
Handling genomic data using
Bioconductor II:

GenomicRanges and GenomicFeatures

Motivating examples

• Genomic “Features” (e.g., genes, exons, CpG islands) on the
genome are often represented as intervals, e.g., chromosome,
start, end, strand.
– A common task is to explore the overlaps of two types of features, for

example, How CpG islands overlap promoters.
– Sometimes one wants to obtain the intersect/union of two sets of

intervals.

• To obtain a list of genes/exons for an organism.

Without Bioconductor you have to rely on your own scripts for
these operations.

Today’s topics

• GenomicRanges: package dealing with genomic
intervals (genes, CpG islands, binding sites, etc.)
– Built on more general package IRanges for range data.

– Provide a rich collection of functions for genomic interval
operations.

• GenomicFeatures: package for transcript centric
genomic annotations.

IRanges package

• “The IRanges package is designed to represent
sequences, ranges representing indices along those
sequences, and data related to those ranges”.
– sequence: ordered finite collection of elements, such as a

vector of integers. Not necessarily DNA sequence.
– Consecutive indices can be represented as a range to save

memory and computation, for example, instead of saving
c(1,2,3,4,5), just save 1 and 5.

Construct an object of IRanges

• Provide start and end indices:
> r <- IRanges(start=c(1,3,12, 10), end=c(4, 5, 25, 19))

> r
IRanges of length 4

start end width
[1] 1 4 4
[2] 3 5 3
[3] 12 25 14
[4] 10 19 10

• Or provide start and width of each range:
> r <- IRanges(start=c(1,3,12, 10), width=c(4, 3, 14, 10))

> r
IRanges of length 4

start end width
[1] 1 4 4
[2] 3 5 3
[3] 12 25 14
[4] 10 19 10

Simple operations of an IRanges object
> length(r)
[1] 4
> start(r)
[1] 1 3 12 10

> end(r)
[1] 4 5 25 19
> width(r)
[1] 4 3 14 10
> r[1:2]
IRanges of length 2

start end width
[1] 1 4 4
[2] 3 5 3
> range(r)
IRanges of length 1

start end width
[1] 1 25 25

reduce

• Merge redundant ranges, and return the minimum
non-overlapping ranges covering all the input ranges.
> reduce(r)

IRanges of length 2
start end width

[1] 1 5 5
[2] 10 25 16

r

0 5 10 15 20 25

reduce(r)

0 5 10 15 20 25

disjoin

• Return a set of non-overlapping ranges satisfying:
– the union of results is the same as the union of the inputs.
– for every range in the result, it overlapping pattern with

the input is the same.

r

0 5 10 15 20 25

disjoin(r)

0 5 10 15 20 25

coverage

• Compute the coverage depth by the input ranges of
each position.

r

0 5 10 15 20 25

flank

• Create flanking ranges for each input range.

r

0 5 10 15 20 25

flank(r, 1, both = TRUE, start = TRUE)

0 5 10 15 20 25

flank(r, 1, both = TRUE, start = FALSE)

0 5 10 15 20 25

Operations on two IRanges objects

• Functions for different set operations of two lists of
ranges:
– union/intersect/setdiff.
– countOverlaps: for a “query” and a “reference”, count the

number of ranges in reference overlapping each range in
query.

– findOverlaps: locating the overlapping ranges in reference
for each range in query.

Set operations
r

0 5 10 15 20 25

r2

0 5 10 15 20 25

union(r, r2)

0 5 10 15 20 25

intersect(r, r2)

0 5 10 15 20 25

setdiff(r, r2)

0 5 10 15 20 25

overlaps

> countOverlaps(r, r2)
[1] 0 0 2 3

> r %over% r2
[1] FALSE FALSE TRUE TRUE

> findOverlaps(r, r2)
Hits of length 5

queryLength: 4
subjectLength: 3

queryHits subjectHits
<integer> <integer>

1 3 2
2 3 3
3 4 1
4 4 2
5 4 3

r

0 5 10 15 20 25

r2

0 5 10 15 20 25

Rle: Run length encoding

• A simple data compression method to represent a
long sequence in which consecutive elements
often take the same value.

