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Course outline

8-9:15: Intro and data preprocessing.
9:15-9:45: Lab: preprocessing and visualization.

10-11:15: Normalization, batch effect, imputation, DE,
simulator.

11:15-12: Lab: Normalization, batch effect, imputation,
DE, simulator

12-1: lunch break
1-2: Clustering and pseudotime construction
2-2:30: Lab: Clustering and pseudotime construction

2:45-3:30: Supervised cell typing & related single cell data
sources

3:30-4: Lab: supervised cell typing.
4:15-5: scRNA-seq in cancer



Outline for this session

Statistical models for scRNA-seq data
Data preprocessing

— Normalization
— Batch effect correction
— Imputation

Differential expression
Data simulator

Sample size calculator



Review: data model for bulk RNA-seq

* The most common model is the gene-wise gamma-
Poisson (negative binomial) distribution:
Y. | A, ~ Poisson(A,), A, ~ Gamma(a, )
Y, ~ NB(a, )

* NBis over-dispersed Poisson:

— Poisson: var = u
- NB: var = pu+ po

— Dispersion parameter ¢ approximates the squared

coefficient of variation: ¢ = “a;;“ N




Data model for scRNA-seq

* The data distribution is more complex than
bulk RNA-seq due to

— Mixture of cell types
— Drop out

e Often-used statistical models
— Gene-wise: zero-inflated model, mixture model
— Cell-wise: Dirichlet-multinomial.



Gene-wise modeling

* Many expressions follow multi-modal distribution.

e Most methods use mixture of distributions:

— SCDE (Kharchenko et al., 2014): a mixture of NB and
Poisson.

— MAST (Finak et al., 2015): a generalized linear hurdle
model.

— SC2P (Wu et al. 2018): a mixture of zero-inflated Poisson
(ZIP) and lognormal-Poisson.

e Recent discussions about the presence of zero-
inflation: whether it’s caused by UMI or droplet.

— Cao et al. 2020 Nat Biotech; Svensson 2020 Nat Biotech.



Cell-wise modeling

* Counts for cells in one cell type follow Dirichlet-
multinomial distribution
— Counts for each cell follow a multinomial distribution
— The MN means follow Dirichlet cross cells in the same cell
type.

* For multiple cell types, the counts follow a mixture of
Dirichlet-multinomial.

e Used more often in cell clustering methods (DIMM-
SC, BAMM-SC).



Data normalization

ScCRNA-seq is very noisy.

Spike-in data is usually available.

— Spike-ins from the external RNA Control Consortium
(ERCC) panel contains 92 synthetic spikes based on
bacterial genome with known expression level.

UMI is helpful for removing amplification noise.

A combination of spike-in and UMI can potentially be
used for data normalization.

Simple normalization (such as by sequencing depth)
for bulk RNA-seq can be applied, e.g., TPM or FPKM.



Lun et al. Genome Biology (2016) 17:75

DOI 10.1186/513059-016-0947-7 Genome BIOlogy

Pooling across cells to normalize @

single-cell RNA sequencing data with many
zero counts

Aaron T.L.Lun'", Karsten Bach? and John C. Marioni'?3"

* Works for data without spike-in.
 The goal is to estimate a size factor for each cell.

* The idea is to normalize on summed expression
values from pools of cells — it’s more stable than
using individual cell.

* Bioconductor package scran.
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Fig. 3 Schematic of the deconvolution method. All cells in the data set are averaged to make a reference pseudo-cell. Expression values for cells in
pool A are summed together and normalized against the reference to yield a pool-based size factor ,. This is equal to the sum of the cell-based
factors 6; for cells j = 1-4 and can be used to formulate a linear equation. (For simplicity, the t; term is assumed to be unity here.) Repeating this for
multiple pools (e.g., pool B) leads to the construction of a linear system that can be solved to estimate 6; for each cell j




SCnorm: robust
normalization of
single-cell RNA-seq data

Rhonda Bacher»>®, Li-Fang Chu?>, Ning Leng?,
Audrey P Gasch?, James A Thomson?, Ron M Stewart?,
Michael Newton!4® & Christina Kendziorski4

584 | VOL.14 NO.6 | JUNE 2017 | NATURE METHODS

e Basic idea: one normalization factor per cell
doesn’t fit all genes.

* Relationships of read counts and sequencing
depths vary and depend on the expression

levels.



