difference would be close to 0 instead of 1.

Figure 5 shows histograms of log2(M M) for an array in which no probe-set was spiked along with
the three arrays in which BioB-5 was spiked-in at concentrations of 0.5, 0.75, and 1 pM (from data set
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Fig. 4. P M , M M , P M/M M , and P M − M M values for each of the 20 probes representing BioB-5 (with the
exception of CreX-3, all other spike-in genes behaved similarly to BioB-5) in the 12 spiked-in arrays from the varying
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types and symbols. The horizontal line represents the median of the 20 BioB-5 probes for the non-spiked-in array.
The dashed lines are the 25th and 75th quantiles.
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Fig. 5. Histograms of log2(M M) for a array in which no probe-set was spiked along with the three arrays in which
BioB-5 was spiked-in at concentrations of 0.5, 0.75, and 1 pM. The observedP M values for the 20 probes associated
with BioB-5 are marked with crosses and the average with an arrow. The black curve represents the log normal
distribution obtained from left-of-the-mode data.
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B1). All arrays in all data sets had similar shaped log2(M M) histograms. Furthermore, the log2(M M)

histograms for the spiked-in probe set had similar histograms as well. TheM Ms to the left of the mode
of the histogram can be approximated with the left-hand tail of a log-normal distribution. This suggests
that theM Ms are a mixture of probes for which (i) the intensities are largely due to non-specific binding
and background noise and (ii) the intensities include transcript signal just like theP Ms. The mode of
the histogram is a natural estimate of the mean background level. The observedP M values for the 20
probes associated with BioB-5 are marked with crosses and the average with an arrow. All the average
P M values are close to 100. Thus, judging solely on the average, a difference would be hard to detect.
However, distance of the averageP M from the average background noise does in fact increase with
concentration.

Figure 5 motivates a background plus signal model of the formP Mi jn = bgi jn + si jn . Herebgi jn

represents background signal in arrayi caused by optical noise and non-specific binding. We assume
each array has a common mean background level, E(bgi jn) = βi . We want to adjust theP M intensities
to remove the background effect. A naive approach is to considerP Mi jn − β̂i , with log2(β̂i ) the mode
of the log2(M M) distribution. An estimate of this distribution can be obtained using a density kernel
estimate. In practice, a problem with this measure is that for a small percentage of probesP Mi jn � β̂i

and log transformingP Mi jn − β̂i becomes a problem. An alternative background correction is to consider
B(P Mi jn) ≡ E(si jn|P Mi jn). If we impose a strictly positive distribution onsi jn , then B(P Mi jn) > 0.
To obtain a computationally feasibleB(·) we consider the closed-form transformation obtained when
assumingsi jn is exponential andbgi jn is normal. Although the data suggest that this model can be
improved, the results obtained usingB(·) work well in practice, as is demonstrated in the next section.

To obtain an expression measure we assume that for each probe setn, the background-adjusted,
normalized, and log-transformedP M intensities, denoted withY , follow a linear additive model

Yi jn = µin + α jn + εi jn, i = 1, . . . , I, j = 1, . . . , J, n = 1, . . . , n (2)

with α j a probe affinity effect,µi representing the log scale expression level for arrayi , and εi j

representing an independent identically distributed error term with mean 0. For identifiability of the
parameters we assume that

∑
j α j = 0 for all probe sets. This assumption is saying that Affymetrix

technology has chosen probes with intensities that on average are representative of the associated genes
expression. The estimate ofµi gives the expression measures for probe setn on arrayi .

To summarize, in this paper we consider a new expression measure that (i) background-corrects the
arrays using the transformationB(·), (ii) normalizes the arrays using quantile normalization, and (iii)
for each probe setn, fits a linear model (2) to the background-corrected, normalized and log (base 2)
transformed probe intensities denoted here withYi j , i = 1, . . . , I, j = 1, . . . , J . To protect against
outlier probes we use a robust procedure, such as median polish (Holderet al., 2001), to estimate model
parameters. We use the estimate ofµi as the log scale measure of expression which we refer to as robust
multi-array average (RMA).

6. BIAS, VARI ANCE, AND GOODNESS OF FIT COMPARISONS

Plots of log observed expression versus known concentration (not shown) demonstrate that the
expression measures perform similarly in detecting the spiked-in probe sets. However, for the highest
concentration, AvDiff and MBEI sometimes underestimate the predicted value from the known concen-
trations. This results from the attenuation caused by subtractingM M . We also notice that RMA is less
noisy than all other measures at lower concentrations.