• Instead of saving the whole sequence, it stores the
consecutive elements with the same value as a
single value and count.

Create Rle object
> x <- Rle(c(1,1,2,2,2))
> x
'numeric' Rle of length 5 with 2 runs
Lengths: 2 3
Values : 1 2

> x <- Rle(values=c(1,2), lengths=c(2,3))
> x
'numeric' Rle of length 5 with 2 runs
Lengths: 2 3
Values : 1 2

> as.numeric(x)

[1] 1 1 2 2 2

> x <- Rle(values=c("a","b","c"), lengths=c(2,3,4))
> x
'character' Rle of length 9 with 3 runs
Lengths: 2 3 4
Values : "a" "b" "c"

> as.character(x)
[1] "a" "a" "b" "b" "b" "c" "c" "c" "c"

Simple operations of Rle object

> x <- Rle(c(1,1,2,2,2))

> length(x)

[1] 5

> start(x)
[1] 1 3

> end(x)

[1] 2 5
> width(x)
[1] 2 3

> nrun(x)

[1] 2
> runLength(x)

[1] 2 3

GenomicRanges package

• Designed to represent genomic intervals (genes, CpG islands,
binding sites, etc.)

• Based on IRanges package and provide support for
BSgenome, GenomicFeatures, etc.

• Contain three major classes:
– GRanges: single interval range features: a set of genomic features that

each has a single start and end locations.

– GRangesList: multiple interval range features: each feature has
multiple start/end locations. Ex: a transcript has multiple exons.

– GappedAlignments: gapped alignments.

Create a GRanges object
Required fields:
• seqnames: Rle object for sequence name, e.g., the chromosome number.
• ranges: IRanges object for locations.
Other fields: strand, elementMetadata for other information.

> gr <- GRanges(seqnames = Rle(c("chr1", "chr2"), c(2, 3)),

+ ranges = IRanges(1:5, end = 6:10),
+ strand = Rle(strand(c("-", "+", "+","-")), c(1,1,2,1)),
+ score = 1:5, GC = seq(1, 0, length = 5))
> gr
GRanges object with 5 ranges and 2 metadata columns:

seqnames ranges strand | score GC
<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr1 1-6 - | 1 1.00
[2] chr1 2-7 + | 2 0.75
[3] chr2 3-8 + | 3 0.50
[4] chr2 4-9 + | 4 0.25
[5] chr2 5-10 - | 5 0.00

seqinfo: 2 sequences from an unspecified genome; no seqlengths

Operate on a GRanges object
> length(gr)
[1] 5
> seqnames(gr)
factor-Rle of length 5 with 2 runs
Lengths: 2 3
Values : chr1 chr2

Levels(2): chr1 chr2

> start(gr)
[1] 1 2 3 4 5
> end(gr)
[1] 6 7 8 9 10
> ranges(gr)
IRanges object with 5 ranges and 0 metadata columns:

start end width
<integer> <integer> <integer>

[1] 1 6 6
[2] 2 7 6
[3] 3 8 6
[4] 4 9 6
[5] 5 10 6

> strand(gr)
factor-Rle of length 5 with 3 runs

Lengths: 1 3 1
Values : - + -

Levels(3): + - *

> elementMetadata(gr)
DataFrame with 5 rows and 2 columns

score GC
<integer> <numeric>

1 1 1.00

2 2 0.75
3 3 0.50
4 4 0.25
5 5 0.00

All other fields (besides seqnames, range and strands) need to
be accessed by elementMetadata function, which returns other
fields as a DataFrame.

