Gene expression microarray: Differential expression, data artifacts
Outline

• Scientific goal and potential problems.
• Review of basic statistical concepts:
 – Hypothesis testing.
 – Multiple comparison problem.
• Differential expression (DE) test methods:
 – Empirical Bayesian (EB) methods: limma.
 – SAM.
 – Complex designs.
 – Permutation.
• Batch effect.
• Introduction to tiling arrays (will be skipped).
Input data for DE test

• Assume data are correctly within- and between-array normalized.

• Input data for DE test is a matrix of positive number:
 – Rows for genes and columns for samples.
 – Usually work on logarithm of the data, which are normal-ish.
Goal of DE test

- **Goal:** find genes that are expressed differently between (among) conditions.
 - Assign a score for each gene to represent its statistical significance of being different.
 - Rank the genes according to the score.
 - Find a proper threshold for the score for calling DE.

- **Easy solutions:**
 - Hypothesis testing (t-test, ANOVA, linear model, etc.) to get p-values and use as scores.
 - Use canonical cutoff (0.05) to call DE.
Potential problems

• Hypothesis testing:
 – sample sizes are usually small, which lead to unstable test results.

• When data are not normal, p-values are not accurate.

• Use 0.05 as threshold of p-values to call DE - multiple comparison problem:
 – Tests are performed for 20,000 genes. Even if all are null (not DE), 1,000 will have p-value less than 0.05.
Review of statistical inference

- Two-group t-test:
 - data from two groups (cancer and normal): $X_1, \ldots, X_M; Y_1, \ldots, Y_N$.
 - Assume X’s and Y’s are normally distributed.
 - A “null hypothesis” is that the means of X’s and Y’s are identical.
 - Test statistics $t = \frac{\bar{X} - \bar{Y}}{\sqrt{S_X^2/M + S_Y^2/N}}$
 where $S_X^2 = \frac{1}{M-1} \sum_{i=1}^{M} (X_i - \bar{X})^2$, $S_Y^2 = \frac{1}{N-1} \sum_{i=1}^{N} (Y_i - \bar{Y})^2$
 - t follows t-distribution.
 - P-value: under null hypothesis (that the means are the same), the probability to observe a t-statistics more extreme than the observed.
Why gene-by-gene t-test is a bad idea

- Small sample size (e.g., 3 vs. 3) leads to unstable estimates of variances.
 - By chance some genes have very small variance, which will result in large t-statistics and tiny p-values even when the difference is small.
 - Solution: SAM, EB methods.

- Sometimes data are not normally distributed, lead to incorrect p-values.
 - Solution: non-parametric approach to obtain p-values.
SAM t-test
Tusher et al. (2001) PNAS

- Try to remove (or minimize) the dependence of test statistics on variances (because small variance tend to lead to bigger test statistics).
- Solutions: add a small constant to the denominator in calculating t statistics:

$$d_i = \frac{\bar{y}_i - \bar{x}_i}{s_i + s_0}$$

\bar{y}_i, \bar{x}_i: Means of two groups for gene i.
s_i: Standard deviation for gene i, assuming equal variance in both groups.
s_0: "Exchangeability factor" estimated using all genes.
The exchangeability factor

• Chosen to make signal-to-noise ratios independent of signal, e.g., the distribution of the statistics independent of the variance.

• Procedure:
 – Let S^{α} be the α percentile of the s_i values
 – For $\alpha \in (0, 0.01, 0.02, ..., 1.0)$ compute $d_i^{\alpha} = (\bar{y}_i - \bar{x}_i) / (s_i + s^{\alpha})$
 – Compute $v_j^{\alpha} = mad(d_i^{\alpha} \mid s_i \in [q_j, q_{j+1}))$, $j = 1, 2, ... 99$, here q_j are quantile.
 – Compute $cv(\alpha)$, the coefficient of variation of v_j^{α}
 – Choose $\hat{\alpha} = \text{argmin}\{cv(\alpha)\}$. $\hat{s}_o = \hat{s}^{\hat{\alpha}}$
SAM t-test

- Highly cited (>12,000 citations as of 2018), http://www-stat.stanford.edu/~tibs/SAM/.
- Implemented as Bioconductor package siggenes, and Excel plugin.
- Follow-up work: SAMSeq on RNA-seq DE test.
- Limitations: solutions for s_0 often sensitive to data.
Empirical Bayes method from limma

