Bisulfite sequencing
DNA methylation

An epigenetic modification of the DNA sequence: adding a methyl group to the 5 position of cytosine (5mC)

Primarily happens at \textbf{CpG sites} (C followed by a G), although non-CG methylation exists
DNA methylation

In human genome, >90% of CpG sites are fully methylated, except at CpG islands where methylation levels are typically low.

Methylation of CpG islands in/near promoter region of gene can silence gene expression

Function of DNA methylation

• Important in gene regulation
 – Methylation of promoter regions can suppress gene expression

• Plays crucial role in development
 – Heritable during cell division
 – Helps cells establish identity during cell/tissue differentiation

• Can be influenced by environment
 – Good candidate to mediate GxE interactions
Sequencing approaches for DNA methylation

• Can be divided into two categories
 – Capture-based or enrichment-based sequencing
 • Use methyl-binding proteins or antibodies to capture methylated DNA fragments, then sequence fragments
 • Resolution is low: can typically quantify the amount of DNA methylation in 100-200 bp regions
 – Bisulfite-conversion-based sequencing
 • Bisulfite treatment converts unmethylated C’s to T’s
 • Sequencing converted data gives single-bp resolution
 • Can measure methylation status of each CpG site
 • Until recently, not possible to distinguish 5mC from 5hmC

• Focus of this lecture: bisulfite sequencing
Capture-based sequencing approaches

- All involve capture of methylated DNA followed by sequencing
- **MeDIP-seq** (Methylated DNA ImmunoPrecipitation)
 - Like ChIP-seq, but uses antibody against methylated DNA
 - Assesses relative rather than absolute methylation levels
 - Immunoprecipitation may be affected by CpG density
 - MEDIPS is a popular tool for analysis
- Capture via methyl-binding domain proteins: MBD-seq/MIRA-seq, methylCap-seq
- Capture via methyl-sensitive restriction enzymes (MRE-seq)

Bisulfite sequencing (BS-seq)

• Technology in a nutshell:
 – Treat fragmented DNA with bisulfite
 • Unmethylated C will be converted to U, amplified as T
 • Methylated C will be protected and remain C
 • No change for other bases
 – Amplify the treated DNA
 – Sequence the DNA segments
 – Align sequence reads to genome
Reduced representation bisulfite sequencing (RRBS)1,2

- Goal: affordable alternative to genome-wide sequencing
 - By narrowing focus to CpG-rich areas, reduce # of reads necessary to obtain deep coverage of promoter regions
 - Interrogates ~1% of the genome but 5-10% of CpG sites

- Approach: enrich for CpG-rich segments of genome
 - MspI restriction enzyme cuts at CpG sites, leaving fragments with CpGs at either end:
 \[
 \text{CCGG} \quad \text{CCGG}
 \]
 - Size selection for fragments of 40-220bp maximizes coverage of promoter regions and CpG islands
 - Bisulfite treat, amplify, end-sequence, and align fragments to genome

1Meissner (2005) *NAR*; 2Gu et al. (2011) *Nat Protoc*
Illustration of bisulfite conversion

1) Denaturation

Watson >>ACmGTTCGCTTGAG>>
Crick <<TGmAAGCGAACTC<<

2) Bisulfite Treatment

BSW >>ACmGTTUGUTTGAG>>
BSC <<TGmAAGUGAAUTU<<

3) PCR Amplification

BSW >>ACmGTTTGGTTGAG>>
BSWR <<TGCAAACAAACTC<<
BSC <<TGmAAGTGAATTT<<
BSCR >>ACGTTCACTTAAA>>

Xi and Li (2009) BMC Bioinformatics
Alignment of BS-seq

• Problem: reads cannot be directly aligned to the reference genome.
 – Four different strands after bisulfite treatment and PCR
 – C-T mismatches will mean unmethylated reads can’t be aligned to the correct position
 • Unmethylated CpGs will align with TpGs or likely not at all
 • Will lead to a strong bias in favor of methylated reads

• One possible solution *in silico* bisulfite conversion
 – Switch all C’s to T’s in both reads and reference sample
 – Use this for alignment, then change back to original
Strategy used by BISMARK1

- \textit{In silico} bisulfite conversion of fragments and reference genome
 - Convert all C’s to T’s
 - Make complementary strand by converting all G’s to A’s
 - Align both strands to the four possible reference genomes
 - Choose best alignment