Subsetting and combining
> gr[1:2]
GRanges with 2 ranges and 2 elementMetadata values

seqnames ranges strand | score GC
<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr1 [1, 6] - | 1 1.00
[2] chr1 [2, 7] + | 2 0.75

seqlengths
chr1 chr2
NA NA

> c(gr[1], gr[3])
GRanges with 2 ranges and 2 elementMetadata values

seqnames ranges strand | score GC
<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr1 [1, 6] - | 1 1.0
[2] chr2 [3, 8] + | 3 0.5

seqlengths
chr1 chr2
NA NA

Other utility functions

• Inherited from IRanges package. Most of the
functions working for IRanges also works for
GRanges:
– single range functions: reduce/disjoin/flank/coverage/etc.
– set operation: intersect/union/setdiff/gap.
– overlap functions: findOverlap, countOverlap, match, etc.

• The results consider the chromosome number and
strand directions.

> coverage(gr)

RleList of length 2
$chr1
integer-Rle of length 7 with 3 runs

Lengths: 1 5 1

Values : 1 2 1

$chr2
integer-Rle of length 10 with 6 runs

Lengths: 2 1 1 4 1 1
Values : 0 1 2 3 2 1

> reduce(gr)
GRanges object with 4 ranges and 0 metadata columns:

seqnames ranges strand
<Rle> <IRanges> <Rle>

[1] chr1 2-7 +
[2] chr1 1-6 -
[3] chr2 3-9 +
[4] chr2 5-10 -

seqinfo: 2 sequences from an unspecified genome; no seqlengths

> disjoin(gr)
GRanges object with 6 ranges and 0 metadata columns:

seqnames ranges strand
<Rle> <IRanges> <Rle>

[1] chr1 2-7 +
[2] chr1 1-6 -
[3] chr2 3 +
[4] chr2 4-8 +

[5] chr2 9 +
[6] chr2 5-10 -

seqinfo: 2 sequences from an unspecified genome;

no seqlengths

> flank(gr, 2)
GRanges object with 5 ranges and 2 metadata columns:

seqnames ranges strand | score GC
<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] chr1 7-8 - | 1 1.00
[2] chr1 0-1 + | 2 0.75
[3] chr2 1-2 + | 3 0.50
[4] chr2 2-3 + | 4 0.25
[5] chr2 11-12 - | 5 0.00

seqinfo: 2 sequences from an unspecified genome; no

seqlengths

> gr1 <- GRanges(seqnames = Rle("chr1", 2),
+ ranges=IRanges(start=c(1,10), end = c(5,15)))
> gr2 <- GRanges(seqnames = Rle("chr1", 1),
+ ranges = IRanges(start=3, end = 12))
> union(gr1, gr2)
GRanges object with 1 range and 0 metadata columns:

seqnames ranges strand
<Rle> <IRanges> <Rle>

[1] chr1 1-15 *

seqinfo: 1 sequence from an unspecified genome; no seqlengths

> intersect(gr1, gr2)
GRanges object with 2 ranges and 0 metadata columns:

seqnames ranges strand
<Rle> <IRanges> <Rle>

[1] chr1 3-5 *
[2] chr1 10-12 *

seqinfo: 1 sequence from an unspecified genome; no seqlengths

Overlapping between two GRanges object

• findOverlaps: overlap queries.
> findOverlaps(gr1, gr2)

Hits object with 2 hits and 0 metadata columns:
queryHits subjectHits
<integer> <integer>

[1] 1 1
[2] 2 1

queryLength: 2 / subjectLength: 1

• %over%: return TRUE/FALSE to indicate if each interval in

object 1 overlaps any interval in object 2.

> gr1 %over% gr2

[1] TRUE TRUE

GRangesList: multiple interval range features

• Basically a list of GRanges objects:
> GRangesList(gr1, gr2)

GRangesList object of length 2:
[[1]]
GRanges object with 2 ranges and 0 metadata columns:

seqnames ranges strand
<Rle> <IRanges> <Rle>

[1] chr1 1-5 *
[2] chr1 10-15 *

seqinfo: 1 sequence from an unspecified genome; no seqlengths

[[2]]
GRanges object with 1 range and 0 metadata columns:

seqnames ranges strand
<Rle> <IRanges> <Rle>

[1] chr1 3-12 *

seqinfo: 1 sequence from an unspecified genome; no seqlengths

• Subsetting by [[]].
• Support sapply/lapply.