~
o®
N

Raw
Log Expression

Global Scale Factor
Log Normalized Expression Q

Single cell

1.5

1.0

0.5
1

Expression
High

1;.0 14I.5 15I.0 1&';.5 1E;.0 —IZ
Log Sequencing Depth (h)

Expression
High

14.0 14.5 15.0 15.5 16.0

Log Sequencing Depth




SCnorm Solution

e Uses quantile regression to estimate the
dependence of read counts on sequencing
depth for every gene.

* Genes with similar dependence are then

grouped, and a second quantile regression is
used to estimate scale factors within each

group.
* Bioconductor package SCnorm.



Batch effect

e Batch effect in scRNA-seq can be severe.

* Can be difficult to randomize the design, i.e.,
batch is confounded with individual, so it
causes trouble for analyzing data from
multiple individuals (more on this later).

e Bulk data method such as Combat doesn’t
work well.




Batch effect correction methods

* The cells are from different cell types, which
complicates the problem.

* Most methods are developed for cell
clustering, i.e., jointly perform batch
correction and cell clustering.

 The goal is to minimize the impact of batch
effects on cell clustering.



nature methods
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Batch effects in single-cell RNA-sequencing data are
corrected by matching mutual nearest neighbors

Laleh Haghverdi2, Aaron T L Lun3®, Michael D Morgan*® & John C Marionil>3*
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A comprehensive comparison paper

Tran et al. Genome Biology (2020) 21:12

https://doi.org/10.1186/513059-019-1850-9 Genome B|O|0gy

A benchmark of batch-effect correction ")
methods for single-cell RNA sequencing
data

Hoa Thi Nhu Tran', Kok Siong Ang*, Marion Chevrier’, Xiaomeng ZhangT, Nicole Yee Shin Lee, Michelle Goh and
Jinmiao Chen’



Table 1 Description of the 14 batch-effect correction methods

Tools Programming  Batch-effect-corrected output Methods Reference package version
language
Seurat 2 (CCA, R Normalized canonical components Canonical correlation analysis and dynamic Butler et al. [4], Seurat
MultiCCA) (CCs) time warping package
version 2.34
Seurat 3 R Normalized gene expression matrix Canonical correlation analysis and mutual  Stuart et al. [12], Seurat
(Integration) nearest neighbors-anchors package version 3.0.1
Harmony R Normalized feature reduction vectors lterative clustering in dimensionally Korsunsky et al. [13],
(Harmony) reduced space Harmony version 0.99.9
MNN Correct R Normalized gene expression matrix Mutual nearest neighbor in gene Haghverdi et al. [5], Scran
expression space package version 1.12.0
fastMNN R Normalized principal components Mutual nearest neighbor in dimensionally  Haghverdi et al. [5], Lun
reduced space ATL [7], Scran package
version 1.12.0
ComBat R Normalized gene expression matrix Adjusts for known batches using an Johnson et al. [1]
empirical Bayesian framework
limma R Normalized gene expression matrix Linear model/empirical Bayes model Smyth et al. [2], limma
version 3.38.3
scGen Python Normalized gene expression matrix Variational auto-encoders neural network  Lotfollahi et al. [16], 2019,
model and latent space scGen
version 1.0.0
Scanorama Python/R Normalized gene expression matrix Mutual nearest neighbor and panoramic Hie et al. [9], Scanorama
stitching version 1.4.
MND-ResNet  Python Normalized principal components Residual neural network for calibration Shaham et al. [15] updated
code to Python 3
ZINB-WaVE R Normalized feature reduction vectors Zero-inflated negative binomial model, Risso et al. [6], ZINB-WaVE
(ZINB-WaVE)/normalized gene expression extension of RUV model version 1.6.0
matrix
scMerge R Normalized gene expression matrix Stably expressed genes (scSEGs) and RUVIII Lin et al. [18], scMerge
model version 1.1.3
LIGER R Normalized feature reduction vectors Integrative non-negative matrix Welch et al. [14], liger version
(LIGER) factorization (INMF) and joint clustering + 1.0
quantile alignment
BBKNN Python/R Connectivity graph and normalized Batch balanced k-nearest neighbors Polanski et al. [10], bioRxiv.

dimension reduction vectors (UMAP)

BBKNN
version 1.3.2
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Other interesting methods

ART'CLE W) Check for updates

Flexible experimental designs for valid single-cell
RNA-sequencing experiments allowing batch
effects correction

Fangda Song® ', Ga Ming Angus Chan' & Yingying Wei® '™

ARTICLE R) Check for updates

Deep learning enables accurate clustering with
batch effect removal in single-cell RNA-seq
analysis

Xiangjie Li¥23, Kui Wangm, Yafei Lyu1, Huize Pan®, Jingxiao Zhangz, Dwight Stambolian®, Katalin Susztak® 7,
Muredach P. Reilly®, Gang Hu® "™ & Mingyao Li® ™

Iterative transfer learning with neural network for
clustering and cell type classification in single-cell
RNA-seq analysis

Jian Hu', Xiangjie Li?, Gang Hu®?3, Yafei Lyu', Katalin Susztak ®* and Mingyao Li®"™



Data imputation

* scRNA-seq has lots of missing data (dropout).