Smyth et al. (2004) Statistical Applications in Genetics and Molecular Biology

• Highly cited (~10,000 citations as of 2018).
• Use a Bayesian hierarchical model in multiple regression setting.
• Borrow information from all genes to estimate gene specific variances.
 – As a result, variance estimates will be “shrunk” toward the mean of all variances. So very small variance scenarios will be alleviated.
• Implemented in Bioconductor package “limma”.
The hierarchical model

Let β_{gj} be coefficient (difference in means in two group setting) for gene g, factor j, assume

$$
\hat{\beta}_{gj} \mid \beta_{gj}, \sigma^2_g \sim N(\beta_{gj}, \nu_{gj}\sigma^2_g) \quad s^2_g \mid \sigma^2_g \sim \frac{\sigma^2_g}{d_g} \chi^2_{d_g} \quad \text{with priors:}
$$

$$
P(\beta_{gj} \neq 0) = p_j. \quad \beta_{gj} \mid \sigma^2_g, \beta_{gj} \neq 0 \sim N(0, \nu_{0j}\sigma^2_g). \quad \frac{1}{\sigma^2_g} \sim \frac{1}{d_0s_0^2} \chi^2_{d_0}.
$$
Posterior statistics

Posterior variance estimator:

\[\tilde{s}_g^2 = \frac{d_0 s_0^2 + d_g s_g^2}{d_0 + d_g}. \]

Moderated t-statistics for testing \(\theta_{gj} = 0 \) :

\[\tilde{t}_{gj} = \frac{\hat{\beta}_{gj}}{\tilde{s}_g \sqrt{v_{gj}}}. \]
Summary on two-sample DE test

• Try to alleviate the “small sample variance” problem.
• Combine information from all genes.
• Many other variations of the model.
• In practice SAM and limma performs similarly.
Volcano plot

• A diagnostic plot to visualize the test results.
• Scatter plot of the statistical significance (log p-values) vs. biological significance (log fold change).
• Ideally the two should agree with each other.
A bad volcano plot
More complex experiments

• Complex experimental designs:
 – multiple (>2) groups.
 – crossed/nested.
 – etc.

• Examples for multiple-group:

```
A1  A2  A3  B1  B2  B3  C1  C2  C3
```
A crossed design

Charles et al. (2007), The Internet Journal of Genomics and Proteomics
A complicated loop design on two-color array

Oleksiak et al. (2002) *Nature Genetics*
DE test for complex design

- Two sample test -> multiple regression.
- The same problems still exist, and similar solutions can be applied.
- Mixed effect models can be used to capture heterogeneity among biological replicates.
- Both SAM and limma provide functions for complex designs.
P-values by randomization

• When the data don’t satisfy normal assumption, permutation/bootstrap can be used to derive empirical p-values.

• Procedures for two sample comparison:
 – For each gene, randomly shuffle the data points.
 – Compute the t-statistics on the randomized data.
 – Repeat the procedure for N times, compute p-values as the percent of times that the permuted t-statistics more extreme than the observed.

• The procedure is a little complicated for multiple design. Basically shuffle the data based on null model.
Multiple testing correction

- Multiple testing problem is severe in high throughput data analysis because a large number of tests were performed.
 - Under type I error $\alpha=0.05$, 1000 out of 20000 genes will be falsely declared DE (false positive) by chance.
 - If there are a total of 2000 genes declared DE, the false discovery rate (FDR) is 0.5!

- Multiple testing correction
 - Bonferroni correction: use $\alpha=0.05/20000$ (too conservative).
 - FDR control (Benjamini and Hochberg, 1995 JRSS-B)
Bioconductor packages for microarray analysis
Bioconductor for microarray data

• There’re a rich collection of bioc packages for microarrays. In fact, Bioconductor started for microarray analysis.
• There are currently 228 packages for microarray.
• Important ones include:
 – affy: one of the earliest bioc packages. Designed for analyzing data from Affymetrix arrays.
 – limma and siggenes: DE detection using limma and SAM-t model.
 – oligo: preprocessing tools for many types of oligonucleotide arrays. This is designed to replace affy package.
 – Many annotation data package to link probe names to genes.
My suggestion

• Use oligo to reading in data, normalization and summarization.
• Use siggenes or limma for detecting DE genes.
An example of Analyzing a set of Affymetrix data