- Once aligned, convert back to original bases

- Compare to ref. genome to assess methylation

1Krueger and Andrews (2011) \textit{Bioinformatics}
Alignment issues

• Possible problems with *in silico* approach
 – By converting all C’s to T’s, reduce sequence complexity to 3 bases
 – Larger search space for possible alignments
 – Could lead to mismatches or non-unique mapping

Bisulfite Read

Reference

Xi and Li (2009) *BMC Bioinformatics*
Strategy used by BSMAP

• Consider methylation status during alignment
 – create multiple versions of reference seed with C’s converted to T’s
 – compare each read to all possible seeds
 – do the same for complementary strand

• This approach reduces search space compared to *in silico* conversion of all C’s to T’s
 – T’s in reads can match to C’s or T’s in reference
 – C’s in reads can only match to C’s in reference

• Computationally more intensive

Reference

```
>>ACGTCGCT<<
```

Coordinate: 4875362

Seed Table

<table>
<thead>
<tr>
<th>original seed</th>
<th>key</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACGTCGCT</td>
<td></td>
<td>4875362, ...</td>
</tr>
<tr>
<td>ACGTCGTT</td>
<td></td>
<td>4875362, ...</td>
</tr>
<tr>
<td>ACGTTGCT</td>
<td></td>
<td>4875362, ...</td>
</tr>
<tr>
<td>ACGTTGTT</td>
<td></td>
<td>4875362, ...</td>
</tr>
<tr>
<td>ATGTCGCT</td>
<td></td>
<td>4875362, ...</td>
</tr>
<tr>
<td>ATGTCGTT</td>
<td></td>
<td>4875362, ...</td>
</tr>
<tr>
<td>ATGTTGCT</td>
<td></td>
<td>4875362, ...</td>
</tr>
<tr>
<td>ATGTTGTT</td>
<td></td>
<td>4875362, ...</td>
</tr>
</tbody>
</table>

Read

```
>>ATGTCGCT<<
```

Xi and Li (2009) BMC Bioinformatics
Which alignment software is best?

• Advantages of BSMAP:
 – reduces search space by eliminating mapping of C’s to T’s
 – greater proportion of uniquely mapping reads\(^1\)

• Advantages of BISMARK:
 – much faster than BSMAP and other programs\(^1\)
 – uniqueness of mapping independent of methylation status\(^1\)
 – more user-friendly in terms of extracting data, interfacing with other software\(^1\)

• In general, BISMARK seems to be the popular choice

\(^1\)Chatterjee et al. (2012) *NAR*
Other aligners

• Alignment of RRBS data
 – Chatterjee et al. notes it is much faster if we use information on MspI cutpoints to “reduce” reference genome in silico\(^1\)
 – RRBSMAP: a version of BSMAP that does exactly that\(^2\)
 – Has option to work with different restriction enzymes

• Many other aligners for bisulfite sequencing data
 – One useful review of these is Hackenberg et al.\(^3\)

\(^1\) Chatterjee et al. (2012) *NAR*; \(^2\) Xi et al. (2012) *Bioinformatics*;
\(^3\) Hackenberg et al. (2012): Chapter 2 in “DNA Methylation – From Genomics to Technology” Tatarinova (Ed.) http://www.intechopen.com/books
Another way to improve alignment

- Quality control of sequenced reads prior to alignment
- Issue: nucleotides towards the ends of reads can have greater rates of sequencing error
- Can assess this with M-bias plots post-alignment\(^1\)

- Solution: “trim” reads to remove less reliable sequence before aligning\(^2\) (can also be done after alignment\(^1\))

\(^1\)Hansen et al. 2012 *Genome Biology*; \(^2\)Chatterjee et al. (2012) *NAR*
BS-seq data after alignment

<table>
<thead>
<tr>
<th></th>
<th>CpG 1</th>
<th>CpG 2</th>
<th>CpG 3</th>
<th>CpG 4</th>
<th>CpG 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methylated counts (X)</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Coverage (N)</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Methylation level (X/N)</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.67</td>
<td>0</td>
</tr>
</tbody>
</table>

Legend:
- [] Methylated
- [] Unmethylated

Reference genome

WGBS reads
At each position, we have the total number of reads, and the methylated number of reads:

<table>
<thead>
<tr>
<th>Position of CpG site</th>
<th>Total # reads</th>
<th># methylated reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>chr1 3010874</td>
<td>22</td>
<td>18</td>
</tr>
<tr>
<td>chr1 3010894</td>
<td>31</td>
<td>27</td>
</tr>
<tr>
<td>chr1 3010922</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>chr1 3010957</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>chr1 3010971</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>chr1 3011025</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>
Study design for BS-seq studies

• High costs \to few samples typically analyzed

• Two common study designs

 – Analysis of a single sample:

 • Goal: observe methylation patterns across genome

 • Commonly done to characterize methylome for a particular cell type or species

 – Comparison of several samples:

 • Typical goal: compare methylation levels between groups

 • Differential methylation analysis

 • Compared with ChIP-seq and RNA-seq, methods are still in early stage, and are often ad hoc
Study design for BS-seq studies

• Because so few samples are involved in most studies, it is crucial to avoid all forms of heterogeneity
 – In large studies we can adjust for differences via covariates
 – With small N models often cannot accommodate covariates

• Heterogeneity = differences between samples other than variable of interest
 – Inadvertent differences in tissue sampled
 – Differences in cell type mixing proportions
 – Genetic differences between individuals
 – Age differences between samples
 – Different # of passages for cell lines
Avoiding heterogeneity

• Can avoid heterogeneity with careful study design
 – Stringent control of tissue dissection for tissue sampling
 – Analysis of homogeneous cell types whenever possible
 – Use of within-individual comparisons to avoid genetic and demographic differences
 • Example: paired tumor and normal samples from same patients
 • If not possible, match carefully for ethnicity, age, gender
 – Careful control of cell line experiments
Quality control of aligned BS-seq data

• Goal: remove sites likely to be low-quality or non-informative
 – Best filtering strategy will depend on study design and goals
• Filtering based on non-unique alignment
 – Will mostly happen naturally during alignment process
 – Post-alignment, CpG sites with unusually high read count are suspect
• Removal of sites with low coverage (often <5 or 10 total reads)
 – Appropriate cutoff will vary depending on analysis method used
 – For methods that model read count, can set cutoff lower
• Filtering based on lack of variability
 – If the goal is differential methylation analysis, remove sites with 0% of reads methylated in all samples, or 100% methylated in all samples
 – In contrast, if goal is to characterize methylation patterns in a particular genome, keep these sites!
Differential methylation analysis

• Typical goal: compare methylation levels between two groups
 – Example: tumor vs. normal tissue samples
 – Important: do groups contain biological replicates?
 – Some studies may compare 1 tumor to 1 normal sample
 – Other studies will include 2 or more replicates of each

• Popular ad hoc approaches for this comparison are Fisher’s exact test and two-group t-test

• We will show why these can be problematic
Fisher’s exact test with 2 samples

• If we have only one sample per group (no biological replicates), Fisher’s exact test is a natural choice

• Example: single CpG site sequenced for 2 samples
 – For tumor sample, 32/44 methylated reads
 – For normal sample, 8/12 methylated reads

• Can then perform Fisher’s exact test on the following table:

<table>
<thead>
<tr>
<th></th>
<th>Methylated</th>
<th>Unmeth.</th>
<th>Total reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor</td>
<td>32</td>
<td>12</td>
<td>44</td>
</tr>
<tr>
<td>Normal</td>
<td>8</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>16</td>
<td>56</td>
</tr>
</tbody>
</table>

• OR = 1.33
• \(p = .73 \)
Fisher’s exact test in methylKit

• For comparisons between two samples, Fisher’s exact test is a reasonable choice
 – Easy to carry out in R using fisher.test() function
 – Alternatively, methylKit\(^1\) is a suite of R functions that facilitates analysis of genome-wide methylation data
 – Differential methylation analysis via either
 • Fisher’s exact test (for comparisons between two samples)
 • Logistic regression based on methylation proportions
 – Analogous to two-group t-test, but with covariates
 • Can perform analysis in user-defined tiling windows
 – However, based on simple collapsing of information across sites rather than smoothing

\(^1\)Akalin et al. 2012 *Genome Biology*
Fisher’s exact test with >2 samples

- For Fisher’s exact test with biological replicates, need to collapse read information within groups
- Example: single CpG site sequenced for 4 samples
 - For 2 tumor samples, 32/44 and 4/10 methylated reads
 - For 2 normal samples, 8/12 and 12/34 methylated reads
- Could then perform Fisher’s exact test on the following table:

<table>
<thead>
<tr>
<th></th>
<th>Methylated</th>
<th>Unmeth.</th>
<th>Total reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor</td>
<td>36 = 32+4</td>
<td>18</td>
<td>54 = 44+10</td>
</tr>
<tr>
<td>Normal</td>
<td>20 = 8+12</td>
<td>26</td>
<td>46 = 12+34</td>
</tr>
<tr>
<td>Total</td>
<td>56</td>
<td>44</td>
<td>100</td>
</tr>
</tbody>
</table>

- OR = 2.6
- p = .0264
Problem with Fisher’s exact test

• To perform Fisher’s exact test for >2 samples, we have to collapse read information across samples within each group

• By doing this, we are ignoring information on biological variation between samples
 – **Biological variation**: natural variation in underlying fraction of DNA methylated between samples in the same condition
 – **Technical variation**: variation in estimation of methylation levels due to random sampling of DNA during sequencing\(^1\)

• By collapsing, we are assuming that:
 – samples within a group inherently have the same underlying fraction of DNA methylated
 – any variation between samples is due to technical variation

\(^1\)Hansen *et al.* 2012 *Genome Biology*
Naïve t-test

• Example: single CpG site sequenced for 4 samples
 – For 2 tumor samples, 32/44 and 4/10 methylated reads
 – For 2 normal samples, 8/12 and 12/34 methylated reads

• For t-test, compute a proportion for each sample
 – .727 and .400 for tumor samples
 – .667 and .353 for normal samples

• Difference in mean proportions = .563 - .510 = .053

• T-statistic = 0.2375

• p = .834
Problem with t-test

• To perform t-test, computed a proportion for each sample
 – Test inherently gives equal weight to each sample
 – Does not account for technical variation in proportion estimates
 – Recall: Technical variation = variation in estimation of methylation levels due to random sampling of DNA
 – Can expect this variation to be lower for samples with more reads

• One possible solution would be to incorporate weights based on read count

• However, another issue with this approach is the small number of samples
 – With N=4, the t-test has very little power due to low df
Fisher’s exact vs. t-test

• The two tests yielded very different results
 – Fisher’s exact $p = .0264$
 – T-test $p = .834$

• Main difference: unit of observation (reads vs. samples)

• Fisher’s test was based on 100 “independent” reads
 – Reads are actually not independent if there is biological variation
 – Correlated within each sample, since samples have different methylation fractions

• T-test was based on 4 samples
 – Treated samples as equally informative, when really they are not
 – For 2 tumor samples, $32/44$ and $4/10$ methylated reads
 – For 2 normal samples, $8/12$ and $12/34$ methylated reads
Need better approaches

• Problem: want to test many sites with few samples
 – Limited information available at each site due to low # of samples

• Solution: approaches that borrow information across sites
 – Smoothing approaches that share information across nearby sites
 • Useful in single sample analyses that aim to **characterize the genome**
 • Useful for detecting **differential methylated regions (DMRs)** of the genome
 – Bayesian hierarchical model that borrows information across the genome
 • Useful for detecting **differentially methylated loci (DMLs)**
Smoothing approaches

• First consider analysis of a single sample

• Goal here is to identify methylated regions or loci:
 – Can estimate proportion of reads that are methylated at each C position, but:
 • Variability in estimation needs to be considered
 • Spatial correlation among nearby CpG sites can be utilized to improve estimation
 – Methylated regions (or states) can be determined by smoothing based methods using the estimated methylation proportion as input
HMM: Hidden Markov model

- Model switches between states along a chromosome
- Could model 3 methylation states: FMR, LMR, UMR
 - Stadler et al.\(^1\) used estimated proportions to identify regions in mouse methylome corresponding to 3 states

\(^1\)Stadler et al. (2012) *Nature*
Smoothing sequencing data

• Problem with directly smoothing the proportions:
 – Doesn’t consider the uncertainty in proportion estimates
 – Estimates more variable for CpG sites with low read counts
 – May want to put less weight on these estimates

• A better approach: BSmooth model\(^1\)
 – A local-likelihood smoothing approach
 – Key assumptions:
 • True methylation level \(\pi_j\) is a smooth curve of genomic coordinates.
 • The observed counts \(M_j\) follow a binomial(\(N_j, \pi_j\)) distribution.
 • Binomial assumption accounts for differences in variation for samples with different total read counts \(N_j\)

\(^1\)Hansen et al. 2012 *Genome Biology*
BSmooth smoothing

• Notation for CpG site j:
 – N_j, M_j: # total and # methylated reads
 – π_j: underlying true methylation level
 – l_j: location

• Model: $M_j \sim \text{Bin}(N_j, \pi_j)$

\[
\log(\pi_j / (1 - \pi_j)) = \beta_0 + \beta_1 l_j + \beta_2 l_j^2
\]

where β_0, β_1, and β_2 vary smoothly along the genome.