It is possible that the control genes used in data set B1 provide a stronger than usual signal. Therefore,
a comparison based on all probe sets of the HG-U95A arrays is conducted using data set C. For these data
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Fig. 6. Data set C boxplots. (a) Averages over replicates for each gene in (b). (b) Loess curves fitted to standard
deviation versus average expression scatter-plots.

the amount of hybridization of probe sets representing expressed genes is expected to double when the
amount of RNA hybridized to the array is double. Furthermore, the difference in gene expression across
replicate arrays should be small.

For each of the four measures, we denote the expression values withEik, i = 1, . . . , 6,k = 1, . . . , 5
with i representing the dilution concentration level andk the replicate (which also identifies scanner). The

averages are denoted withEi · = (1/5)
∑5

k=1 Eik and the SDs withSDi =
√

(1/4)
∑5

k=1(Eik − Ei ·)2.
Figure 6(a) shows boxplots of theEi · for each dilution concentrationi . Notice that all measures have
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roughly the same ability to detect signal. Figure 6(b) shows loess curves fitted to the scatter plot (on the
log scale) ofSDi vs Ei ·. Clearly, RMA has the smallest SD across replicates. The advantage of RMA
is especially noticeable in the low expression values where the SD is 10 times smaller than the other
measures.

Li and Wong’s method provides not only an estimate ofθi but a nominal SE for this estimate, denoted
here withσ̂i . Under (2) one can obtain a naive nominal estimate for the SE ofµ̂ using an analysis of
variance approach. Because there are five replicates one can also obtain an observed SE of any estimate
by simply considering theSDi defined above. If the model is close to the actual mechanism giving rise
to the data, the nominal and observed SE should agree. Plots of nominal to observed SE log ratios versus
expression (not shown) show that in general, RMA is closer to 0 than Li and Wong’s MBEI showing that
the observed and nominal standard error methods are, in general, closer when using (2) instead of (1).

7. DETECTION OF DIFFERENTIAL EXPRESSION

Data set B2 was used to assess how well the different expression measures perform at detect-
ing differentially expressed probe sets. For each of the six arrays studied expression measures
E11n, E12n, E13n, E21n, E22n, E23n were obtained in their respective scale (log for MAS 5.0 and
RMA) for each probe setn = 1, . . . , N . We then computed the averages over triplicatesEi ·n =
(1/3)

∑3
k=1 Eikn, i = 1,2,n = 1, . . . , N . For the probe sets representing spike-in RNAs the observed

ratios or ‘fold changes’ (E2·n/E1·n for AvDiff and MBEI or 2E1·n−E2·n for MAS 5.0 and RMA) should
coincide with the true ratio of the spike-in concentrations shown in Table 1. Recall that apart from the
spiked-in probe sets, the background samples hybridized to the six arrays are the same. We therefore
expect only the 11 probe sets shown in Table 1 to be differentially expressed. In the left side of Figure 7
MVA plots of the average expressions obtained are shown. Probe sets with negative expression measures
were left out for AvDiff and Li and Wong’s MBEI. Notice that all measures separate 10 out of the 11
spiked-in probe sets from the cloud of points. However, the cloud of points for probe sets with small total
intensity has a much larger spread for AvDiff, MBEI, and MAS 5.0 than for RMA. For this reason, many
of the probe sets with high differential expressions for AvDiff, MBEI, and MAS 5.0 are not actually the
spiked-in probe-sets. The smaller spread of RMA results in better detection of differentially expressed
probe-sets. In the right side of Figure 7, quantile–quantile plots of the observed ratios are shown. RMA is
the only measure to perfectly differentiate the spiked-in probe sets (with the exception BioC-3, which no
measure was able to detect) from the rest. Table 1 shows the observed rank of the spiked-in probe sets.

8. CONCLUSION

In this paper we have developed a novel measure of gene expression and compared it to other standard
measures. Through the analyses of three data sets, we have shown that expression is better measured
using log-transformed PM values, after carrying out a global background adjustment and across-array
normalization. We studied the performance of a version of the Affymetrix summary measures AvDiff and
MAS 5.0, the Li and Wong model-based expression index, and the new measure RMA. We evaluated
the four expression summary measures using spike-in and dilution study data, assessing their behavior
in terms of bias, variance, the ability to detect known differential expression levels, and (for MBEI and
RMA) model fit. We conclude that there is no obvious downside to summarizing the expression level of
a probe set with RMA, and attaching an SE to this quantity using a linear model that removes probe-
specific affinities. The greater sensitivity and specificity of RMA in detection of differential expression
provides a useful improvement for researchers using the GeneChipR© technology. We expect marginal
though worthwhile gains to be achievable by using a more carefully designed and tested background
correction procedure.
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Fig. 7. MVA (described in text) and qq-plots indicating the positions of differentially expressed genes ranked by their
absolute log relative expression values.
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