Summary of GenomicRanges

• Provides flexible and efficient functions to operate
on the intervals on the genome.

• Genomic interval are represented as GRanges object,
which contains
– chromosome name in Rle
– start/end positions as IRanges object

• For second generation sequencing data (will be
taught later), each sequence read can be
represented as an interval, which makes many
operations easier.

GenomicFeatures

• Retrieves and manages different genomic
features from public databases (UCSC genome
browser and BioMart).

• Provides more convenient access for genomic
features, compared to manually download
and read in text files.

TxDb object

• Stores transcript annotations.

• Backed by a SQLite database.

• Three methods to create a new TxDb object:

– makeTxDbFromUCSC to download from UCSC Genome browser.
– makeTxDbFromBiomart to download from BioMart.
– Use a GFF3 or GTF file containing transcript information with

makeTxDbFromGFF.

• makeTxDbPackageFromUCSC and
makeTxDbPackageFromBiomart can make annotation
packages for later use.

makeTxDbFromUCSC

> supportedUCSCtables()
tablename track subtrack
1 knownGene UCSC Genes <NA>
2 knownGeneOld8 Old UCSC Genes <NA>
3 knownGeneOld7 Old UCSC Genes <NA>
4 knownGeneOld6 Old UCSC Genes <NA>
5 knownGeneOld4 Old UCSC Genes <NA>
6 knownGeneOld3 Old UCSC Genes <NA>
7 ccdsGene CCDS <NA>
8 xenoRefGene Other RefSeq <NA>
9 vegaGene Vega Genes Vega Protein Genes
10 vegaPseudoGene Vega Genes Vega Pseudogenes
11 ensGene Ensembl Genes <NA>
...

Creating, saving and loading
> txdb=makeTxDbFromUCSC(genome="hg19",

tablename="knownGene")

Download the knownGene table ... OK
Download the knownToLocusLink table ... OK
Extract the 'transcripts' data frame ... OK
Extract the 'splicings' data frame ... OK
Download and preprocess the 'chrominfo' data frame ... OK
Prepare the 'metadata' data frame ... OK
Make the TxDb object ... OK

> txdb
TxDb object:

Db type: TxDb
Supporting package: GenomicFeatures
Data source: UCSC
Genome: hg19
Organism: Homo sapiens
Taxonomy ID: 9606
UCSC Table: knownGene
UCSC Track: UCSC Genes
...

transcript_nrow: 82960
exon_nrow: 289969
cds_nrow: 237533
Db created by: GenomicFeatures package from Bioconductor

...

> saveDb(txdb, file="hg19_knownGenes.sqlite")
> txdb = loadDb("hg19_knownGenes.sqlite")

makeTxDbPackageFromUCSC

• Directly make a package for the TxDb
• Need to provide some basic information for R

package building (maintainer, author, version,
etc.)

• Result is an R package in current directory.
• Need to install the package and then it can be

used.

> makeTxDbPackageFromUCSC(
maintainer="Hao Wu <hao.wu@emory.edu>",
author="Hao Wu",
version="1.0”,
genome="hg19",
tablename="knownGene")

Download the knownGene table ... OK
Download the knownToLocusLink table ... OK
Extract the 'transcripts' data frame ... OK
Extract the 'splicings' data frame ... OK
Download and preprocess the 'chrominfo' data frame ... OK
Prepare the 'metadata' data frame ... OK
Make the TxDb object ... OK
Creating package in ./TxDb.Hsapiens.UCSC.hg19.knownGene

TxDb object vs. package

• Contain the same information
• A package might be easier to maintain and

share.