• Fit this as a weighted generalized linear model (glm)

• Obtain a smoothed methylation estimate for each position along the genome using sliding window approach

Hansen et al. 2012 *Genome Biology*
Sliding window approach

• Choose window size (either distance or # CpG sites)
• For every genomic location l_j, use data in window surrounding l_j
• Fit weighted glm for all data in window, where weight for data point k depends inversely on:
 – the variance of estimated π_k, estimated as $\pi_k(1-\pi_k)/N_k$
 – distance of CpG site from window center $|l_k - l_j|$

$$M_j \sim \text{Bin}(N_j, \pi_j)$$
$$\log(\pi_j / (1 - \pi_j)) = \beta_0 + \beta_1 l_j + \beta_2 l_j^2$$

• Estimation of θ_0, θ_1, and θ_2 in window surrounding l_j provides estimate of π_j

Hansen et al. 2012 *Genome Biology*
Benefits of smoothing dense data

• By borrowing information across sites, can achieve high precision even with low coverage
 – Pink line is from smoothing full 30x data
 – Black line is from smoothing 5x version of data
 – Correlation = .90 across entire dataset
 – Median absolute difference of .056
Smoothed differential methylation analysis

• Goal: identify regions \textbf{differentially methylated} (DMRs) between groups

• BSmooth computes a t-test-like statistic
 - Signal-to-noise ratio based on smoothed data for multiple samples
 - Essentially the average difference between smoothed profiles from 2 groups, divided by estimated standard error
 - When biological replicates are included, this statistic correctly accounts for biological variation

• Identify DMRs as regions where this statistic exceeds some cutoff

Hansen et al. 2012 \textit{Genome Biology}
Bsmooth functions implemented in Bioconductor package bsseq¹

• Functions for
 – Smoothing
 – Smoothed t-tests
 – DMR identification
 – Visualization of results
 – Fisher’s exact test (not smoothed)

• Can be implemented in parallel computing environment to speed up calculation

¹Hansen et al. 2012 Genome Biology
Use bsseq

- First create BSseq objects
- Use BSmooth function to smooth.
- fisherTests performs Fisher’s exact test, if there’s no replicate.
- BSmooth.tstat performs t-test with replicates.
- dmrFinder calls DMRs based on BSmooth.tstat results.
library(bsseq)
library(bsseqData)

take chr21 on BS.cancer.ex to speed up calculation
data(BS.cancer.ex)
ix = which(seqnames(BS.cancer.ex) == "chr21")
BS.chr21 = BS.cancer.ex[ix,]

use BSmooth to smooth and call DMR
BS.chr21 = BSmooth(BS.chr21) ## this takes 1-2 minutes

perform t-test
BS.chr21.tstat = BSmooth.tstat(BS.chr21,
 c("C1","C2","C3"),c("N1","N2","N3"))

call DMR
dmr.BSmooth <- dmrFinder(BS.chr21.tstat, cutoff = c(-4.6, 4.6))
Another approach: Bayesian hierarchical model1

• Hierarchical model to separately model biological and technical variation

 – **Biological variation**: natural variation in underlying fraction of DNA methylated between samples in the same condition

 – **Technical variation**: variation in estimation of methylation levels due to random sampling of DNA during sequencing1

 – Many methods only capture one or the other

 – Fisher’s exact test: technical variation only

 – Naïve t-test: biological variation only

• Shrinkage approach allows us to borrow information about variation across genome

 – Especially useful when information per CpG site is limited by low number of samples

1Feng et al. 2014 *Nucleic Acids Research*
Beta-binomial hierarchical model

• “The most natural statistical model for replicated BS-seq DNA methylation measurements”¹

• Sampling of reads for each CpG site will follow a binomial distribution
 – Out of N reads covering a particular site, how many are methylated?
 – This number will follow a binomial(N,π) distribution
 – However, π may vary across replicates

• To model the biological variation of π across replicates, the beta distribution is a natural choice

• Beta-binomial distribution used to model methylated reads in DSS², BiSeq³, MOABS⁴, RADMeth⁵, MethylSig⁶

