Introduction to ChiP-Seq
data analyses



Outline

* Introduction to ChIP-seq experiment.
— Biological motivation.
— Experimental procedure.

 Method and software for ChIP-seq peak calling.
— Protein binding ChlP-seq.
— Histone modifications.

 “Higher order” ChlP-seq data analysis.
— Overlaps of peaks.

— Differential peaks.
— Correlate with other data such as RNA-seq.



Introduction to ChiP-seq
experiment



ChiIP-seq: Chromatin ImmunoPrecipitation
+ sequencing

e Scientific motivation: measure specific
biological modification along the genome:

— Detect binding sites of DNA-binding proteins
(transcription factors, pol2, etc.) .

— Quantify strengths of chromatin modifications
(e.g., histone modifications).



Experimental procedures

1. Crosslink: fix proteins on Isolate genomic DNA.

2. Sonication: cut DNA in small pieces of ~200bp.

IP: use antibody to capture DNA segments with
specific proteins.

Reverse crosslink: remove protein from DNA.

. Sequence the DNA segments.



DNA with proteins
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Protein/DNA Crosslinking in vivo

By Richard Bourgon at UC Berkley



Sonication (cut DNA into pieces)
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Capture using TF-specific Antibody
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Immunoprecipitation (IP)
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Reverse Crosslink and DNA Purification
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Amplification (PCR)

By Richard Bourgon at UC Berkley



Other similar sequencing technologies

e “Captured sequencing” — enrich and then sequence selected
genomic regions.

e Similar technologies:
— MeDIP-seq: measure methylated DNA.
— DNase-seq: detect DNase | hypersensitive sites.
— FAIRE-seq: detect open chromatin sites.
— Hi-C: study 3D structure of chromatin conformation.

— GRO-seq: map the position, amount and orientation of
transcriptionally engaged RNA polymerases.

— Ribo-seq: detect ribosome occupancy on mRNA. Captured mRNA-seq.
— MeRIP-seq: measure RNA methylation. Captured mRNA-seq.



Methods and software for
ChiP-seq peak/block calling



Data from ChiP-seq

 Raw data: sequence reads.

e After alignments: genome coordinates
(chromosome/position) of all reads.

e Often, aligned reads are summarized into “counts” in
equal sized bins genome-wide:
1. segment genome into small bins of equal sizes (50bps).
2. Count number of reads in each bin.



ChiP-seq “peak” detection

 When plot the read counts against genome coordinates, the
binding sites show a tall and pointy peak. So “peaks” are used
to refer to protein binding or histone modification sites.
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* Peak detection is the most fundamental problem in ChlP-seq
data analysis.



Simple ideas for peak detection

Regions with reads clustered are likely to be peaks.

Counts from neighboring windows need to be combined to
make inference (so that it’s more robust).

To combine counts:
— Smoothing based: moving average (MACS, CisGenome), HMM-based
(Hpeak).
— Model clustering of reads starting position (PICS, GPS).
Moreover, some special characteristics of the data can be
incorporated to improve the peak calling performance.



Before peak detection

e Artifacts need to be considered:

— DNA sequence: can affect amplification process or
seguencing process

— Chromatin structure (e.g., open chromatin region or not):
may affect the DNA sonication process.

— A control sample is necessary to correct artifacts.

* Reads clustered around binding sites to form two
distinct peaks on different strands.

* Alignment issue: mappability.



Control sample is important

* A control sample is necessary for correcting many artifacts:
DNA sequence dependent artifacts, chromatin structure,
repetitive regions, etc.
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Reads aligned to different strands

Number of Reads
aligned to different
strands form two
distinct peaks around

the true binding sites.

This information can
be used to help peak
detection.

Valouev et al. (2008) Nature Method



Mappability

For each basepair position in the genome, whether a

sequence read starting from this position can be uniquely
mapped to a genome location.

Regions with low mappability (highly repetitive) cannot have
high counts, thus affect the ability to detect peaks.

Table 1 Genome mappability fraction

Organism Genome size (Mb)
Caenorhabditis elegans 100.28
Drosophila melanogaster 168.74
Mus musculus 2,654.91
Homo sapiens 3,080.44

MNonrepetitive sequence

Mappable sequence

Size (Mb)

87.01
117.45
1,438.61
1,462.69

Percentage

86.8%
69.6%
54.2%
47.5%

Size (Mb)

93.26
121.40
2,150.57
2,451.96

Percentage

93.0%
71.9%
81.0%
79.6%



Peak detection software

MACS
Cisgenome
QUEST
Hpeak
PICS

GPS
PeakSeq
MOSAICS



MACS (Model-based Analysis of ChiP-Seq)
Zhang et al. 2008, GB

Estimate shift size of reads d from the distance of two modes
from + and — strands.

Shift all reads toward 3’ end by d/2.