- Data generated by MAQC (MicroArray Quality Control) project.
- Five brain samples and five reference samples on human exon arrays.
- Raw data are CEL files (binary file generated by factory).
- Each CEL file is around 65Mb.
- The platform design package (pd.huex.1.0.st.v2) needs to be installed.
load in necessary libraries
```r
library(oligo)
library(limma)
```
get a list of CEL files
```r
CELfiles=dir(pattern="CEL")
```
read in all raw data
```r
rawdata=read.celfiles(CELfiles)
```
```r
rawdata
ExonFeatureSet (storageMode: lockedEnvironment)
assayData: 6553600 features, 10 samples
  element names: exprs
protocolData
  rowNames: ambion_A1.CEL, ambion_A2.CEL, ..., stratagene_K2.CEL (10 total)
...
Annotation: pd.huex.1.0.st.v2
```
Normalization and summarization

using RMA

```r
> normdata=rma(rawdata, target = "core")
> normdata

ExpressionSet (storageMode: lockedEnvironment)
assayData: 22011 features, 10 samples
  element names: exprs
...
```

extract expression values using `expr` function

```r
> data=exprs(normdata)
> head(data)

<table>
<thead>
<tr>
<th></th>
<th>sample 1</th>
<th>sample 2</th>
<th>sample 3</th>
<th>sample 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.160224</td>
<td>10.214496</td>
<td>10.090697</td>
<td>11.020649</td>
</tr>
<tr>
<td>3</td>
<td>5.669447</td>
<td>5.478072</td>
<td>5.648788</td>
<td>6.048142</td>
</tr>
<tr>
<td>4</td>
<td>8.061479</td>
<td>8.154549</td>
<td>8.156215</td>
<td>7.902597</td>
</tr>
<tr>
<td>5</td>
<td>4.307739</td>
<td>4.017903</td>
<td>3.992333</td>
<td>4.668972</td>
</tr>
<tr>
<td>6</td>
<td>7.108730</td>
<td>7.185586</td>
<td>7.122404</td>
<td>6.597161</td>
</tr>
</tbody>
</table>
```
check data distribution after RMA

```r
> boxplot(data)
```
The boxplot looks really good after RMA, so between array normalization is unnecessary. But in case you need it, use `normalizeQuantiles` function from `limma` for quantile normalization:

```r
> data2 = normalizeQuantiles(data)
```

Now the new boxplot after quantile normalization:
DE detection using SAM t-test

```r
> library(siggenes)
## create a vector for design.
> design <- c(rep(0,5),rep(1,5))
> sam.result=sam(data2, cl=design)
> sam.result
SAM Analysis for the Two-Class Unpaired Case Assuming Unequal Variances
```
DE detection using limma

```r
## create design matrix. Intercept must be included
> design=cbind(mu=1,beta=c(rep(0,5),rep(1,5)))
## fit linear model and compute estimates
> limma.result=lmFit(data2, design=design)
## Empirical Bayes method to get p-values
> limma.result=eBayes(limma.result)
## get p-values for the comparison
> pval=limma.result$p.value[,"beta"]
```
Compare results from limma and SAM

- Agreement is good, 0.95 Spearman rank correlation.
- Limma seems to be more liberal.
Obtain gene annotations

• Now you get p-values for all genes, but you also need gene names for generating report.
• There are many annotation packages available for different array platforms. For example, hgu133a.db is for HGU133A arrays.
• These packages contain comprehensive information for all probes, including their sequences, chromosome, position, corresponding gene IDs, GO terms, etc.
• A typical way to convert probeset names to accession number or gene alias is:

```r
> library(hgu133a.db)

## convert to accession numbers:
> geneAcc=as.character(hgu133aACCNUM[rownames(data)])

## convert to gene names
> geneNames=as.character(hgu133aSYMBOL[rownames(data)])
```
Finally generate a report table

```r
> ix = sam.result@q.value < 0.1
> result = data.frame(gene = geneNames[ix],
  pvalue = sam.result@p.value[ix],
  fold = sam.result@fold[ix])
## sort by fold change
> ix2 = sort(result$fold, decreasing = TRUE, index.return = TRUE)$ix
> result = result[ix2,]
> head(result)

<table>
<thead>
<tr>
<th>gene</th>
<th>pvalue</th>
<th>fold</th>
</tr>
</thead>
<tbody>
<tr>
<td>2731192</td>
<td>NM_000477</td>
<td>0</td>
</tr>
<tr>
<td>3457336</td>
<td>NM_006928</td>
<td>0</td>
</tr>
<tr>
<td>2772566</td>
<td>NM_144646</td>
<td>0</td>
</tr>
<tr>
<td>2731230</td>
<td>NM_001134</td>
<td>0</td>
</tr>
</tbody>
</table>
> write.table(result, file = "report.txt", sep = "\t")
```
Data artifacts:
batch effect and cell mixture
Technical artifact: batch effect