Retrieving features

• Retrieve basic features: transcripts, exons.
> transcripts(txdb)

GRanges object with 82960 ranges and 2 metadata columns:
seqnames ranges strand | tx_id tx_name

<Rle> <IRanges> <Rle> | <integer> <character>
[1] chr1 [11874, 14409] + | 1 uc001aaa.3
[2] chr1 [11874, 14409] + | 2 uc010nxq.1
[3] chr1 [11874, 14409] + | 3 uc010nxr.1
[4] chr1 [69091, 70008] + | 4 uc001aal.1
[5] chr1 [321084, 321115] + | 5 uc001aaq.2
...

[82956] chrUn_gl000237 [1, 2686] - | 82956 uc011mgu.1
[82957] chrUn_gl000241 [20433, 36875] - | 82957 uc011mgv.2
[82958] chrUn_gl000243 [11501, 11530] + | 82958 uc011mgw.1
[82959] chrUn_gl000243 [13608, 13637] + | 82959 uc022brq.1
[82960] chrUn_gl000247 [5787, 5816] - | 82960 uc022brr.1

seqinfo: 93 sequences (1 circular) from hg19 genome

> transcripts(txdb, filter=list(tx_chrom="chr1"))
GRanges object with 7967 ranges and 2 metadata columns:

seqnames ranges strand | tx_id tx_name
<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr1 [11874, 14409] + | 1 uc001aaa.3
[2] chr1 [11874, 14409] + | 2 uc010nxq.1
[3] chr1 [11874, 14409] + | 3 uc010nxr.1
[4] chr1 [69091, 70008] + | 4 uc001aal.1
[5] chr1 [321084, 321115] + | 5 uc001aaq.2
...

[7963] chr1 [249144203, 249152264] - | 7963 uc031pta.1
[7964] chr1 [249144203, 249152912] - | 7964 uc001ifb.2
[7965] chr1 [249144203, 249153125] - | 7965 uc010pzr.2
[7966] chr1 [249144203, 249153315] - | 7966 uc001ifc.2
[7967] chr1 [249144203, 249153315] - | 7967 uc001iff.2

seqinfo: 298 sequences (2 circular) from hg19 genome

> exons(txdb)
GRanges object with 289969 ranges and 1 metadata column:

seqnames ranges strand | exon_id
<Rle> <IRanges> <Rle> | <integer>

[1] chr1 [11874, 12227] + | 1
[2] chr1 [12595, 12721] + | 2
[3] chr1 [12613, 12721] + | 3
[4] chr1 [12646, 12697] + | 4
[5] chr1 [13221, 14409] + | 5
...

[289965] chrUn_gl000241 [35706, 35859] - | 289965
[289966] chrUn_gl000241 [36711, 36875] - | 289966
[289967] chrUn_gl000243 [11501, 11530] + | 289967
[289968] chrUn_gl000243 [13608, 13637] + | 289968
[289969] chrUn_gl000247 [5787, 5816] - | 289969

seqinfo: 93 sequences (1 circular) from hg19 genome

Retrieve by group

• Grouped features functions retrieve features
grouped by other features (e.g., genes):
– transcriptsBy, exonsBy, cdsBy,
intronsByTranscript,
fiveUTRsByTranscript,
threeUTRsByTranscript.

> transcriptsBy(txdb, by="gene")
GRangesList object of length 23459:
$1
GRanges object with 2 ranges and 2 metadata columns:

seqnames ranges strand | tx_id tx_name
<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr19 [58858172, 58864865] - | 70455 uc002qsd.4
[2] chr19 [58859832, 58874214] - | 70456 uc002qsf.2

$10
GRanges object with 1 range and 2 metadata columns:

seqnames ranges strand | tx_id tx_name
[1] chr8 [18248755, 18258723] + | 31944 uc003wyw.1

$100
GRanges object with 1 range and 2 metadata columns:

seqnames ranges strand | tx_id tx_name
[1] chr20 [43248163, 43280376] - | 72132 uc002xmj.3