⁵Dolzhenko & Smith 2014; ⁶Park et al. 2014
Beta-binomial hierarchical model

- Example: CpG site i, two groups $j=1$ (cancer) and 2 (normal), two replicates per group ($k = 1, 2$)

- **Biological variation** modeled by dispersion parameter ϕ_{ij}
 - Replicates in each group may vary in true methylation proportion π_{ijk}

- **Technical variation**: given N_{ijk} and π_{ijk}, number of methylated reads M_{ijk} varies due to random sampling of DNA

- Goal: test whether μ_{i1} and μ_{i2} are significantly different

1Feng et al. 2014 *Nucleic Acids Research*
Motivation for shrinkage approach

- Hierarchical model:
 \[M_{ijk} \sim \text{Binomial}(N_{ijk}, \pi_{ijk}) \]
 \[\pi_{ijk} \sim \text{Beta} \left(\mu_{ij}, \phi_{ij} \right) \]

- Goal: after correctly modeling different sources of variation, test whether \(\mu_{i1} \) and \(\mu_{i2} \) are significantly different at CpG \(i \)

- Possible limitation of model: with small number of samples, estimation of parameters may be poor
 - In particular, difficult to accurately estimate dispersion \(\phi_{ij} \) with only 2-3 replicates per group
 - Estimates may vary wildly due to small numbers

- Solution: borrow information from CpG sites across the genome to obtain reasonable estimates of \(\phi_{ij} \)

\(^1\)Feng et al. 2014 *Nucleic Acids Research*
Estimating dispersion parameter

• To obtain stable estimates of dispersion with few samples, we:
 – impose a log-normal prior on \(\phi \):
 \[
 \phi_{ij} \sim \text{log normal} \left(m_j, r_j^2 \right)
 \]
 – use information from all CpGs in the genome to estimate the parameters \(m_j \) and \(r_j^2 \)

• Choice of log-normal prior was motivated by distribution of dispersion in bisulfite sequencing data
 – RRBS data from mouse embryogenesis study (Smith et al. 2012 Nature)
 – Estimation robust to departure from log-normality
 – Prior provides a good “referee”
 – Encourages dispersion estimates to stay within bounds

\[\text{Feng et al. 2014 Nucleic Acids Research}\]
Wald test for DML, based on hierarchical model¹

- **DML:** Differentially Methylated Loci
 - Test for differential methylation at each CpG site
- **At site** \(i \), test: \(H_0 : \mu_{i1} = \mu_{i2} \)
- **Basic algorithm:**
 - Use naïve estimates of \(\phi \) across genome to estimate prior
 - For each site \(i \), estimate \(\mu_{i1} \) and \(\mu_{i2} \) as proportion of methylated reads for each group
 - Bayesian estimation of \(\phi_{ij} \) based on data and prior
 - Plug in estimates of \(\mu_{ij} \) and \(\phi_{ij} \) to create Wald statistic of form

\[
t_i = \frac{\hat{\mu}_{i1} - \hat{\mu}_{i2}}{\sqrt{\text{Var}(\hat{\mu}_{i1} - \hat{\mu}_{i2})}}
\]

¹Feng et al. 2014 *Nucleic Acids Research*
Using DSS to call DML and DMRs

- DSS can identify differentially methylated loci (DML) and regions (DMRs)
 - DML identified via Wald test, based on p-value threshold
 - DMRs called from DML based on user-specified criteria (region length, p-value and effect size thresholds)
 - Accommodates single-replicate studies by smoothing data from nearby CpG sites to form “pseudo-replicates”\(^1\)
 - Inclusion of design matrix to allow covariates and a more general experimental design\(^2\)

\(^{1}\)Wu et al. *Nucleic Acids Research* 2015.
BS-seq experiment under general design

• General experimental design:
 – Multiple groups.
 – Multiple factors, crossed/nested.
 – Continuous covariates.

• Limited data analysis methods with not so good properties:
 – BiSeq and RADMeth, both based on generalized linear model (GLM).
 – Computationally demanding.
 – Numerically unstable.
DSS-general

• Suppose the input data include N CpG sites and D samples.

• Notations:
 – Y_{id}, m_{id}: methylated and total counts for i^{th} CpG and d^{th} data set.
 – π_{id}, Φ_i: mean and dispersion.
 – X: full ranked design matrix of dimension D by p.