Use a dynamic Possion model to scan genome and score
peaks. Counts in a window are assumed to following Poisson
distribution with rate: e = max(gg, Mol Ao Ao

— The dynamic rate capture the local fluctuation of counts.

FDR estimates from sample swapping: flip the IP and control
samples and call peaks. Number of peaks detected under
each p-value cutoff will be used as null and used to compute
FDR.



Using MACS

e Written in python

e Newer versions are MACS2 and MACS3:

— https://hbctraining.github.io/Intro-to-
ChIPseq/lessons/05 peak calling macs.html

— https://github.com/macs3-project/MACS

* Syntax:
macs2 callpeak -t ChIP.bam -c Control.bam \
-f BAM -g hs -n output


https://hbctraining.github.io/Intro-to-ChIPseq/lessons/05_peak_calling_macs.html
https://github.com/macs3-project/MACS

Cisgenome (Ji et al. 2008, NBT)

* Implemented with Windows GUI.
* Use a Binomial model to score peaks.
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Comparing peak calling algorithms

* Wilbanks et al. (2010) PloS One
e Laajala et al. (2009) BMC Genomics
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Another type of approach:
modeling the read locations

Regions with more reads clustered tend to be
binding sites.

This is similar to using binned read counts.

Reads mapped to forward/reverse strands are
considered separately.

Peak shapes can be incorporated.



PICS: Probabilistic Inference for ChIP-seq
(Zhang et al. 2010 Biometrics)

Use shifted t-distributions to model peak shape.

Can deal with the clustering of multiple peaks in a
small region.

A two step approach:
— Roughly locate the candidate regions.
— Fit the model at each candidate region and assign a score.

EM algorithm for estimating parameters.
Computationally very intensive.
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GPS
Guo et al. 2010, Bioinformatics

 The general idea is very similar to PICS.

* Use non-parametric distribution to model the
peak shape.

e Estimation of peak shape and peak detection
are iterated until convergence.



Use GPS

* Run following command:

java -Xmx1lG -jar gps.jar --g mm8.info --d
Read Distribution default.txt --expt
IP.bed --ctrl control.bed --f BED --out
result

e It's much slower than MACS or CisGenome.
So we won’tdo it in the lab.



A little more comparison

* | found that using peak shapes helps. GPS tend to
perform better. PICS seems not stable.
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Bioconductor packages for protein
binding ChiP-seq

* There are several packages: chipseq, ChiPseqR,
BayesPeak, PICS, etc., but not very popular.

* Most people use command line driven software like
MACS or CisGenome GUI.



ChiIP-seq for histone modification

* Histone modifications have various patterns.

— Some are similar to protein binding data, e.g.,
with tall, sharp peaks: H3K4.

— Some have wide (mega-bp) “blocks”: H3k9.

— Some are variable, with both peaks and blocks:
H3k27me3, H3k36me3.



Histone modification ChiP-seq data
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Peak/block calling from histone ChiP-seq

e Use the software developed for TF data:
— Works fine for some data (K4, K27, K36).

— Not ideal for K9: it tends to separate a long block into
smaller pieces.

 Many existing methods, mostly based on smoothing,
HMM or wavelet.



Complications in histone peak/block calling

 Smoothing-based method:

— Long block requires bigger smoothing span, which hurts
boundary detection.

— Data with mixed peak/block (K27me3, K36me3) requires
varied span: adaptive fitting is computationally infeasible.

e HMM based method:

— Tend to over fit. Sometimes need to manually specify
transition matrix.



Available methods/software for
histone data peak calling

MACS?2

BCP (Bayesian change point caller)
SICER

RSEG

UW Hotspot

BroadPeak

mosaicsHMM

WaveSeq

ZINBA

ARHMM



MACS2

* Has an option for broad peak calling, which uses post
hoc approach to combine nearby peaks.
* Syntax:

macs2 callpeak -t ChIP.bam -c Control.bam \
—--broad -g hs --broad-cutoff 0.1



RSEG

* By Andrew Smith at USC:
http://smithlabresearch.org/software/rseg/

* Use negative binomial distribution to model the bin
counts, NBDiff distribution for differences between
IP and control.

e HMM (3-state for TF data, 2-state for epigenomic
domains) for genome segmentation. Use
permutation to calculate p-values and determine
boundaries.


http://smithlabresearch.org/software/rseg/

Use RSEG

Inputs are bed files.

First determine “deadzone” (low or unmappable
regions). Deadzones for different species can be

obtained from their website.
deadzone -s fa -k 32 -o deadzones-mm9-k32.bed mm9

Then call blocks:

rseg-diff -c mouse-mm9-size.bed -o output.bed -i
20 -v -mode 2 -d deadzone-mm9-k32.bed IP.bed
control .bed



SICER
Zang et al. 2009, Bioinformatics

* Algorithm:

— Cut genome into non-overlapping windows and
compute a score for each window based on a
Poisson model.

— Identify “islands” by thresholding the scores.

— Compute a score for each island. This is the tricky
part.