...
<23456 more elements>

seqinfo: 93 sequences (1 circular) from hg19 genome

> exonsBy(txdb, by="gene")
GRangesList object of length 23459:
$1
GRanges object with 15 ranges and 2 metadata columns:

seqnames ranges strand | exon_id exon_name
<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr19 [58858172, 58858395] - | 250809 <NA>
[2] chr19 [58858719, 58859006] - | 250810 <NA>
[3] chr19 [58859832, 58860494] - | 250811 <NA>
[4] chr19 [58860934, 58862017] - | 250812 <NA>
[5] chr19 [58861736, 58862017] - | 250813 <NA>
... …

$10
GRanges object with 2 ranges and 2 metadata columns:

seqnames ranges strand | exon_id exon_name
[1] chr8 [18248755, 18248855] + | 113603 <NA>
[2] chr8 [18257508, 18258723] + | 113604 <NA>

...
<23457 more elements>

seqinfo: 93 sequences (1 circular) from hg19 genome

> intronsByTranscript(txdb)
GRangesList object of length 82960:
$1
GRanges object with 2 ranges and 0 metadata columns:

seqnames ranges strand
<Rle> <IRanges> <Rle>

[1] chr1 [12228, 12612] +
[2] chr1 [12722, 13220] +

$2
GRanges object with 2 ranges and 0 metadata columns:

seqnames ranges strand
[1] chr1 [12228, 12594] +
[2] chr1 [12722, 13402] +

$3
GRanges object with 2 ranges and 0 metadata columns:

seqnames ranges strand
[1] chr1 [12228, 12645] +
[2] chr1 [12698, 13220] +

...
<82957 more elements>

seqinfo: 93 sequences (1 circular) from hg19 genome

Retriving by overlaps

• transcriptsByOverlaps,
exonsByOverlaps, cdsByOverlaps:
– return a GRangesList object containing data about

transcripts, exons, or coding sequences that overlap
genomic coordinates specified by a GRanges object.

– Useful for, for example, obtain a list of genes
overlapping the binding sites of a TF.

> gr=GRanges(seqnames = Rle("chr1", 2),
ranges=IRanges(start=c(100000,500000),

end = c(200000,600000)))

> transcriptsByOverlaps(txdb, gr)
GRanges object with 5 ranges and 2 metadata columns:

seqnames ranges strand | tx_id tx_name
<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr1 [568844, 568913] + | 13 uc001abb.3

[2] chr1 [134773, 140566] - | 4095 uc021oeg.2
[3] chr1 [566093, 566115] - | 4096 uc021oej.1
[4] chr1 [566135, 566155] - | 4097 uc021oek.1
[5] chr1 [566240, 566263] - | 4098 uc021oel.1

seqinfo: 93 sequences (1 circular) from hg19 genome

A practical example
• Assume I have a list of protein binding sites in human genome

hg19, How to obtain:
– GC content (%G+%C) of each site.
– percentage of gene promoters covered by the binding sites.

• Steps:
1. Load in BSgenome.Hsapiens.UCSC.hg19.
2. For each site, retrieve its DNA sequence (use Views to speed up).
3. Use alphabetFrequency to compute GC content.
4. Create GRanges object to represent the binding sites.
5. Retrieve gene locations using GenomicFeatures.
6. Create GRanges to represent all the gene promoters.
7. Use countOverlaps to analyze the overlap.

biomaRt

• R interface to the BioMart databases (http://
www.biomart.org).

• Examples of BioMart databases are Ensembl, Uniprot
and HapMap.

• Works similarly to GenomicFeatues, a little slower.
• More flexible: have connections with affy ID and GO

annotation, etc.

Review

• We have introduced following useful Bioconductor
package: GenomicRanges, GenomicFeatures.

• Use a combination of these and
Biostrings/BSgenome, you can easily achieve most
routine analysis works for bioinformatician.

• After class:
– Review slides and rerun the R codes (on the class

webpage).
– Install GenomicRanges and GenomicFeatures.