• Counts are modeled by a beta-binomial regression:
 \[Y_{id} \sim \text{beta-bin}(m_{id}, \pi_{id}, \phi_i) \]
 \[g(\pi_{id}) = x_d \beta_i \]

• DML detection is achieved by a general hypothesis testing:
 \[H_0 : C^T \beta_i = 0, \text{ where } C \text{ is a } p\text{-vector.} \]
GLM approximation

- Beta-binomial regression.
- Transformation:
 - $g(Y/m)$ as response or data
 - What is $g(\cdot)$?
- Applying generalized (weighted) least square to estimate parameters, but with caution!
Choice of the link function

- **arcsine link:** \(g(x) = \arcsin(2x - 1) \)
- “Variance stabilization transformation” for binomial proportion:
 - Variance of the transformed data does not depend on mean (but on dispersion), so least square approach is possible.
 - Logit or probit transformed data needs iterative procedure since variance depends on mean.
 - More linear than logit or probit, especially at the boundaries.

\(H_0: C_T^i = 0, \) where \(C \) is a \(p \)-vector.
Parameter estimation

• Model: \(Y_{id} \sim \text{beta-bin}(m_{id}, \pi_{id}, \phi_i) \)
 \[g(\pi_{id}) = \mathbf{x}_i \beta \]

• Transformation:
 \[Z_{id} = \arcsin\left(\frac{2Y_{id}}{m_{id}} - 1\right). \]
 \[E[Z_{id}] \approx \arcsin\left(2E[Y_{id}] / m_{id} - 1\right) = \arcsin(2\pi_{id} - 1) = \mathbf{x}_i \beta \]
 \[\text{var}(Z_{id}) \approx \frac{1 + (m_{id} - 1)\phi_i}{m_{id}}. \]
 \[V_i = \text{diag} \left(\frac{1 + (m_{id} - 1)\phi_i}{m_{id}} \right) \]

• Least square estimator:
 \[\hat{\beta}_i = (X^TV_i^{-1}X)^{-1}X^TV_i^{-1}Z. \]
Two-step estimation

- Dispersion estimation
 - Estimate $\hat{\beta}_i^{(0)}$ by setting dispersion to 0.
 - Estimate variance based on Pearson’s chi-square statistics:
 $$\chi_i^2 = \sum_d m_{id}(Z_{id} - x_d\hat{\beta}_i^0)^2, \quad \hat{\sigma}_i^2 = \chi_i^2 / (D - p),$$
 - Dispersion can be derived as:
 $$\hat{\phi}_i = \frac{D(\hat{\sigma}_i^2 - 1)}{\sum_d (m_{id} - 1)}. $$
 - Restriction: $1 < \hat{\sigma}_i^2 < \frac{\sum_d (m_{id} - 1)}{D} + 1.$
- Parameter estimation using GLS based on $\hat{\phi}_i$
Hypothesis testing

- For testing
 - Variance/covariance matrix estimates:
 \[\hat{\Sigma}_i \equiv \text{var}(\hat{\beta}_i) = (X^T \hat{\Sigma}_i^{-1} X)^{-1}. \]

- Wald test statistics for \(H_0 : C^T \beta_i = 0 \),
 \[t_i = \frac{C^T \hat{\beta}_i}{\sqrt{C^T \hat{\Sigma}_i C}} \]
Use DSS

- Input data object has the same format as bsseq.
- DMLtest performs Wald test at each CpG.
- `callDML/callDMR` calls DML or DMR.

```r
## two group comparison
dmlTest <- DMLtest(BSobj, group1=c("C1", "C2", "C3"),
                   group2=c("N1","N2","N3"),
                   smoothing=TRUE, smoothing.span=500)
dmrs <- callDMR(dmlTest)
## A 2x2 design
DMLfit = DMLfit.multiFactor(RRBS, design, ~case+cell)
DMLtest = DMLtest.multiFactor(DMLfit, term="case")
```
Conclusions

• Analysis of genome-wide bisulfite sequencing data presents some unique challenges
 – Alignment of reads can be complicated
 – Many tests to be performed, but number of samples sequenced is limited by costs in most experiments
 – Beta-binomial model is widely used.
References

For software/analysis

- Park et al. (2014) Bioinformatics 30:2414-22. MethylSig.
- Sun et al. (2014) Genome Biology 15:R38. MOABS.
- Park and Wu (2016) Bioinformatics 32 (10), 1446-1453. DSS-general for general design.
References

For different sequencing technologies