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Course outline

8-9:15: Intro and data preprocessing.

9:15-9:45: Lab: preprocessing and visualization.

10-11:15: Normalization, batch effect, imputation, DE, simulator.
11:15-12: Lab: Normalization, batch effect, imputation, DE, simulator

12-1: Lunch break

1-2: Clustering and pseudotime construction

2-2:30: Lab: Clustering and pseudotime construction

2:45-3:30: Supervised cell typing & related single cell data sources
3:30-4: Lab: supervised cell typing.

4:15-5: scRNA-seq in cancer



Outline for this session

* Background

— Uniqueness of tumor tissue
— Opportunities and challenges

* Relevant computational methods
— Unified analysis across condition and multiple samples
— Distinguishing neoplastic from nonneoplastic cells
— Inferring communication with tumor microenvironment
— Delineating tumoral and microenvironment evolution

— Other tumor-specific topics

* Future opportunities



Uniqueness of tumor tissue
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Uniqueness of tumor tissue

Stepwise progression
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Uniqueness of tumor tissue

Inter-tumour
heterogeneity
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Single cell RNA-seq provides unbiased
characterization of cell profiles in
tumor environment
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Unified analysis across many patients

and disease states

Goal: identifying common cell types and states
shared across patients and disease states from
multiple scRNA-seq datasets.

Batc
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com

n effect is a big concern here.
n correction tools: MultiCCA, MNN,
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Newly emerged tools: LIGER, Harmony, scVI,
SAUCIE



Challenges in clustering:
neoplastic cells

Neoplastic cells aggregate by patient due to
the inter-patient heterogeneity for neoplastic
versus non-neoplastic cells

Neoplastic cells need to be considered
separately from nonneoplastic cells

Clustering per patient is also recommended to
avoid over-correction

Perform generic batch correction with caution



Distinguishing neoplastic from
nonneoplastic cells

* Neoplastic cells generally exhibit extensive
alterations in a variety of biochemical
pathways and oncogenic programs
emblematic of cancer

* Certain cancers - distinct marker genes or
combinations of marker genes

— E.g. multiple myeloma cells are marked by
CD38+/CD138+ antigen expression



Distinguishing neoplastic from
nonneoplastic cells (continue)

* Other cancers - marker gene or pathway are not
enough

— Neoplastic cells can also express genes and pathways
typically associated with canonical nonneoplastic cells in
ways that we might not expect.

— CNV inference-based detection: InferCNV, CopyKAT
— Point mutation-based detection: HoneyBADGER

— some cancers are not well defined by either large-scale
CNVs or somatic point mutations (chronic myeloid
leukemia — BCR-ABLfusion)



a Marker or Fusion
Gene Detection

b CNV Inference
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Genes
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Inferring communication within the
tumor microenvironment

* |nfer putative communication of cell types:
comparison of the expression levels of a
receptor gene in one cell type and a
corresponding ligand gene in another cell type

 Methods: CellPhoneDB (2018 Nature, 2020
Nature protocol), CellTalker (2020 Immunity),
NicheNet (2020 Nature Methods), iTalk
(bioRxiv, 2019)
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CellPhoneDB
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Deconvolution of bulk RNA-seq using
single cell RNA-seq data

Infer proportions of different immune and stromal
cell type

Assumption: bulk sample is a mixture of multiple
transcriptionally distinguishable cell types

Methods: MuSiC (Wang et al. 2019, Nat Comm),
CibersortX (Newman et al. 2019, Nature)

Other: TIMER, Cibersort, MCP-counter, xCell

Marker gene selection is important - cancer cells
may aberrantly express genes associated with
canonical immune or nonneoplastic cell types



Delineating tumoral and
microenvironmental evolution

e Pseudotime construction methods could be
used for trajectory construction

* Special attention is needed for determining
start and end point in trajectory construction

* RNA velocity analysis



RNA velocity analysis

Has been applied on some cancer studies, but not cancer
specific. It is originally designed for capturing
developmental trajectory.

Balance between unspliced and spliced mRNAs is
predictive of cellular state progression

Increase in the transcription rate: a rapid increase in
unspliced mRNA -> increase in spliced mRNA -> new
steady state

Drop in the rate of transcription: a rapid drop in unspliced
MRNA -> reduction in spliced mRNA -> stead state

Such spliced/unspliced states can be identified using
protocols of SMART-seq2, inDrop, STRT/C1, and 10x
genomics



RNA velocity analysis
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CytoTRACE

RESEARCH ARTICLE

RESEARCH METHODS

Single-cell transcriptional diversity is a hallmark of
developmental potential

Gunsagar S. Gulati’*, Shaheen S. Sikandar'*, Daniel J. Wesche', Anoop Manjunath’, Anjan Bharadwaj’,
Mark J. Berger®t, Francisco llagan’, Angera H. Kuo®, Robert W. Hsieh’, Shang Cai®, Maider Zabala't,
Ferenc A. Scheeren®, Neethan A. Lobo't, Dalong Qian’, Feigiao B. Yu®, Frederick M. Dirbas®,

Michael F. Clarke’, Aaron M. Newman'2§
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CytoTRACE
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Integration of mouse bone marrow datasets
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Futures

* Single cell multi-omics: epigenetic
heterogeneity and its interplay with
transcriptional heterogeneity at the single-cell
level

e Spatial transcriptomics

* |International consortium: Human Cell Atlas,
Human Developmental Cell Atlas, Pediatric
Cell Atlas, HUBMAP, Human Tumor Atlas
Network, LifeTime EU Flagship