* Imputing the missing data help the
downstream analyses.

* There are a number of methods:
— SAVER (Huang et al. 2018 Nat. Methods)
— Sclmpute (Li et al. 2018 Nat. Comm.)
— MAGIC (van Dijk et al. 2018 Cell)
— SCRABBLE (Peng et al. 2019 GB)



General strategy for imputation

 The problem is similar to a “recommendation
system”.

— First compute the similarities among genes and
cells.

— To impute one element, borrow information from
similar gene/cell.



Recovering Gene Interactions
from Single-Cell Data Using Data Diffusion

David van Dijk," Roshan Sharma,’-? Juozas Nainys, - Kristina Yim,* Pooja Kathail,’-> Ambrose J. Carr,'->
Cassandra Burdziak,' Kevin R. Moon,*¢ Christine L. Chaffer,” Diwakar Pattabiraman,® Brian Bierie,® Linas Mazutis,!

Guy Wolf,6 Smita Krishnaswamy,*%°* and Dana Pe’er?-9-10.*
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ARTICLE

An accurate and robust imputation method
sclmpute for single-cell RNA-seq data

Wei Vivian Li® ' & Jingyi Jessica Li® 2

e sclmpute: base on Gamma-Normal mixture
model to estimate and impute dropout values.

* Steps:
— Learn each gene’s dropout probability in each cell

— Impute dropout values of genes in a cell by
borrowing information of the same gene in other
“similar” cells, which are selected based on genes
not severely affected by dropout events.




nature‘methods BRIEF COMMUNICATION

https://doi.org/10.1038/5s41592-018-0033-z

SAVER: gene expression recovery for single-cell
RNA sequencing

Mo Huang', Jingshu Wang', Eduardo Torre?3, Hannah Dueck?, Sydney Shaffer3, Roberto Bonasio®,
John I. Murray#, Arjun Raj*#, Mingyao Li° and Nancy R. Zhang™

* Use gene-to-gene relationships to recover the true
expression levels.

* Assume gamma-Poisson (NB) for counts

e Estimate the gamma prior parameters in an empirical
Bayes-like approach with a Poisson LASSO regression,
using the expression of other genes as predictor.

* The posterior mean are the imputed expression.



SAVER model

o Assume: Yo, ~ Poisson(scAge), Age ~ Gamma(ag., Pgc)

o Obtain: Agcl ch, &gc, ﬁAgC ~ Gamma(ch + &gC) SC + ﬁAgC)
o u=al/B,v=alp?
Yoo
@ Penalized Poisson LASSO regression: logE (=2 | C)
Y/ +1

=loguge =Yg0 +Lg'2g Ygg’log[
® Dg isobtained with MLE of margmal likelihood of Y under
certain assumptions

. A Yoct+a Y,
Y Estlmate: A‘gC — M — SCA gc + ﬁgc ch
Sct+Pgc Sct+Pgc Sc Sc"‘,Bgc



Hou et al. Genome Biology

(2020) 21:218

https://doi.org/10.1186/513059-020-02132-x

RESEARCH

Genome Biology

Open Access

A systematic evaluation of single-cell
RNA-sequencing imputation methods

Wenpin Hou, Zhicheng Ji, Hongkai Ji” and Stephanie C. Hicks”

a

MAGIC

kNN-smoothing

SAVER
scVI
mcimpute
ALRA
SAVERX
no_imp
DCA
bayNorm
SAUCIE
sclmpute
scScope
Drimpute
scRecover
Deeplmpute
Autolmpute
PBLR
VIPER

All

bulk correlation

differential

clustering

trajectory

time
memory
scalability

MAGIC
SAVERX
kNN-smoothing
SAVER
scVI

ALRA
mcimpute
DCA
bayNorm
no_imp
scScope
SAUCIE
sclmpute
Drimpute
scRecover
Deeplmpute
Autolmpute
PBLR
VIPER

Check for
updates

uml

c
kel
=
K
[}
S
-
e}
o
x
>
2

differential

clustering

trajectory

C
MAGIC
kNN-smoothing
mcimpute
SAVER
ALRA
scVI
sclmpute
no_imp
SAVERX
bayNorm
SAUCIE
DCA
Drimpute
scRecover
PBLR
VIPER
Deeplmpute
scScope
Autolmpute

Fluidigm

bulk correlation

differential

clustering

>
—
[e]
=
[&]
Qo
©
S
=

score

0.75

0.50

0.25



Differential expression (DE)

* DE analysis is the most important task for bulk
expression data (microarray or RNA-seq).