• Microarray experiments are very sensitive to experimental conditions:
 – Equipment, agents, technicians, etc.
• Data generated from different “batches” (lab, time, etc.) can be quite different, but data from the same batch tend to be more similar.
• So batch effects are structured noise/bias common to all replicates in the same batch, but markedly different from batch to batch.
Example
Variation within and between batches
Methods to remove batch effects

• Based on linear model: batches cause location/scale changes (e.g., combat).
• Based on dimension reduction technique: SVD, PCA, factor analysis, etc. (e.g., sva).
 – The singular vectors/PCs/factors that are correlated with batch are deemed from batch effects.
 – Remove batch effects from data, leftovers are biological signals.
sva package in Bioconductor

• Contains **ComBat** function for removing effects of known batches.

• Assume we have

 – **edata**: a matrix for raw expression values

 – **batch**: a vector named for batch numbers.

```r
modcombat = model.matrix(~1, data=as.factor(batch))
combat_edata = ComBat(dat=edata, batch=batch,
                       mod=modcombat, par.prior=TRUE, prior.plot=FALSE)
```
BatchQC - Batch Effects Quality Control

• A Bioconductor package with a GUI (shiny app).

• http://bioconductor.org/packages/release/bioc/html/BatchQC.html
Comparison of the transcriptional landscapes between human and mouse tissues

Shin Lina,b,1, Yiing Linc,1, Joseph R. Neryd, Mark A. Urichd, Alessandra Breschie,f, Carrie A. Davisg, Alexander Dobing, Christopher Zaleskig, Michael A. Beerh, William C. Chapmanc, Thomas R. Gingerasg,1, Joseph R. Eckerd,i,2, and Michael P. Snydera,2

- One major conclusion is that tissues are more similar within a species, compared with the same tissue across species.
A reanalysis of mouse ENCODE comparative gene expression data [version 1; referees: 3 approved, 1 approved with reservations]

Yoav Gilad, Orna Mizrahi-Man
Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA

• Experimental design: data are from 5 batches.
After correcting for batch effects

- Tissues tend to cluster together more.
Batch effects are prevalent

• Observed in many high-throughput experiments: microarray, different types of sequencing, even brain imaging.
• Methods for identifying and removing batch effects is under continuous developments.
Tackling the widespread and critical impact of batch effects in high-throughput data

Jeffrey T. Leek, Robert B. Scharpf, Héctor Corrada Bravo, David Simcha, Benjamin Langmead, W. Evan Johnson, Donald Geman, Keith Baggerly and Rafael A. Irizarry
Biological artifact: cell mixture

- Tissue sample is a mixture of different cell types.
- Data collected are mixed signals.

 Genetic profile of each cell type

| Genetic profile of each cell type |
|----------------------------------|-----------------|

 Mixture proportions

| Mixture proportions |
|---------------------|-----------------|
| 80% 60% | 7% 22% |
| 13% 18% | 0 0 |
An example: EWAS in aging study

• Cellular composition changes with age.
• Cellular composition is a major source of variability in DNA methylation datasets in whole blood.

Jaffe and Irizarry GB(2014)
Existing signal deconvolution methods

Reference-based methods (some type of regression):

- Require cell type specific signature: Abbas et al. 2009; Clarke et al. 2010; Gong et al. 2011; Lu et al. 2003; Wang et al. 2006; Vallania et al. 2018; Du et al. 2018;

Reference free methods (some type of factor analysis):

Method to adjust for cell proportion

- In EWAS, add proportion as covariate in the model:
- More rigorous statistical modeling for DE/DM with sample mixture has been a popular topic recently, and a number of methods are developed:
 - csSAM: Shen-Orr et al. 2010 *Nature methods*
 - CellDMC: Zheng et al. 2018 *Nature Methods*
 - TOAST: Li et al. 2019 *Bioinformatics, 2019 Genome Biology*
• We have covered microarray analysis DE test, including:
 – SAM t-test.
 – EB method: Limma.
 – A little on complex design.
 – Permutation test.
 – Multiple testing.
 – R/Bioconductor packages for DE analysis.
• Batch effects.
• Cell type mixture in complex tissues