Use SICER

The software is written in python.
Inputs are bed files for IP and control.
Good computational performance.

Results are sometimes sensitive to the
parameters.

A typical command is like:

SICER.sh . h3k27me3.bed control.bed .\
hgl9 2 200 150 0.74 600 0.01



ARHMM
Rashid et al. (2014) JASA

Use ARHMM (auto-regressive HMM) to model the binned
read counts.

— The AR part has smoothing effects which overcomes the problem of
HMM that it tends to generate smaller blocks.

Has capability to include more covariates, and do model
selection.

— Consider IP counts are response, covariates can be control counts, GC
content, mappability, TF bindings, etc.

According to my limited experience, the results seem to be
desirable.



Summary for ChiP-seq peak/block calling

Detect regions with reads enriched.
Control sample is important.

Incorporate some special characteristics of the data
improves results.

Calling blocks (long peaks) is harder.
Many software available.



After peak/block calling

 Compare results among different samples:
— Presence/absence of peaks.
— Differential binding.
— Combinatory patterns.

 Compare results with other type of data:
— Correlate TF binding with gene expressions from RNA-seq.



Comparison of multiple ChilP-seq

* [t'simportant to understand the co-occurrence patterns of
different TF bindings and/or histone modifications.

* Post hoc methods: look at overlaps of peaks and represent by

Venn Diagram.

— This can be done using different tools. We’ll practice using
Bioconductor packages in the lab.
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Differential binding (DB)

* This is different from the overlapping analysis,
because it considers quantitative changes.

e Straightforward methods:
— Call peaks from individual dataset.
— Union the called peaks to form candidate regions.

— Treat the candidate regions as genes, then use RNA-seq
method to test. Or model the differences of normalized
counts from two conditions



Issues to consider in DB analysis

* How to use control data:

— Need to model the IP-control relationship.

— Simply subtracting control might not be ideal.
 Normalization between experiments:

— Signal to noise ratios (SNRs) are different due to technical
and biological artifacts.

e Biological variations and experimental design (same
as in RNA-seq).



Existing method/software for DB analysis

ChIPDiff (Xu et al. 2008, Bioinformatics): HMM on differences of
normalized IP counts between two groups.

DIME (Taslim et al. 2009, 2011, Bioinformatics): finite mixture model on
differences of normalized IP counts.

MAnorm (Shao et al. 2012, Genome Biology): normalization based on MA
plot of counts from two groups, then use normalized “M” values to rank
differential peaks.

ChiIPnorm (Nair et al. 2012, PLoS One): quantile normalization for each
data. Ad hoc method for detecting differential peak.

DBChIP (Liang et al. 2012 Bioinformatics) and DiffBind: Bioconductor
packages, based on RNA-seq method.

ChIPComp (Chen et al. 2015 Bioinformatics): Based on linear model
framework, works for general design.



Combine ChIP- and RNA-seq

It is of great interest to study how the gene
expressions are controlled by protein bindings and
epigenetic modifications.

Easy approach:

— Look at the correlation of promoter TF binding (from ChIP-
seq), and gene expression (from RNA-seq).

More advanced approaches:

— Build a model to predict gene expression (from RNA-seq)
from protein binding and epigenetic data (from ChlIP-seq).

— Build a network for all ChIP- and RNA-seq data.



Predict expression from TF binding
Ouyang et al. (2009) PNAS

Goal: to build a model to predict gene expressions
using 12 TF binding datasets.

Data: mouse ESC TF data from a cell paper by a
Singapore group.
Method: regression based.

A similar paper using histone modification to predict
gene expression is Karlic et al. (2010) PNAS.



Procedures in Ouyang et al.

* Read counts are first summarized into gene level.
* Association strength between TF j and gene is:
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where gk istheintensity (hnumber of readsaligned to the coordinate) of the kth
binding peak of the TF j, di is the distance (humber of nucleotides) between
the TSS of gene j and the kth binding peak in the reference genome, and dy
is a constant. In theory, the summation is over all binding peaks of a given TF.

— Result a;; is a matrix of ngenes by nTF.
* PCA on g;to avoid having one TF dominating.
* log-linear model: |opy,— 4+ S BX, + o
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Prediction results from TF binding
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Prediction results from histone modification
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Network based analysis of multiple ChIP-seq

* Yu et al. (2008) Genome Research.

e Data used: human CD4+ T-cell chip-seq for 23 histones and TF
binding (from Keji Zhao’s Cell paper). Read counts are
summarized into TSS +/- 1kb region.

e Method:

— Bayesian network on discretized counts using WinMine. A

randomization procedure is implemented to select the robust
edges.



Result from BN




Review

ChlP-seq detects TFBS or measure histone
modifications along the genome.

Peak (short and long) detection is the major goal of
data analysis.

Number of aligned reads are input data. Data in
neighboring regions need to be combined to call
peaks.

Many similar technologies, and the method are more
or less the same.