* Popular tools:

— Microarray: limma

— Bulk RNA-seq: DESeq2, edgeR
* I[mportant method:

— Variance shrinkage



DE in scRNA-seq

* Considering cell types:
— Compare cross cell types: identify cell type specific genes.
— Compare the same cell type cross biological conditions.
— Need cell clustering first.

e Method consideration:

— Traditional methods test mean changes

— The consideration and modeling of “drop-out” is important
in scCRNA-seq data.



DE methods

SCDE (Kharchenko et al. 2014 Nat. Methods)
MAST (Finik et al. 2015 GB)

SC2P (Wu et al. 2018 Bioinformatics)

Seurat and monocle provide DE functions.

Bulk methods (DESeq, edgeR) are sometimes
used.

A comparison paper: Soneson and Robinson
(2018) Nat. Methods



Finak et al. Genome Biology (2015) 16:278

DOI 10.1186/513059-015-0844-5 Genome BIOlogy

METHOD Open Access

MAST: a flexible statistical framework for ~ ®=
assessing transcriptional changes and
characterizing heterogeneity in single-cell

RNA sequencing data

Greg Finak'", Andrew McDavid'", Masanao Yajima'", Jingyuan Deng', Vivian Gersuk?, Alex K. Shalek®*>®
Chloe K. Slichter', Hannah W. Miller', M. Juliana McElrath!, Martin Prlic', Peter S. Linsley?
and Raphael Gottardo'”

 MAST: “Model-based Analysis of Single- cell
Transcriptomics.”

* Bioconductor package MAST.



MAST for DE

* Main ideas:

— Use log2(TPM+1) as input data

— Both dropout probability and expression level
depends on experimental conditions.
logit(Pr(Zig = 1)) = X; By
Pr(Yy =lZ, = 1) = N(Xif, o?)

— Model fitting with some regularization.

— DE is based on chi-square or Wald test.
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scCRNA-seq Data simulators

NB (ZI-NB optional) on counts for both
RNA-seq and scRNA-seq

powsimR Vieth et al., 2017, Bioinfo

Gamma-normal mixture on log counts

Li et al., 2019, Bioinfo
(same as scimpute)

scDesign
Gamma-Poisson hierarchical model on

: oy Z ' |., 2017, GB
normalized counts (fitdistrplus) appia etal., 2017, G

Splatter (splat)

ZIP-LNP mixture on log normalized

POWSC
counts

Su et al., 2020, Bioinfo

Deep generative models (Boltzmann

Sl Machines to the NB distribution)

Treppner et al., 2020, Preprint

scPOWER NB on gene-level counts (DESeq) Schmid et al., 2020, Preprint



Comparisons

Based on real data.

Estimate model
parameters.

Simulate the data.

Compare between
simulated and real

expression matrices.

— 4 gene-wise
parameters

— 2 cell-wise
parameters.

B  Simulator Comparison

1.0 simulator POWSC [ scDesign splat

2
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Sample size calculation

Power evaluation and sample size calculation is an
important consideration at the experimental design
stage, and required by almost all grant applications.

Determining scRNA-seq sample size (# of cells) is
difficult, i.e., no closed form solution.

A few methods available under the context of DE,
rely on some simulation procedures.

Report number of cells required in order to achieve
certain power for DE detection.



Power evaluator
(in the context of DE analysis)

| Method _ Approach ___ Notes

Use a series of established tools:
powsimR edgeR, limma, and DESeq2. MAST,
BPSC, and scDD

Report stratified power by
mean expression levels

Top 1000 genes ranked by effect  Precision, recall, F1 score,

scDesign
i score as reference true DE genes and etc.
Use MAST or SC2P to report two Stratified, marginal, and
POWSC )
forms of DE genes overall power evaluation
: Overall power by
Mk kage for DE

scPOWER Use Mkmisc package for DE genes considering both power

and use F test for eQTLs i (D12 Gines e @@ile



